First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength

To cite this version:

HAL Id: in2p3-00007920
http://hal.in2p3.fr/in2p3-00007920
Submitted on 22 Nov 2000

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

1 Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
2 BESSY, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
3 Branch of the Inst. of Nuclear Physics, 142824 Protvino, Moscow Region, Russia
4 CEA Saclay, 91191 Gif sur Yvette, France
5 Darmstadt University of Technology, FB18 - Fachgebiet TEMF, Schlossgartenstr. 8, 64289 Darmstadt, Germany
6 Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany
7 Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
8 Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, al. Mickiewicza 30, PL-30-059 Cracow, Poland
9 Fermi National Accelerator Laboratory, MS 306, P.O. Box 500, Batavia, IL 60510 USA
10 Hamburg University, Inst. f. Experimentalphysik, Notkestrasse 85, 20603 Hamburg, Germany
11 Inst. High Energy Physics IHEP, FEL Lab. P.O. Box 2732 Beijing 100080, P.R. China
12 Inst. High Energy Physics, 142824 Protvino, Moscow Region, Russia
13 INFN LNF, via E. Fermi 40, 00044 Frascati, Italy
14 INFN Milano - LASA, via della Ricerca Scientifica 1, 00100 Roma, Italy
15 Institute of Nuclear Physics, Ul. Kauvery 26 a, 30-55 Krakow, Poland
16 Institute for Nuclear Research of RAS, 117312 Moscow, 60th October Anniversary prospect 7A, Russia
18 Institute of Physics, Polish Academy of Sciences, al. Lotnikow, 32/46, 02-668 Warsaw, Poland
19 Institut de Physique Nucléaire (CNRS-IN2P3), 91406 Orsay Cedex, France
20 Joint Institute for Nuclear Research, 141980 Driba, Moscow Region, Russia
21 Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université de Paris-Sud, B.P. 34, F-91898 Orsay, France
22 Max-Born-Institute, Max-Born-Str. 2a, 12489 Berlin, Germany
23 Neumann Lab, Cornell University, Ithaca, NY 14850, USA
24 RWTH Aachen-Physikzentrum, Phys. Inst. IIIa, Sommerfeldstr. 26-28, 52056 Aachen, Germany
25 UCLA Dept. of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA 90095, USA
26 University of Rochester, Dept. of Physics and Astronomy, 206 Bausch & Lomb, Rochester NY 14627, USA
27 Yerevan Physics Institute, 2 Alikhanyan Brothers str., 375036 Yerevan, Armenia

‡ present address: CERN, CH 1211 Geneva 23, Switzerland
‡‡ present address: Procter & Gamble, 53881 Euskirchen, Germany
§ present address: Stanford Linear Accelerator Center, SLAC MS 07, 2575 Sand Hill Road, Menlo Park, CA 94025 USA
** present address: Senderbetriebtechnik Westdeutscher Rundfunk, 50060 Köln, Germany
†† present address: UCLA Department of Physics & Astronomy, Los Angeles, CA 90024, USA
‡‡‡ e-mail: joerg.rossbach@desy.de
Abstract
We present first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the present models for SASE FELs.

I. INTRODUCTION
X-ray lasers are expected to open up new and exciting areas of basic and applied research in biology, chemistry and physics. Due to recent progress in accelerator technology the attainment of the long sought-after goal of wide-range tunable laser radiation in the Vacuum-Ultraviolet and X-ray spectral regions is coming close to realization with the construction of free-electron lasers (FEL) [1] based on the principle of Self-Amplified Spontaneous Emission (SASE) [2,3]. In a SASE FEL lasing occurs in a single pass of a relativistic, high-quality electron bunch through a long undulator magnet structure.

The radiation wavelength \(\lambda_{ph} \) of the first harmonic of FEL radiation is related to the period length \(\lambda_u \) of a planar undulator by

\[
\lambda_{ph} = \frac{\lambda_u}{2 \gamma^2} \left(1 + K^2 \frac{2}{\pi}\right)
\]

where \(\gamma = E/(mc^2) \) is the relativistic factor of the electrons, \(K = eB_u \lambda_u/(2\pi m_e c^2) \) the undulator parameter and \(B_u \) the peak magnetic field in the undulator. Equation (1) exhibits two main advantages of the free-electron laser: the free tunability of the wavelength by changing the electron energy and the possibility to achieve very short radiation wavelengths.

For most FELs presently in operation [4], the electron beam quality and the undulator length result in a gain of only a few percent per undulator passage, so that an optical cavity resonator and a synchronized multi-bunch electron beam have to be used. At very short wavelengths, normal-incidence mirrors of high reflectivity are unavailable. Therefore the generation of an electron beam of extremely high quality in terms of emittance, peak current and energy spread, and a high precision undulator of sufficient length are essential. Provided the spontaneous radiation from the first part of the undulator overlaps the electron beam, the electromagnetic radiation interacts with the electron bunch leading to a density modulation (micro-bunching) which enhances the power and coherence of radiation. In this “high gain mode” [5–7], the radiation power \(P(z) \) grows exponentially with the distance \(z \) along the undulator

\[
P(z) = A P_{in} \exp(2z/L_g)
\]

where \(L_g \) is the field gain length, \(P_{in} \) the effective input power (see below), and \(A \) the input coupling factor [6,7]. \(A \) is equal to 1/9 in one-dimensional FEL theory with an ideal electron beam. Typical parameters for a SASE FEL operating in the VUV wavelength range are: \(P_{in} \) of about a few Watts and power gain at saturation, \(G = P_{sat}/P_{in} \), of about \(10^8 \).

Since the desired wavelength is very short, there is no laser tunable over a wide range to provide the input power \(P_{in} \). Instead, the spontaneous undulator radiation from the first part of the undulator is used as an input signal to the downstream part. FELs based on this Self-Amplified-Spontaneous-Emission (SASE) principle are presently considered the most attractive candidates for delivering extremely brilliant, coherent light with wavelength in the Ångström regime [8–11]. Compared to state-of-the-art synchrotron radiation sources, one expects full transverse coherence, up to 4-6 orders of magnitude larger average brilliance, and up to 8-10 orders of magnitude larger peak brilliance at pulse lengths of about 200 fs FWHM. Recently there have been important advances in demonstrating a high-gain SASE FEL at 12 \(\mu \)m wavelength [12] and at 530 nm wavelength [13].

II. EXPERIMENTAL SET-UP
The experimental results presented in this paper have been achieved at the TESLA Test Facility (TTF) Free-Electron Laser [14] at the Deutsches Elektronen-Synchrotron DESY. The TESLA (TeV-Energy Superconducting Linear Accelerator) collaboration consists of 39 institutes from 9 countries and aims at the construction of a 500 GeV (center-of-mass) \(e^+/e^- \) linear collider with an integrated X-ray laser facility [10]. Major hardware contributions to TTF have come from Germany, France, Italy, and the USA. The goal of the TTF FEL is to demonstrate SASE FEL emission in the VUV and, in a second phase, to build a soft X-ray user facility [15,16].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy</td>
<td>233 ± 5 MeV</td>
</tr>
<tr>
<td>rms energy spread</td>
<td>0.3 ± 0.2 MeV</td>
</tr>
<tr>
<td>rms transverse beam size</td>
<td>100 ± 30 (\mu)m</td>
</tr>
<tr>
<td>normalized emittance, (\varepsilon_n)</td>
<td>6 ± 3 π mmrad mm</td>
</tr>
<tr>
<td>electron bunch charge</td>
<td>1 nC</td>
</tr>
<tr>
<td>peak electron current</td>
<td>400 ± 200 A</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>1 (\mu)s</td>
</tr>
<tr>
<td>repetition rate</td>
<td>1 Hz</td>
</tr>
<tr>
<td>undulator period, (\lambda_u)</td>
<td>27.3 mm</td>
</tr>
<tr>
<td>undulator peak field</td>
<td>0.46 T</td>
</tr>
<tr>
<td>effective undulator length</td>
<td>13.5 m</td>
</tr>
<tr>
<td>radiation wavelength, (\lambda_{ph})</td>
<td>109 nm</td>
</tr>
<tr>
<td>FEL gain</td>
<td>3 × 10^3</td>
</tr>
<tr>
<td>FEL radiation pulse length</td>
<td>0.3-1 ps</td>
</tr>
</tbody>
</table>

* Dedicated to Bjørn H. Wiik, 17.2.1937 – 26.2.1999
The layout is shown in Fig. 1. The main parameters for FEL operation are compiled in Table I. The injector is based on a laser-driven 1½-cell rf gun electron source operating at 1.3 GHz [17]. It uses a Cs₂Te cathode [18] and can generate bunch charges more than 10 nC at 1 MHz repetition rate. A loading system allows mounting and changing of cathodes while maintaining ultra-high vacuum conditions [18]. The cathode is illuminated by a train of UV laser pulses generated in a mode-locked solid-state laser system [19] synchronized with the rf. An energy of up to 50 μJ with a pulse-to-pulse variation of 2% (rms) is achieved. The UV pulse length measured with a streak camera is σt = 7.1 ± 0.6 ps. The rf gun is operated with a peak electric field of 37 MV/m on the photocathode. The rf pulse length was limited to 100 μs and the repetition rate to 1 Hz for machine protection reasons. The gun section is followed by a 9-cell superconducting cavity, boosting the energy to 16 MeV. The superconducting accelerator structure has been described elsewhere [20].

The undulator is a fixed 12 mm gap permanent magnet device using a combined function magnet design [21] with a period length of λu = 27.3 mm and a peak field of Bu = 0.46 T, resulting in an undulator parameter of K = 1.17. Integrated quadrupole structures produce a gradient of 12 T/m superimposed on the periodic undulator field in order to focus the electron beam along the undulator. The undulator system is subdivided into three segments, each 4.5 m long and containing 10 quadrupole sections to build up 5 full focusing-defocusing (FODO) cells. The FODO lattice periodicity runs smoothly from segment to segment. There is a spacing of 0.3 m between adjacent segments for diagnostics. The total length of the system is 14.1 m. The vacuum chamber incorporates 10 beam position monitors and 10 orbit correction magnets per segment, one for each quadrupole [22,23].

For optimum overlap between the electron light beams, high precision on the magnetic fields and mechanical alignment are required. The undulator field was adjusted such that the expected rms deviations of the electron orbit should be smaller than 10 μm at 300 MeV [24]. The beam orbit straightness in the undulator is determined by the alignment precision of the superimposed permanent-magnet quadrupole fields which is better than 50 μm in both vertical and horizontal direction. The relative alignment of the three segments is accomplished with a laser interferometer to better than 30 μm [25].

Different techniques have been used to measure the emittance of the electron beam [26]. Magnet optics scanning ("quadrupole scans"), tomographic reconstruction of the phase space including space charge effects, and the slit system method. All methods use optical transition radiation emitted from aluminum foils to measure the bunch profiles and yield values for the normalized emittance of (4 ± 1) π mm·rad for a bunch charge of 1 nC at the exit of the injector. The emittance in the undulator, as determined from quadrupole scans and from a system of wire scanners was typically between 6 and 10 π mm·rad (in both horizontal and vertical phase space). It should be noted that the measurement techniques applied determine the emittance integrated over the entire bunch length. However, for FEL physics, the emittance of bunch slices much shorter than the bunch length is the relevant parameter. It is likely that, due to spurious dispersion and wakefields, the bunch axis is tilted about a transverse axis such that the projected emittance is larger than the emittance of any slice. Based on these considerations we estimate the normalized slice emittance in the undulator at (6 ± 3) π mm·rad.

A bunch compressor is inserted between the two accelerating modules, in order to increase the peak current of the bunch up to 500 A, corresponding to 0.25 mm bunch length (rms) for a 1 nC bunch with Gaussian density profile. Experimentally, it is routinely verified that a large fraction of the bunch charge is compressed to a length below 0.4 mm (rms) [27]. There are indications that the core is compressed even further. We estimate the peak current for the FEL experiment at (400 ± 200) A. Coherent synchrotron radiation in the magnetic bunch compressor may affect the emittance and the energy spread at such short bunch lengths [28].

III. FEL MEASUREMENTS

A strong evidence for the FEL process is a large increase in the on-axis radiation intensity if the electron beam is injected such that it overlaps with the radiation during the entire passage through the undulator. Fig. 2 shows the intensity passing a 0.5 mm iris, located on axis 12 m downstream of the undulator, as a function of the horizontal beam position at the undulator entrance. The observed intensity inside a window of ±200 μm around the optimum beam position is a factor of more than 100 higher than the intensity of spontaneous radiation. A PtSi photodiode was used integrating over all wavelengths. Note that the vacuum chamber diameter in the undulator (9.5 mm) is much larger than the beam diameter (300 μm).

SASE gain is expected to depend on the bunch charge in an extremely nonlinear way. Fig. 3 shows the measured intensity on axis as a function of bunch charge Q, while the beam orbit is kept constant for optimum gain.
The solid line indicates the intensity of the spontaneous undulator radiation multiplied by a factor of 100. The strongly nonlinear increase of the intensity as a function of bunch charge is a definite proof of FEL action. The gain does not further increase if the bunch charge exceeds some 0.6 nC. This needs further study, but it is known that the beam emittance becomes larger for increasing Q thus reducing the FEL gain.

FIG. 2. Sensitivity of radiation power to horizontal electron beam position at the undulator entrance. The dots represent mean values of the radiation intensity for each beam position. The horizontal error bars denote the rms beam position instability while the vertical error bars indicate the standard deviation of intensity fluctuations, which are due to the statistical character of the SASE process, see Eq. (3).

FIG. 3. SASE intensity versus bunch charge. The straight line is the spontaneous intensity multiplied by a factor of 100. To guide the eye, mean values of the radiation intensity are shown for some bunch charges (dots). For vertical error bars, see Fig. 2.

FIG. 4. Wavelength spectrum of the central radiation cone (collimation angle ± 0.2 mrad), taken at maximum FEL gain. The dotted line is the result of numerical simulation. The bunch charge is 1 nC.

FIG. 5. Horizontal intensity profile of SASE FEL and spontaneous undulator radiation ($x30$), measured with a photodiode behind a 0.5 mm aperture in a distance of 12 m from the end of the undulator. The dotted line is the result of numerical simulation.

The wavelength spectrum of the radiation (taken on axis at maximum FEL gain) is presented in Fig. 4. The central wavelength of 108.5 nm is consistent with the measured beam energy of (233 ± 5) MeV and the known undulator parameter $K = 1.17$, see Eq. (1). The intensity gain determined with the CCD camera of the spectrometer is in agreement with the photodiode result.

A characteristic feature of SASE FELs is the concentration of radiation power into a cone much narrower than that of wavelength integrated undulator radiation, whose opening angle is in the order of $1/\gamma$. Measurements done by moving the 0.5 mm iris horizontally together with the photodiode confirm this expectation, see Fig. 5. The spontaneous intensity is amplified by a factor of 30 to be visible on this scale.

In order to study which section of the undulator contributes most to the FEL gain, we applied closed orbit...
The uncertainty is estimated at a factor of 3 (i.e. 10^3 power over many bunches. A possible source of the widening is energy and orbit jitters; experimental curves are wider than the simulation results. Calculations have been performed for a Gaussian energy spread of 0.1%. According to numerical simulation one of the most critical parameters for FEL operation is the normalized emittance ε_n that was varied in the simulations between 5 and 10π mrad mm. A first conclusion from our calculations is that the TTF FEL operates in the high-gain linear regime where the power grows exponentially along the undulator. The contribution of the fundamental transverse mode TEM$_{00}$ to the total power seems to dominate, so that Eq. (2) applies.

Our calculations show that the length at which a level of energy flux of 0.3 J/ sr is obtained strongly depends on emittance, but the number of gain lengths is roughly the same in all cases and is about 5. Figs. 4 and 5 include typical theoretical spectral and angular distributions as calculated by our numerical simulation. In both cases experimental curves are wider than the simulation results. A possible source of the widening is energy and orbit jitter, since the experimental curves are results of averaging over many bunches.

The FEL gain is defined as the ratio of output to input power $P_{\text{out}}/P_{\text{in}}$, see Eq. (2). It is a characteristic of the FEL amplifier and should depend only on the parameters of the electron beam and the undulator but not on the type of input signal. For a FEL amplifier seeded by an external laser the input power is well defined. For an FEL amplifier starting from noise (i.e. a SASE FEL) the effective power of shot noise can be defined as the power of optimally focused seeding radiation yielding the same output power. The gain G is then simply $G = A \exp(2z/L_g)$, see Eq. (2). With an input coupling factor $A \approx 0.1$, the FEL gain can be estimated at $G \approx 3 \cdot 10^3$. The uncertainty is estimated at a factor of 3 (i.e. $10^3 < G < 10^4$) and is mainly due to the imprecise knowledge of the longitudinal beam profile.

It is essential to realize that the fluctuations seen in Figs. 2 and 3 are not primarily due to unstable operation of the accelerator but are inherent to the SASE process. Shot noise in the electron beam causes fluctuations of the beam density, which are random in time and space [30]. As a result, the radiation produced by such a beam has random amplitudes and phases in time and space and can be described in terms of statistical optics. In the linear regime of a SASE FEL, the radiation pulse energy measured in a narrow central cone (opening angle $\pm 20\mu$rad in our case) at maximum gain is expected to fluctuate according to a gamma distribution $p(E)$ [31],

$$
p(E) = \frac{M^M e^{E - \langle E \rangle} \left(\frac{E}{\langle E \rangle} \right)^{M-1}}{\Gamma(M)} \exp \left(-M \frac{E}{\langle E \rangle} \right) \quad (3)
$$

where $\langle E \rangle$ is the mean energy, $\Gamma(M)$ is the gamma function with argument M, and $M^{-1} = \langle (E - \langle E \rangle)^2 \rangle / \langle E \rangle^2$ is the normalized variance of E. The parameter M corresponds to the number of longitudinal optical modes. Note that the same kind of statistics applies for completely chaotic polarized light, in particular for spontaneous undulator radiation.

![FIG. 6. Probability distribution of SASE intensity. The rms fluctuation yields a number of longitudinal modes $M = 14$. The solid curve is the gamma distribution for $M = 14.4$. The bunch charge is 1 nC.](image)
be considered as a lower limit for the number of longitudinal modes in the radiation pulse. Using the width of radiation spectrum we calculate the coherence time \[31\] and find that the part of the electron bunch contributing to the SASE process is at least 100 \(\mu\)m long. From the quality of the agreement with the gamma distribution we can also conclude that the statistical properties of the radiation are described with Gaussian statistics. In particular, this means that there are no FEL saturation effects.

ACKNOWLEDGMENTS

Fundamental work on high accelerating gradients in superconducting cavities at Wuppertal University was essential for the successful construction of the first TTF accelerating modules. We are grateful for the invaluable support by the technical staff of the participating groups. Support by the Moscow Physical Engineering Institute and by the Institute for Nuclear Studies, Swierk, Poland, is gratefully acknowledged.
