R. Klueh and D. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, 2001.

J. Boutard, A. Alamo, A. , R. Lindau, and M. Rieth, Fissile core and Tritium-Breeding Blanket: structural materials and their requirements, C. R. Phy, vol.9, issue.3-4, pp.287-302, 2008.

N. Baluc, R. Schäublin, P. Spätig, and M. Victoria, On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors, Nucl. Fusion, vol.44, 2004.

Y. Dai, G. R. Odette, and T. Yamamoto, The Effects of Helium in Irradiated Structural Alloys, Comprehensive Nuclear Materials, vol.1, pp.141-193, 2012.

M. R. Gilbert, S. L. Dudarev, S. Zheng, L. W. Packer, and J. , Sublet , An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation, Nucl. Fusion, vol.52, issue.8, p.83019, 2012.

T. Schuler, C. Barouh, M. Nastar, and C. Fu, Equilibrium Vacancy Concentration Driven by Undetectable Impurities, Phys. Rev. Lett, vol.115, p.15501, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02384659

C. Barouh, T. Schuler, C. Fu, and M. Nastar, Interaction between vacancies and interstitial solutes (C, N, and O) in ??Fe : From electronic structure to thermodynamics, Phys. Rev. B, vol.90, p.54112, 2014.

C. Barouh, T. Schuler, C. Fu, and T. Jourdan, Predicting vacancy-mediated diffusion of interstitial solutes in ? -Fe, Phys. Rev. B, vol.92, p.104102, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02383242

R. Schäublin, J. Henry, and Y. Dai, Helium and point defect accumulation: (i) microstructure and mechanical behaviour, CR. Phys, vol.9, pp.389-400, 2008.

H. Trinkaus and B. N. Singh, Helium accumulation in metals during irradiation -where do we stand?, J. Nucl. Mater, vol.323, issue.2-3, pp.229-242, 2003.

D. Brimbal, E. Meslin, J. Henry, B. Décamps, and A. Barbu, He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe-5.40 wt.% Cr: A transmission electron microscopy study, Acta Mater, vol.61, issue.13, pp.4757-4764, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00852715

C. C. Fu and F. Willaime, Ab initio study of helium in ??Fe: Dissolution, migration, and clustering with vacancies, Phys. Rev. B, vol.72, p.13, 2005.

M. J. Caturla, C. J. Ortiz, and C. C. Fu, Helium and point defect accumulation: (ii) kinetic modeling, C. R. Phys, vol.9, pp.401-408, 2008.

T. Ishizaki, Q. Xu, T. Yoshiie, S. Nagata, and T. Troev, Helium and point defect accumulation: (ii) kinetic modelling, J. Nucl. Mater, pp.961-965, 2002.

E. Kuramoto, N. Yoshida, N. Tsukuda, K. Kitajima, N. H. Packan et al.,

. Mansur, Simulation irradiation studies on iron, J. Nucl. Mater, vol.104, pp.1091-1095

E. Getto, E. , Z. Jiao, A. M. Monterrosa, K. Sun et al., Effect of preimplanted helium on void swelling evolution in self-ion irradiated HT9, J. Nucl. Mater, vol.462, pp.458-469, 2015.

Q. Xu, T. Yoshiie, and K. Sato, Effects of hydrogen and helium produced by transmutation reactions on void formation in copper isotopic alloys irradiated with neutrons, J. Nucl. Mater, pp.363-366, 2008.

T. Tanaka, K. Oka, S. Ohnuki, S. Yamashita, T. Suda et al., Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe-Cr ferritic alloys, J. Nucl. Mater, vol.329, pp.294-298, 2004.

E. A. Kenik, The Influence of helium on microstructural evolution of stainless steel, J. Nucl. Mater, vol.85, pp.659-663, 1979.

Y. E. Kupriiyanova, V. V. Bryk, O. V. Borodin, and A. S. Kalchenko,

F. A. Tolstolutskaya and . Garner, Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8e12% Cr ferritic-martensitic steels, J. Nucl. Mater, vol.468, pp.264-273, 2016.

S. K. Mclaurin and G. L. Kulcinski, Effects of temperature and helium on void formation in self-ion irradiated aluminum, J. Nucl. Mater, vol.117, pp.208-212, 1983.

K. Yutani, H. Kishimoto, R. Kasada, and A. Kimura, Evaluation of helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation, J. Nucl. Mater, pp.423-427, 2007.

N. H. Packan and K. Farrell, Simulation of first wall damage: Effects of the method of gas implantation, J. Nucl. Mater, vol.85, pp.677-681, 1979.

J. Delaplace, N. Azam, and L. Lenaour, Gonflement du nickel irradie par des ions Ni + de moyenne energie, J. Nucl, Mater, vol.47, p.278, 1973.

T. Kimoto, E. H. Lee, and L. K. Mansur, Effects of helium injection mode on void formation in Fe-Ni-Cr alloys, J. Nucl. Mater, vol.158, pp.166-178, 1988.

R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath et al., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys

, Res. Sect. B Beam Interact. Mater. Atoms, vol.310, pp.75-80, 2013.

M. L. Jenkins and M. A. Kirk, Characterization of radiation damage by transmission electron microscopy, 2001.

R. Egerton, Electron energy-loss spectroscopy in the electron microscope, vol.3, 2011.

K. Farrell, M. B. Lewis, and N. H. Packan, Simultaneous bombardment with helium, hydrogen, and heavy ions to simulate microstructural damage from fission or fusion neutrons, Scripta. Metall. Mater, vol.12, issue.12, 1978.

K. Farrell and N. H. Packan, A helium-induced shift in the temperature dependence of swelling, J. Nucl. Mater, vol.85, pp.683-687, 1979.

G. S. Was, Fundamentals of Radiation Materials Science, 2007.

L. K. Mansur and E. H. Lee, Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys, J. Nucl. Mater. 179-181 Part, vol.1, pp.105-110, 1991.

L. Ventelon, B. D. Wirth, C. Domain, and C. , J. Nucl. Mater, vol.351, p.119, 2006.

Y. Katoh, Y. Kohno, and A. Kohyama, Dual-ion irradiation effects on microstructure of austenitic alloys, J. Nucl. Mater, vol.205, pp.354-360, 1993.

R. E. Stoller, The influence of helium on microstructural evolution: Implications for DT fusion reactors, J. Nucl. Mater, vol.174, issue.2-3, pp.289-310, 1990.

H. Tanigawa, M. Ando, Y. Katoh, T. Hirose, H. Sakasegawa et al., Response of reduced activation ferritic steels to high-fluence ion-irradiation, J. Nucl

. Mater, , vol.279, pp.279-284, 2001.

F. A. Garner, Impact of the injected interstitial effect on ion-induced void swelling in austenitic and ferritic-ODS alloys, Workshop on Ion Beam Simulation of High Dose Neutron Irradiation, 2014.

E. H. Lee, L. K. Mansur, and M. H. Yoo, Spatial variation in void volume during charged particle bombardment -the effects of injected interstitials, J. Nucl. Mater. 85-86 Part, vol.1, pp.577-581, 1979.

D. L. Plumton and W. G. Wolfer, Suppression of void nucleation by injected interstitials during heavy ion bombardment, J. Nucl. Mater, vol.120, issue.2-3, pp.245-253, 1984.

F. A. Garner, Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage, J. Nucl. Mater, vol.117, pp.177-197, 1983.

A. D. Brailsford and L. K. Mansur, Effect of self-ion injection in simulation studies of void swelling, J. Nucl. Mater, vol.71, issue.1, pp.110-116, 1977.

J. B. Whitley, G. L. Kulcinski, P. Wilkes, and H. V. Smith, The depth dependent damage profile in nickel irradiated with nickel or copper ions, J. Nucl. Mater, vol.79, issue.1, pp.159-169, 1979.

L. Shao, C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen et al., Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with

, MeV self-ions, J. Nucl. Mater, vol.453, issue.1-3, pp.176-181, 2014.

O. Tissot, C. Pareige, E. Meslin, B. Décamps, and J. Henry, Influence of injected interstitials on ?? precipitation in Fe-Cr alloys under self-ion irradiation, Materials Research Letters, vol.5, issue.2, pp.117-123, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01921664