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Abstract: We propose a group-theoretical approach to the generalizedoscillator algebra

Aκ recently investigated inJ. Phys. A: Math. Theor.2010, 43, 115303. The caseκ ≥ 0

corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the

Pöschl-Teller systems) while the caseκ < 0 is described by the compact group SU(2) (as

for the Morse system). We construct the phase operators and the corresponding temporally

stable phase eigenstates forAκ in this group-theoretical context. The SU(2) case is exploited

for deriving families of mutually unbiased bases used in quantum information. Along this

vein, we examine some characteristics of a quadratic discrete Fourier transform in connection

with generalized quadratic Gauss sums and generalized Hadamard matrices.
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1. Introduction

The use of a generalized oscillator algebra for characterizing a dynamical system gave rise to a

great deal of papers. Among many works, we may quote the polynomial Heisenberg algebra worked

out in the context of supersymmetry [1–3], the deformed Heisenberg algebra introduced in connection

with parafermionic and parabosonic systems [4–7], theCλ-extended oscillator algebra developed in the

framework of parasupersymmetric quantum mechanics [8–11], and the generalized Weyl-Heisenberg

algebraWk related toZk–graded supersymmetric quantum mechanics [12–16]. In this direction, the

construction of a truncated generalized oscillator algebra was developed by several authors. In particular,

the pioneer work along this line by Pegg and Barnett led to calculating the phase properties of the

electromagnetic field [17]. Let us also mention the works [18,19] in relation with orthogonal polynomials

of a discrete variable and [16] in connection with phase operators and dynamical systems.

Recently, a generalized oscillator algebraAκ, a one-parameter algebra that is a particular case of

the algebraW1, was studied for the purpose of defining phase operators and the corresponding phase

eigenstates [16]. In addition, it was shown that the phase states forAκ with κ > 0, which are particular

coherent states [20,21], can serve to construct mutually unbiased bases which are of considerable interest

in quantum information and quantum computing [16].

It is the aim of the present paper to analyze the algebraAκ from the point of view of group

theory. SinceAκ can describe the Morse system forκ < 0 as well as the harmonic oscillator and

the Pöschl-Teller systems forκ ≥ 0, we expect that the groups SU(2) and SU(1,1) play a central role.

The search for phase operators and temporally stable phase states thus amounts to study generalized

coherent states for SU(2) and SU(1,1).

The material presented here is organized as follows. Section 2 deals with the generalized oscillator

algebraAκ and its connection with the Lie algebra of SU(2) and SU(1,1).The phase operators and

the phase states introduced in [16] are described in the framework of SU(2) and SU(1,1). Section 4 is

devoted to a truncation of the algebraAκ. In section 5, the phase operator for the group SU(2) is shown

to be of relevance for the determination of mutually unbiased bases (cf. [22–32]). Finally, the quadratic

transformation that connects the phase states for SU(2) to angular momentum states is studied in

Section 6. This transformation generalizes the discrete Fourier transform whose the main properties

are given in the appendix.

The notations are standard. Let us simply mention that:δa,b stands for the Kronecker symbol ofa

andb, I for the identity operator,A† for the adjoint of the operatorA, and[A,B] for the commutator

of the operatorsA andB. The bar indicates complex conjugation and matrices are generally written

with bold-face letters (Id is thed-dimensional identity matrix). We use a notation of type|ψ〉 for a

vector in an Hilbert space and we denote〈φ|ψ〉 and|φ〉〈ψ| respectively the inner and outer products of

the vectors|ψ〉 and |φ〉. As usualN, N∗, Z andR+ are the sets of integers, strictly positive integers,

relative integers and positive real numbers;R andC the real and complex fields; andZ/dZ the ring of

integers0, 1, . . . , d− 1 modulod.
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2. Generalized Oscillator Algebra

2.1. The Algebra

Following [16], we start from the algebraAκ spanned by the three linear operatorsa−, a+ andN

satisfying the following commutation relations

[a−, a+] = I + 2κN, [N, a±] = ±a±,
(
a−

)†
= a+, N † = N (1)

whereκ is a real parameter. In the particular caseκ = 0, the algebraA0 is the usual harmonic oscillator

algebra. In the caseκ 6= 0, the operatorsa−, a+ andN in (1) generalize the annihilation, creation

and number operators used for the harmonic oscillator. Thus, the algebraAκ can be referred to as

a generalized oscillator algebra. In fact, the algebraAκ represents a particular case of the generalized

Weyl-Heisenberg algebraWk introduced in [12–15] to describe a fractional supersymmetric oscillator. A

similar algebra, namely theCλ-extended oscillator algebra, was studied in connection with a generalized

oscillator [8–11].

2.2. The Oscillator Algebra as a Lie Algebra

The caseκ = 0 corresponds of course to the usual Weyl-Heisenberg algebra. It can be shown that the

casesκ < 0 andκ > 0 considered in [16] are associated with the Lie algebras of the groups SU(2) and

SU(1,1), respectively. We shall consider in turn the cases whenκ < 0 andκ > 0.

Forκ < 0, we introduce the operatorsJ−, J+ andJ3 defined via

J− :=
1√
−κa

−, J+ :=
1√
−κa

+, J3 :=
1

2κ
(I + 2κN) (2)

They satisfy the commutation relations

[J+, J−] = 2J3, [J3, J+] = J+, [J3, J−] = −J− (3)

and therefore span the Lie algebra of SU(2).

Similarly for κ > 0 the operatorsK−,K+ andK3, given by

K− :=
1√
κ
a−, K+ :=

1√
κ
a+, K3 :=

1

2κ
(I + 2κN) (4)

lead to the Lie brackets

[K+, K−] = −2K3, [K3, K+] = K+, [K3, K−] = −K− (5)

of the group SU(1,1).

2.3. Rotated Shift Operators for Su(2) and Su(1,1)

We are now in a position to reconsider some of the results of [16] in terms of the Lie algebras

su(2) and su(1,1). This will shed new light on the usual treatments of the representation theory of

SU(2) and SU(1,1) as far as the action on the representation space of the shift operators of these groups

are concerned.
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Let us first recall that in the generic case (κ ∈ R), the algebraAκ admits a Hilbertian representation

for which the operatorsa−, a+ andN act on a Hilbert spaceFκ spanned by the basis{|n〉 : n = 0, 1, . . .}
that is orthonormal with respect to an inner product〈n|n′〉 = δn,n′. The dimension ofFκ is finite when

κ < 0 or infinite whenκ > 0. The representation is defined through [16]

a+|n〉 =
√
F (n+ 1)e−i[F (n+1)−F (n)]ϕ|n+ 1〉 (6)

a−|n〉 =
√
F (n)e+i[F (n)−F (n−1)]ϕ|n− 1〉 (7)

a−|0〉 = 0, N |n〉 = n|n〉 (8)

whereϕ is an arbitrary real parameter and the functionF : N → R+ satisfies

F (n+ 1)− F (n) = 1 + 2κn, F (0) = 0 ⇒ F (n) = n[1 + κ(n− 1)] (9)

Obviously, for κ > 0 the dimension ofFκ is infinite. In contrast, forκ < 0 the spaceFκ is

finite-dimensional with a dimension given by

d := 1− 1

κ
with − 1

κ
∈ N

∗ (10)

It is thus possible to transcribe (6)-(8) in terms of the Lie algebras su(2) and su(1,1).

2.3.1. The Su(2) Case

Let us consider the (2j + 1)-dimensional irreducible representation of SU(2) spanned by the

orthonormal set

B2j+1 := {|j,m〉 : m = j, j − 1, . . . ,−j} (11)

where|j,m〉 is an eigenvector ofJ3 and of the Casimir operator

J2 := J+J− + J3(J3 − 1) (12)

We know that

J2|j,m〉 = j(j + 1)|j,m〉, J3|j,m〉 = m|j,m〉 (13)

with m = j, j − 1, . . . ,−j for fixed j (2j ∈ N). Following [25–32], we make the identifications

|n〉 ↔ |j,m〉, n↔ j +m (14)

Consequently, we have

d = 2j + 1 = 1− 1

κ
(15)

which leads to the relation

2jκ = −1 ⇔ −1

κ
= 2j (16)
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that is crucial for the connection betweenAκ and su(2). It is to be noted that (14)–(16) are compatible

with (2). We can then rewrite (6) and (7) in the su(2) framework. In fact, by combining (2), (9) and (16)

with (6) and (7), we obtain

J+|j,m〉 =
√
(j −m)(j +m+ 1)e−2imκϕ|j,m+ 1〉 (17)

J−|j,m〉 =
√
(j +m)(j −m+ 1)e2i(m−1)κϕ|j,m− 1〉 (18)

Equations (17) and (18) differ from the usual relations, well known in angular momentum theory, by the

introduction of the phase factorϕ. The standard relations, that correspond to the Condon-Shortley phase

convention of atomic spectroscopy, are recovered whenϕ = 0.

Although there is no interdiction to haveϕ 6= 0, it is worthwhile to look for the significance of

the introduction ofϕ. Let us callĴ+ and Ĵ− those operatorsJ+ andJ− which correspond toϕ = 0,

respectively. It is easy to show then thatĴ± andJ± are connected by the similarity transformation

Ĵ± = e−iXκϕJ±e
iXκϕ (19)

where the operatorX reads

X := J2 − J3(J3 − 1) = J+J− = Ĵ+Ĵ− (20)

Note that the nonlinear transformationJ± ↔ Ĵ±, defined by (19), leaves invariant the Casimir operator

J2 of SU(2). We shall see in section 5 that the parameterϕ is essential in order to generate mutually

unbiased bases.

2.3.2. The Su(1,1) Case

The representation theory of SU(1,1) is well known (see for example [20]). We shall be concerned

here with the positive discrete seriesD′
+ of SU(1,1). The representation associated with the Bargmann

indexk can be defined via

K+|k, k + n〉 =
√
(2k + n)(n + 1)e−iψ(k,n)|k, k + n + 1〉 (21)

K−|k, k + n〉 =
√
(2k + n− 1)neiψ(k,n−1)|k, k + n− 1〉 (22)

K3|k, k + n〉 = (k + n)|k, k + n〉 (23)

with

K2|k, k + n〉 = k(1− k)|k, k + n〉, K2 := K+K− −K3(K3 − 1) (24)

wheren ∈ N andK2 stands for the Casimir operator of SU(1,1). This infinite-dimensional representation

is spanned by the orthonormal set{|k, k+n〉 : n ∈ N}. Equations (21) and (22) differ from the standard

relations [20] by the introduction of the real-valued phase functionψ. Such a function is introduced,

in a way paralleling the introduction of the phase factors in(6) and (7), to make precise the connection

betweenAκ and su(1,1) forκ > 0. The relative phases in (21) and (22) are such thatK+ is the adjoint

of K−. For fixedκ andk, we make the identification

|n〉 ↔ |k, k + n〉 (25)



Symmetry2010, 2 1466

Then, from (4) we get the central relation

2kκ = 1 ⇔ 1

κ
= 2k (26)

to be compared with (16). Furthermore, by combining (4), (6), (7), (21), (22), (25) and (26) we get

F (n) = n

[
1 +

1

2k
(n− 1)

]
, ψ(k, n) =

1

k
(k + n)ϕ (27)

Finally, the action of the shift operatorsK+ andK− on a generic vector|k, k + n〉 can be rewritten as

K+|k, k + n〉 =
√

(2k + n)(n+ 1)e−2i(k+n)κϕ|k, k + n+ 1〉 (28)

K−|k, k + n〉 =
√

(2k + n− 1)ne2i(k+n−1)κϕ|k, k + n− 1〉 (29)

The particular caseϕ = 0 in (28) and (29) gives back the standard relations for SU(1,1).

The operatorsK+ andK− are connected to the operatorsK̂+ andK̂− corresponding toϕ = 0 by

K̂± = eiY κϕK±e
−iY κϕ (30)

with

Y := K2 +K3(K3 − 1) = K+K− = K̂+K̂− (31)

so that the nonlinear transformationK± ↔ K̂±, defined by (30), leaves invariant the Casimir operator

K2 of SU(1,1).

3. Phase Operators

Phase operators were defined in [16] from a factorization of the annihilation operatora− of Aκ. We

shall transcribe this factorization in terms of the lowering generatorsJ− andK− of SU(2) and SU(1,1),

respectively.

3.1. The Su(2) Case

Let us defineEd via

J− = Ed
√
J+J− (32)

The operatorEd can be developed as

Ed =

j∑

m=−j

e2i(m−1)κϕ|j,m− 1〉〈j,m| (33)

wherem− 1 should be understood asj whenm = −j. Consequently

Ed|j,m〉 = e2i(m−1)κϕ|j,m− 1〉 for m 6= −j (34)

and

Ed|j,−j〉 = e−iϕ|j, j〉 for m = −j (35)
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It is clear from (34) and (35) that the operatorEd is unitary.

In order to show thatEd is a phase operator, we consider the eigenvalue equation

Ed|z〉 = z|z〉, |z〉 :=
j∑

m=−j

dmz
j+m|j,m〉, z ∈ C, dm ∈ C (36)

It can be shown that the determination of normalized eigenstates|z〉 satisfying (36) requires that the

condition

z2j+1 = 1 (37)

be fulfilled. Hence, the complex variablez is a root of unity given by

z = qα, q = e2πi/(2j+1), α = 0, 1, . . . , 2j (38)

As a result, the states|z〉 depend on a continuous parameterϕ and a discrete parameterα. They shall be

written as|ϕ, α〉. A lengthy calculation leads to

|z〉 ≡ |ϕ, α〉 = 1√
2j + 1

j∑

m=−j

ei(j+m)(j−m+1)κϕqα(j+m)|j,m〉 (39)

The latter states satisfy

Ed|ϕ, α〉 = qα|ϕ, α〉 = e2πiα/(2j+1)|ϕ, α〉, α = 0, 1, . . . , 2j (40)

Thus, the states|ϕ, α〉 are phase states and the unitary operatorEd is a phase operator, with a

non-degenerate spectrum, associated with SU(2). Furthermore, the eigenvectors ofEd satisfy

U(t)|ϕ, α〉 = |ϕ+ t, α〉 (41)

where

U(t) := e−iHt, H := −κX = −κJ+J− (42)

andt is a real parameter. Equation (41) indicates that the phase states|ϕ, α〉 are temporally stable, an

important property to determine the so-called mutually unbiased bases [16]. Note that they are not all

orthogonal (the states with the sameϕ are of course orthogonal) and they satisfy the closure property

2j∑

α=0

|ϕ, α〉〈ϕ, α| = I (43)

for fixedϕ (see also [16]).

3.2. The Su(1,1) Case

By writing

K− = E∞

√
K+K− (44)
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it can be shown that

E∞ =

∞∑

n=0

e2i(k+n)κϕ|k, k + n〉〈k, k + n+ 1| (45)

The operatorE∞ has the following property

E∞(E∞)† = (E∞)†E∞ + |k, k〉〈k, k| = I (46)

Thus, it is not unitary in contrast with the case of the operatorEd for su(2).

Let us look for normalized states|z〉 such that

E∞|z〉 = z|z〉, |z〉 :=
∞∑

n=0

cnz
n|k, k + n〉, z ∈ C, cn ∈ C (47)

One readily finds that

|z〉 =
√

1− |z|2
∞∑

n=0

zne−in(2k+n−1)κϕ|k, k + n〉, |z| < 1 (48)

up to a phase factor. Following [33] and [16], we define the states|ϕ, θ〉 by

|ϕ, θ〉 := lim
z→eiθ

1√
1− |z|2

|z〉 (49)

whereθ ∈ [−π,+π[. One thus obtains that

|ϕ, θ〉 =
∞∑

n=0

einθe−in(2k+n−1)κϕ|k, k + n〉 (50)

The states (50), defined on the unit circleS1, have the property

E∞|ϕ, θ〉 = eiθ|ϕ, θ〉, −π ≤ θ < π (51)

The operatorE∞ is thus a nonunitary phase operator associated with SU(1,1). As a particular case of the

phase states|ϕ, θ〉, the states|0, θ〉 corresponding toϕ = 0 are identical to the phase states introduced in

[33] for SU(1,1). The parameterϕ ensures that the states|ϕ, θ〉 are temporally stable with respect to

U(t) := e−iHt, H := κY = κK+K− (52)

in the sense that

U(t)|ϕ, θ〉 = |ϕ+ t, θ〉 (53)

for any real value oft. Note that, for fixedϕ, the phase states|ϕ, θ〉, satisfy the closure relation

1

2π

∫ +π

−π

dθ|ϕ, θ〉〈ϕ, θ| = I (54)

but they are neither normalized nor orthogonal.



Symmetry2010, 2 1469

4. Truncated Generalized Oscillator Algebra

The idea of a truncated algebra for the harmonic oscillator goes back to Pegg and Barnett [17].

Truncated algebras for generalized oscillators were introduced in [16,18,19]. In [16], a truncated

oscillator algebraAκ,s associated with the algebraAκ was considered both in the infinite-dimensional

case (κ ≥ 0) and the finite-dimensional case (κ < 0). The introduction of such a truncated algebra makes

it possible to define a unitary phase operator forκ ≥ 0 and to avoid degeneracy problems forκ < 0. We

shall briefly revisit in this section the truncation of the generalized oscillator algebraAκ in an approach

that renders more precise the relationship betweenAκ,s andAκ.

Let us start with the two operators

c+ = a+ −
d(κ)∑

n=s

√
F (n)e−i[F (n)−F (n−1)]ϕ|n〉〈n− 1| (55)

c− = a− −
d(κ)∑

n=s

√
F (n)e+i[F (n)−F (n−1)]ϕ|n− 1〉〈n| (56)

whered(κ) = d−1 or∞ according to whetherκ < 0 or κ ≥ 0. The finite truncation indexs is arbitrary

for κ ≥ 0 and less thand for κ < 0. It is straightforward to prove that

c+|n〉 =
√
F (n+ 1)e−i[F (n+1)−F (n)]ϕ|n+ 1〉 for n = 0, 1, . . . , s− 2 (57)

c+|n〉 = 0 for n = s− 1, s, . . . , d(κ) (58)

c−|n〉 =
√
F (n)e+i[F (n)−F (n−1)]ϕ|n− 1〉 for n = 1, 2, . . . , s− 1 (59)

c−|n〉 = 0 for n = 0 and n = s, s+ 1, . . . , d(κ) (60)

Therefore, the operatorsc− andc+ = (c−)† lead to the null vector when acting on the vectors of the

spaceFκ that do not belong to its subspaceFκ,s spanned by the set{|0〉, |1〉, . . . , |s− 1〉}. In this sense,

c+ andc− differ from the operatorsb+ andb− of [16].

In the light of Equations (57)–(60), the passage from the algebraAκ to the truncated algebraAκ,s

should be understood as the restriction of the spaceFκ to its subspaceFκ,s together with the replacement

of the commutation relations in (1) by

[c−, c+] = I + 2κN − F (s)|s− 1〉〈s− 1| −
d(κ)∑

n=s

(1 + 2κn)|n〉〈n|, [N, c±] = ±c± (61)

which easily follow from (55) and (56). It should be observed that the difference between the operators

c± andb± manifests itself in (61) by the summation fromn = s to n = d(κ).

5. Mutually Unbiased Bases

5.1. Quantization of the Phase Parameter

We now examine the consequence of a discretization of the parameterϕ in the su(2) case (κ < 0). By

taking (cf. [16])

ϕ = −π 2j

2j + 1
a ⇔ κϕ =

π

2j + 1
a, a = 0, 1, . . . , 2j (62)
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the state vector|ϕ, α〉 becomes

|ϕ, α〉 ≡ |aα〉 = 1√
2j + 1

j∑

m=−j

q(j+m)(j−m+1)a/2+(j+m)α|j,m〉 (63)

The phase operatorEd is of courseϕ-dependent. For the quantized values ofϕ given by (62),

Equations (34) and (35) can be rewritten as

Ed|j,m〉 = q(m−1)a|j,m− 1〉 for m 6= −j (64)

and

Ed|j,−j〉 = qja|j, j〉 for m = −j (65)

The corresponding operatorEd is thusa-dependent. However, the eigenvalues ofEd do not depend ona

as shown by (40).

5.2. Connecting the Phase Operator with a Quantization Scheme

The eigenvector|aα〉 of Ed given by (63) is a particular case, corresponding tor = 0, of the vector

|jα; ra〉 = 1√
2j + 1

j∑

m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α|j,m〉 (66)

obtained from a polar decomposition of su(2) [22–26]. More precisely

|aα〉 = |jα; 0a〉 (67)

In quantum information,|aα〉 can represent a qudit in dimensiond = 2j + 1. The case of a qubit

corresponds tod = 2, i.e., to an angular momentumj = 1/2.

The vector|jα; ra〉 is an eigenvector of the operator

vra := e2πijr|j,−j〉〈j, j|+
j−1∑

m=−j

q(j−m)a|j,m+ 1〉〈j,m| (68)

wherer ∈ R anda ∈ Z/(2j + 1)Z. The action ofvra on |j,m〉 reads

vra|j,m〉 = δm,je
2πijr|j,−j〉+ (1− δm,j)q

(j−m)a|j,m+ 1〉 (69)

and the matrix elements ofvra in the basisB2j+1 are

〈j,m|vra|j,m′〉 = δm,−jδm′,je
2πijr|j,−j〉+ δm,m′+1(1− δm′,j)q

(j−m′)a|j,m+ 1〉 (70)

wherem,m′ = j, j − 1, . . . ,−j.
As a matter of fact, we have the eigenvalue equation

vra|jα; ra〉 = qj(r+a)−α|jα; ra〉, α = 0, 1, . . . , 2j (71)
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The spectrum ofvra is not degenerate. The vectors|jα; ra〉 are common eigenvectors ofJ2 andvra. For

fixed r anda, they satisfy the orthogonality relation

〈jα; ra|jβ; ra〉 = δα,β (72)

for α, β = 0, 1, . . . , 2j.

The operatorvra is unitary and it commutes with the Casimir operatorJ2 of SU(2). The set{J2, vra}
is a complete set of commuting operators that provides an alternative to the scheme{J2, Jz}, used in

angular momentum theory. In other words, for fixedj, r anda, the set

Bra := {|jα; ra〉 : α = 0, 1, . . . , 2j} (73)

constitutes a nonstandard orthonormal basis for the(2j + 1)-dimensional irreducible representation of

SU(2). The basisBra is an alternative to the canonical basisB2j+1 defined in (11). The reader may

consult [22,23] for a study of the{J2, vra} scheme and of its associated Wigner-Racah algebra.

The a-dependent operatorEd and the operatorvra are closely connected. Indeed, it can be

checked that

Ed = qja(v0a)
† = e2πija/(2j+1)(v0a)

† (74)

as can be guessed from (40) and (71).

5.3. Introduction of Mutually Unbiased Bases

The caser = 0 deserves a special attention. Let us examine the inner product 〈aα|bβ〉 of the vectors

|aβ〉 and|bβ〉 defined by (63), in view of its importance in the study of mutually unbiasedbases (MUBs).

Fora = b, we have

〈aα|aβ〉 = δα,β (75)

Therefore, for fixedj anda (2j ∈ N anda in the ringZ/(2j + 1)Z), the basis

B0a := {|aα〉 : α = 0, 1, . . . , 2j} (76)

(a particular case of the basisBra) and the basisB2j+1 are interrelated via

〈j,m|aα〉 = 1√
2j + 1

q(j+m)(j−m+1)a/2+(j+m)α ⇒ |〈j,m|aα〉| = 1√
2j + 1

(77)

with α = 0, 1, . . . , 2j andm = j, j − 1, . . . ,−j. In view of (77), we see thatB0a (and more generally

Bra) can be considered as a generalized Fourier transform ofB2j+1.

Fora 6= b, the inner product〈aα|bβ〉 can be expressed in term of the generalized quadratic Gauss sum

defined by (see [34])

S(u, v, w) :=

|w|−1∑

k=0

eiπ(uk
2+vk)/w (78)
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In fact, we have

〈aα|bβ〉 = 1

2j + 1
S(u, v, w) (79)

where

u := a− b, v := −(a− b)d− 2(α− β), w := d = 2j + 1 (80)

The sumS(u, v, w) can be calculated in the situation whereu, v andw are integers such thatu andw

are mutually prime,uw is not zero, anduw + v is even.

Let us now briefly discuss the reason why (63) is of interest for the determination of MUBs. We recall

that two orthonormal bases of thed-dimensional Hilbert spaceCd are said to be unbiased if the modulus

of the inner product of any vector of one basis with any vectorof the other one is equal to1/
√
d [35,36].

For fixedd, it is known that the numberNMUB of MUBs is such that3 ≤ NMUB ≤ d + 1 and that the

limit NMUB = d+1 is attained whend is a power of a prime number [35,36]. Then, equation (77) shows

that any basisB0a (a ∈ Z/(2j +1)Z) is unbiased withB2j+1 for arbitrary value of2j + 1. Furthermore,

in the special case where2j + 1 is a prime integer, the calculation ofS(u, v, w) with (80) leads to

|〈aα|bβ〉| = 1√
2j + 1

(81)

for a 6= b, α = 0, 1, . . . , 2j andβ = 0, 1, . . . , 2j. Equation (81) implies thatB0a andB0b for a andb in

the Galois fieldF2j+1 are mutually unbiased.

Thus one arrives at the following conclusion. For2j+1 prime, the2j+1 basesB0a (a = 0, 1, . . . , 2j)

and the basisB2j+1 form a complete set ofd + 1 = 2j + 2 MUBs. This result is in agreement with the

one derived in [24–32]. It can be extended to the caser 6= 0 as follows. For arbitrarily fixedr and2j+1

prime, the2j+1 basesBra (a = 0, 1, . . . , 2j) and the basisB2j+1 form a complete set ofd+1 = 2j+2

MUBs. The parameterr serves to differentiate various families (or complete sets) of MUBs.

6. Discrete Fourier Transforms

We discuss in this section two quadratic versions of the discrete Fourier transform (DFT), namely,

the quantum DFT that connects state vectors in an Hilbert space and the classical DFT used in signal

analysis.

6.1. Quantum Quadratic Discrete Fourier Transform

Equation (66) shows that the vector|jα; ra〉 can be considered as a quantum DFT that is quadratic (in

m) for a 6= 0. This transform is nothing but a quantum ordinary DFT forr = a = 0 [37]. For fixedj, r

anda, the inverse transform is

|j,m〉 = q−(j+m)(j−m+1)a/2+jmr 1√
2j + 1

2j∑

α=0

q−(j+m)α|jα; ra〉 (82)

Compact relations, more adapted to the Fourier transform formalism, can be obtained by going back to

the change of notation given by (14) and (15). Then, Equations (66) and (82) read

|jα; ra〉 = q(d−1)2r/4 1√
d

d−1∑

n=0

qn(d−n)a/2+n[α−(d−1)r/2]|n〉 (83)
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and

|n〉 = q−n(d−n)a/2−(d−1)2r/4+n(d−1)r/2 1√
d

d−1∑

α=0

q−αn|jα; ra〉 (84)

We shall put

(Fra)nα :=
1√
d
qn(d−n)a/2+(d−1)2r/4+n[α−(d−1)r/2] (85)

or

(Fra)nα =
1√
d
e2πif/d with f := 1

4
(d− 1)2r + 1

2
[2α + da− (d− 1)r]n− 1

2
an2 (86)

a relation that defines (for fixedd, r anda) ad× d matrixFra. Let us recall that for a fixed value ofd in

N∗, bothr anda have a fixed value (r ∈ R anda ∈ Z/dZ) andn, α = 0, 1, . . . , d− 1.

Ford = 2j + 1 arbitrary, we can show that

((Fra)
†
Fsb)αβ = 〈jα; ra|jβ; sb〉 (87)

Therefore, in the particular caser = s andd = p, wherep is prime, we have

|((Fra)
†
Frb)αβ| = |〈jα; ra|jβ; rb〉| = |〈aα|bβ〉| = 1√

p
for a 6= b (88)

Equation (88) shall be discussed below in terms of Hadamard matrices.

6.2. Quadratic Discrete Fourier Transform

6.2.1. Factorization of the Quadratic DFT

We are now prepared for discussing the transforms (83) and (84) in the language of classical signal

theory. Let us consider the transformation

x = {xm ∈ C : m = 0, 1, . . . , d− 1} ↔ y = {yn ∈ C : n = 0, 1, . . . , d− 1} (89)

defined by

yn =
d−1∑

m=0

(Fra)mn xm ⇔ xm =
d−1∑

n=0

(Fra)mnyn (90)

The particular caser = a = 0 corresponds to the ordinary DFT. Fora 6= 0, the bijective transformation

x ↔ y can be thought of as a quadratic DFT. The analog of the Parseval-Plancherel theorem for the

ordinary DFT can be expressed in the following way. The quadratic transformationsx↔ y andx′ ↔ y′

associated with the same matrixFra, r ∈ R anda ∈ Z/dZ, satisfy the conservation rule

d−1∑

n=0

yny
′
n =

d−1∑

m=0

xmx
′
m (91)

where both sums do not depend onr anda.
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The matrixFra can be factorized as

Fra = DraF, F := F00 (92)

whereDra is thed× d diagonal matrix with the matrix elements

(Dra)mn := qm(d−m)a/2+(d−1)2r/4−m(d−1)r/2δm,n (93)

For fixedd, there are oned-multiple infinity of Gaussian matricesDra (and thusFra) distinguished by

a ∈ Z/dZ andr ∈ R. On the other hand,F is the well-known ordinary DFT matrix. The matrixF was

the object of a great number of studies. The main properties of the ordinary DFT matrixF are summed

up in the appendix.

6.2.2. Hadamard Matrices

The matrixFra defined by (85) is unitary. The modulus of each of its matrix elements is equal to

1/
√
d. Thus,Fra can be considered as a generalized Hadamard matrix (we adopthere the normalization

of Hadamard matrices generally used in quantum informationand quantum computing) [26–31].

In the case whered is a prime number, Equation (88) shows that the matrix(Fra)
†
Frb is another

Hadamard matrix. However, it should be mentioned that, given two Hadamard matricesM andN, the

productM†
N is not in general a Hadamard matrix.

6.2.3. Trace Relations

The trace ofFra reads

trFra = eiπ(d−1)2/(2d) 1√
d
S(u, v, w) (94)

whereS(u, v, w) is given by (78) with

u := 2− a, v := d(a− r) + r, w := d (95)

Note that the casea = 2 deserves a special attention. In this case, the quadratic character oftrFra

disappears. In addition, ifr = 0 we get

trF02 =
√
d (96)

as can be seen from direct calculation.

6.2.4. Diagonalization

It is a simple matter of calculation to prove that

(Fra)
†
VraFra = q(d−1)(r+a)/2




q1 0 . . . 0

0 q2 . . . 0
...

... . . .
...

0 0 . . . qd


 (97)
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where the matrix

Vra :=




0 qa 0 . . . 0

0 0 q2a . . . 0
...

...
... . . .

...

0 0 0 . . . q(d−1)a

eiπ(d−1)r 0 0 . . . 0




(98)

represents the linear operatorvra defined by (68). Therefore, the matrixFra reduces the endomorphism

associated with the operatorvra.

Concerning (97) and (98), it is important to note the following conventions. According to the tradition

in quantum mechanics and quantum information, the matrixVra of the operatorvra is set up on the basis

B2j+1 ordered from left to right and from top to bottom in the range|j, j〉 ≡ |d − 1〉, |j, j − 1〉 ≡ |d −
2〉, . . . , |j,−j〉 ≡ |0〉. For the sake of compatibility, we adopt a similar convention for the other matrices

under consideration. Thus, the lines and columns ofFra are arranged in the orderd− 1, d− 2, . . . , 0.

6.2.5. Link with the Cyclic Group

There exists an interesting connection between the matrixX and the cyclic groupCd [24–26]. Let us

callR a rotation of2π/d around an arbitrary axis, the generator ofCd. Then, the application

Cd → {Xn : n = 0, 1, . . . , d− 1} : R 7→ X (99)

defines ad-dimensional matrix representation ofCd. This representation is the regular representation of

Cd. Thus, the reduction of the representation{Xn : n = 0, 1, . . . , d − 1} contains once and only once

each (one-dimensional) irreducible representation ofCd.

6.2.6. Decomposition

The matrixVra can be decomposed as

Vra = PrXZ
a (100)

where

Pr :=




1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . eiπ(d−1)r




(101)

and

X :=




0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 1

1 0 0 . . . 0



, Z :=




1 0 0 . . . 0

0 q 0 . . . 0

0 0 q2 . . . 0
...

...
... . . .

...

0 0 0 . . . qd−1




(102)
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The matricesPr, X andZ (and thusVra) are unitary. They satisfy

VraZ = qZVra (103)

VraX = q−aXVra (104)

Equation (103) can be iterated to give the useful relation

(Vra)
m
Z
n = qmnZn(Vra)

m (105)

wherem,n ∈ Z/dZ. Furthermore, we have the quasi-nilpotency relations

e−iπ(d−1)r(Vr0)
d = Z

d = Id (106)

(the relations (106) are true nilpotency relations whenr = 0). More generally, we obtain

∀n ∈ Z/dZ : (Vra)
n = q−n(n−1)a/2(Vr0)

n
Z
an ⇒ (Vra)

d = eiπ(d−1)(r+a)
Id (107)

in agreement with the obtained eigenvalues forVra (see Equation (71)).

6.2.7. Weyl Pairs

For r = a = 0, Equations (103) and (106) show that the unitary matricesX andZ satisfy the

q-commutation relation

XZ = qZX (108)

and the nilpotency relations

X
d = Z

d = Id (109)

Therefore,X andZ constitute a Weyl pair (X,Z). Note that the Weyl pair (X,Z) can be defined from

the matrixVra only since

X = V00, Z = (V00)
†
V01 (110)

which emphasize the important role played by the matrixVra. Note also that according to (97), we have

F
†
XF = qZ (111)

that proves thatX andZ are related by the DFT matrix.

Weyl pairs were introduced at the beginning of quantum mechanics [38] and used for building

operator unitary bases [39]. The pair (X,Z) plays an important role in quantum information and quantum

computing. In these fields, the linear operators corresponding toX andZ are known as flip or shift and

clock operators, respectively. Ford arbitrary, they are at the root of the Pauli group, a finite subgroup of

orderd3 of the group U(d) for d even and SU(d) for d odd [30,31]. The Pauli group is of considerable

importance for describing quantum errors and quantum faulttolerance in quantum computation (see

[40–43] and references therein for recent geometrical approachesto the Pauli group). The Weyl pair
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(X,Z) turns out to be an integrity basis for generating the set{Xa
Z
b : a, b ∈ Z/dZ}. The latter set

constitutes a basis for the Lie algebra of the unitary group U(d) with respect to the commutator law. This

set consists ofd2 generalized Pauli matrices ind dimensions [30,31]. In this respect, note that ford = 2

we have

X = σx, Z = σz, XZ = −iσy, X
0
Z

0 = σ0 (112)

in terms of the ordinary Pauli matricesσ0 = I2, σx, σy, andσz.

6.2.8. Link with a Lie Algebra

Equation (105) can be particularized to give

X
m
Z
n = qmnZnXm, (m,n) ∈ N

2 (113)

Let us define the operator

T(n1,n2) := q
1

2
n1n2Zn1Xn2, (n1, n2) ∈ N

2 (114)

It is convenient to use the abbreviation

(n1, n2) ≡ n ⇒ Tn ≡ T(n1,n2) (115)

The productTnTm is easily obtained to be

TmTn = q−
1

2
m×nTm+n (116)

where

m× n := m1n2 −m2n1, m+ n = (m1 + n1, m2 + n2) (117)

The commutator[Tm, Tn],

[Tm, Tn] = −2i sin
(π
k
m× n

)
Tm+n (118)

follows at once from (116). The operatorsTm can be thus formally viewed as the generators of the

infinite-dimensional Lie algebraW∞ (or sine algebra) investigated in [44,45].

7. Closing Remarks

We used the representation theory of the symmetry groups SU(2) and SU(1,1) to describe the

generalized oscillator algebraAκ and the two phase operatorsEd andE∞ introduced in [16]. The phase

eigenstates ofEd andE∞ were thus understood in terms of finite-dimensional and infinite-dimensional

representations of SU(2) and SU(1,1), respectively. In thecase of those representations of SU(2) for

which the dimension is a prime integer, our approach led us toderive MUBs as eigenbases of the phase

operatorEd (with d prime), opening a way for further results on unitary phase operators associated with

Lie groups.
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The unitary phase operatorEd defined via

J− = Ed
√
J+J− ⇔ J− =

√
J+J−(Ed)

† (119)

leads to a polar decomposition of the algebra su(2) in the scheme{J2, Ed}, which is an alternative to

the familiar quantization scheme{J2, J3} of angular momentum theory. The{J2, Ed} scheme and the

{J2, vra} scheme of [22–32] are related by (74). In the case of the noncompact Lie algebra su(1,1), the

phase operatorE∞ is non-unitary and given by

K− = E∞

√
K+K− ⇔ K+ =

√
K+K−(E∞)† (120)

Although this does not correspond to a true polar decomposition (becauseE∞ is not unitary), it yields a

scheme{K2, E∞}, which is an alternative to the canonical scheme{K2, K3} developed for su(1,1) by

Bargmann and most of other authors. We hope to further study this new scheme from the point of view

of the representation theory and the Wigner-Racah algebra of SU(1,1).

As far as the applications of the new SU(2) and SU(1,1) phase states derived in Section 3 are

concerned, let us mention that, besides the two applications (to mutually unbiased bases in section 5

and to discrete Fourier transform in Section 6) discussed inour paper, we can mention other potential

applications. Our phase states can be useful for various dynamical systems (e.g., the Morse system for

the SU(2) states as well as the Pöschl-Teller system and therepulsive oscillator system for the SU(1,1)

states). We can also mention a possible application of the quadratic discrete Fourier transform to discrete

linear canonical transforms and to Hadamard matrices in connection with the production of geometric

optics setups. Some of these further potential applications are presently under consideration.
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Appendix: Properties of the Ordinary DFT Matrix

The ordinary DFT—also called thefinite Fourier transform—is the linear transformation of the

complexd-dimensional Hilbert spaceCd onto itself, that is represented by the matrixF whose elements

are given by

(F)mn :=
1√
d
qmn =

1√
d
e2πimn/d (121)

with m,n = 0, 1, . . . , d − 1. The elements(F)mn are periodic inm andn modulod (so thatF can

be stitched into a torus), but we shall consider the fundamental interval to be0 ≤ m,n ≤ d − 1.

Equation (121) follows from (85) and (92). The matrixF corresponds to the transformation (89) with

yn =
1√
d

d−1∑

m=0

qmnxm ⇔ xm =
1√
d

d−1∑

n=0

q−nmyn (122)

Note that in the physics literature it is more common to find the definition (121) with a minus sign in the

exponent; of course, the results obtained with the two conventions are equivalent.

The Fourier matrixF has several well-known properties. It is symmetric and unitary. In addition

it satisfies

F
4 = Id (123)
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BecauseF is unitary, its eigenvalues must be on the unit circleS1, and since it is a fourth root of unity,

so are its eigenvalues, to be denoted by

ϕk := ik = eiπk/2 ∈ {1, i,−1,−i} (124)

for k = 0, 1, 2, 3. This divides the spaceCd into four Fourier-invariant, mutually orthogonal subspaces

whose dimensionsNϕk
exhibit the modulo-4 multiplicities of the eigenvaluesϕk. Of course, we have

d =
3∑

k=0

Nϕk
, trF =

3∑

k=0

ϕkNϕk
, detF =

3∏

k=0

(ϕk)
Nϕk (125)

For d = 4J + k with k = 0, 1, 2, 3 and J ∈ N, the multiplicities, traces and determinants of the

submatrices ofF associated with each eigenvalue are given by:

dimension multiplicitiesNϕk

d= ϕ0=1 ϕ1=i ϕ2=− 1 ϕ3=− i trF detF

4J J+1 J J J−1 1 + i i(−1)J

4J+1 J+1 J J J 1 (−1)J

4J+2 J+1 J J+1 J 0 −(−1)J

4J+3 J+1 J+1 J+1 J i −i(−1)J

(126)

(see for example [46] noting that the DFT matrix there is the complex conjugate ofthe DFT matrix here).

SinceNϕk
≈ d/4, there is wide freedom in choosing eigenvector bases withineach eigenspace.

Finding a “good” eigenbasis is of interest to define fractional powers of the DFT matrices, which

constitute the abelian group of elements{Fν}, for realν modulo 4 [47], that would contract, ford→ ∞,

to the fractional Fourierintegral transform. The fractionalization of the Fourier integral transform was

defined in 1937 by Condon [48] at the suggestion of von Neumann, rediscovered in other contexts

[49,50], and is currently of importance for signal analysis and image processing through the fast Fourier

transform algorithm [51–54]. The integral kernel of the fractional Fourier integral transform can be

expressed as a bilinear generating function for Hermite-Gauss functions [55],

Ψn(x) :=
1√

2n n!
√
π
e−x

2/2Hn(x) (127)

whereHn(x) are the Hermite polynomials of degreen ∈ N in x, which are the eigenfunctions of the

Fourier integral transformF ,

Ψ̃n(x) = (F Ψn)(x) =
1√
2π

∫ +∞

−∞

dx′ eixx
′

Ψn(x
′) = inΨn(x) (128)

The integral kernel of the fractional Fourier integral transform [47] is then obtained as

F ν(x, x′) :=
1√

2π sin 1
2
πν

exp
(
i
xx′ − 1

2
(x2+x′2) cos 1

2
πν

sin 1
2
πν

)
(129)

=
∞∑

n=0

Ψn(x) e
iπν/2Ψn(x

′) (130)
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for 0 < ν < 2, with the limits

F 0(x, x′) = δ(x− x′), F 2(x, x′) = δ(x+ x′) (131)

These kernels are unitary,

F−ν(x, x′) = F ν(x′, x) (132)

and form a one-parameter group
∫ +∞

−∞

dx′ F ν1(x, x′)F ν2(x′, x′′) = F ν1+ν2(x, x′′) (133)

with ν modulo 4.

To fractionalize the DFT matrixF, one will be naturally interested findingd-point functionsΦ(d)
n (m)

that are “good” discrete counterparts for the Hermite-Gauss functionsΨn(x) in (127); in particular that

they beanalyticandperiodicfunctions ofm. Mehta [56] has proposed the following functions:

Φ(d)
n (m) :=

∞∑

ℓ=−∞

exp
(
−π
d
(ℓd+m)2

)
Hn

(√2π

d
(ℓd+m)

)
(134)

that we callMehtafunctions. These have the desired properties and

FΦ
(d)
n = inΦ(d)

n (135)

for n ∈ N and whereΦ(d)
n is the column vector of componentsΦ(d)

n (m). Of course, there cannot be more

thand linearly independent vectors inCd, so we may take the subset{Φ(d)
n : n = 0, 1, . . . , d−1}. Prima

facie, it is not clear whether this subset is linearly independentand orthogonal, or not – Mehta [56] left

unresolved their orthogonality, which was lately described thoroughly by Ruzzi [57]. The departure from

strict orthogonality of the vectors of the Mehta basis was investigated in [58]; the departure is small for

low values ofn and gradually worsens up tod− 1.

Indeed, there is wide freedom in choosing bases forC
d when the sole requirement is that they be

eigenbases ofF, satisfying (135). Labelling these eigenvectors by their four Fourier eigenvaluesϕk,

and within each of these eigenspacesCNϕk by j = 0, 1, . . . , Nϕk
− 1, we denote them by{Υ(ϕk ,j)(m)},

periodic inm modulod [46,58]; and we assume that they are complete inCd and thus have a dual basis

{Υ̂(ϕk ,j)(m)} periodic inm, such that

d−1∑

m=0

Υ̂(ϕk ,j)(m) Υ(ϕk′ ,j
′)(m) = δk,k′δj,j′ (136)

and
Nϕk

−1∑

j=0

Υ(ϕk,j)(m) Υ̂(ϕk,j)(m
′) = (Πϕk

)mm′ (137)

whereΠϕk
is the projector matrix on the Fourier subspaceϕk. Associated with this basis{Υ}, one may

define the corresponding ‘Υ-fractionalized DFT matrices’FνΥ with elements

(FνΥ)mm′ :=

3∑

k=0

Nϕk
−1∑

j=0

Υ(ϕk,j)(m) eiπ(4j+k)ν/2 Υ̂(ϕk,j)(m
′) (138)
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where we use the compound indexn = 4j + k to order the vectors, as if it were the ‘energy’ label in

the Mehta functions (134). In this way, the vectors of the{Υ} basis are eigenvectors of anumbermatrix

NΥ with elements

(NΥ)mm′ :=
3∑

k=0

Nϕk
−1∑

j=0

Υ(ϕk,j)(m) (4j+k) Υ̂(ϕk,j)(m
′) (139)

In other words

NΥ Υ(ϕk ,j) = nΥ(ϕk ,j) (140)

The matrixNΥ has the virtue of being the generator of theΥ-fractional Fourier matrices,

F
ν
Υ = exp(i1

2
πνNΥ) (141)

for ν modulo 4.
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