Shape coexistence in the very neutron-rich odd-odd 96Rb

To cite this version:

HAL Id: in2p3-00024166
http://hal.in2p3.fr/in2p3-00024166

Submitted on 26 May 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Shape coexistence in the very neutron-rich odd-odd 96Rb

1 Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS/Université Joseph Fourier, F-38026 Grenoble Cedex, France
2 Institut Laue-Langevin, B.P. 156, F-38042 Grenoble Cedex 9, France
3 Department of Physics and Astronomy, The University of Manchester, Brunswick Street, M13 9PL, United Kingdom
4 Institut für Kernphysik, Universität zu Köln, Zülpicherstr. 77, D-50937 Köln, Germany.
5 Faculty of Physics, Warsaw University, ul.Hoża 69, PL-00-681 Warszawa, Poland

(Dated: May 10, 2005)

Abstract

Microsecond isomers of neutron-rich nuclei in the masses $A=96$ and 98 were reinvestigated at the ILL reactor (Grenoble). These nuclei were produced by thermal-neutron induced fission of 244Pu. The detection is based on time correlation between fission fragments selected by the Lohengrin mass spectrometer, and the γ rays and conversion electrons from the isomers. A new level scheme of 96Rb is proposed. We have found that the ground state and low-lying levels of this nucleus are rather spherical, while a rotational band develops at 461 keV energy. This band has properties consistent with a $\pi[431 3/2] \times \nu[541 3/2]K = 3^-$ Nilsson assignment and a deformation $\beta_2 > 0.28$. It is fed by a 10^- microsecond isomer consistent with a $\pi(\hbar_{9/2})\nu(h_{11/2})$ spherical configuration. It is interesting to note that the same unique-parity states $\pi(\gamma_{9/2})$ and $\nu(h_{11/2})$ are present in the same nucleus in a deformed and in a spherical configuration. The neighbouring odd-odd nucleus 98Y presents a strong analogy with 96Rb and is also discussed.

PACS numbers: 21.10.Tg, 23.20.Lv, 25.85.Ec, 27.60.+j

*Electronic address: pinston@lpsc.in2p3.fr
The isotones with $N=59$ neutrons are of special interest in the $A \sim 100$ mass region because they are just at the border between a rather spherical and a well deformed region [1]. Recently, new experimental data were reported, concerning mainly the Zr, Sr [2-6] and Kr odd nuclei. In both ^{97}Sr and ^{99}Zr, the ground state ($g.s.$) and first two excited states are the neutron $s_{1/2}$, $d_{3/2}$ and $g_{7/2}$ shell-model levels, while two rotational bands built on the [411 3/2$^+$] and [541 3/2$^-$] orbitals are present at about 600 keV. Very recently, the excited states of these bands have been extended up to spin 31/2$^+$ (^{97}Sr) and 29/2$^+$ (^{99}Zr) for the positive-parity band, and 39/2$^-$ (97Sr, 99Zr) for the negative-parity band in [6]. In these two nuclei, the negative-parity bands are not regular, and the effective moments of inertia exceed the rigid body value at low rotational frequency. This effect is very likely the consequence of the aligned angular momentum expected for the [541 3/2$^-$] orbital, originating from the spherical $h_{11/2}$ unique-parity state. This alignment is stronger for low-K orbitals. From picosecond-lifetime measurements, Urban et al. [2] have deduced a mean deformation $\beta_2=0.32(2)$ for the two bands in ^{97}Sr and ^{99}Zr. This value is smaller than the deformation measured for the $g.s.$ band in ^{98}Sr ($\beta_2=0.41(2)$) [2, 7], which is expected to be the maximum deformation of this mass region. Very recently, bands built on the [404 9/2$^+$] orbital were also observed [3-5] at about 1 MeV, in the $N=59$ ^{97}Sr and ^{99}Zr isotones and their deformation was found to be comparable with the maximum value $\beta_2 \sim 0.4$. Wu et al.[6] have extended the level scheme of these bands up to spin 23/2$^+$ and 27/2$^+$ in ^{97}Sr and ^{99}Zr respectively, and they have shown that the intraband transitions have very close energies in these two nuclei, suggesting analogous deformations. Below ^{97}Sr, the very neutron-rich ^{95}Kr, $N=59$ isotope, was recently studied [8], but only the spherical states at low energy were identified and it was not possible to observe rotational levels. In conclusion, the study of these odd isotopes has unambiguously shown that three different shapes coexist in the $N=59$ isotones but to complete this work, one needs also to obtain nuclear-structure information on odd-odd nuclei. A long time ago, a rotational band was seen in ^{98}Y [9], coexisting with a $g.s.$ and low-lying rather spherical levels, but the nature of the rotational band was unclear. This situation was the consequence of an incorrect spin and parity assignment for the band head at 496.2 keV. Very recently, Brant et al. [10] changed the spin assignment of the band head from 2$^{-}$ to 4$^{-}$ and proposed a more convincing $\pi[431 5/2] \times \nu[541 3/2]K = 4^-$
configuration. These authors have also compared the experimental levels of the band with an IBFPM calculation, assuming that the g.s. band of 98Sr is the deformed effective core of 98Y. The theory reproduces roughly the experimental data, but a staggering which is too strong is observed for this band. This nucleus was also studied by Hwang et al. [11], who succeeded in finding two new levels of the band, but proposed a spin 2^- assignment for the band head.

To increase our information in the $N=59$ odd-odd isotones we have reinvestigated the very neutron-rich 96Rb nucleus. It was previously measured by Genevey et al. [12] with the Lohengrin spectrometer at the ILL reactor in Grenoble. A new μs isomer was found and the γ-decay of this isomer was studied. However, the efficiency of the γ detection was too weak to build a reliable level scheme. More recently, this efficiency was strongly improved and in this new experiment, the γ and conversion electrons de-exciting the isomer were studied. In this work, we have also re-measured the γ intensity of the intraband transitions of 98Y, in order to get a better precision than in the paper of Brant et al. [10].

The paper is organized as follows. In Sec. II, we describe the experimental procedure, while in Sec. III, the results of our new measurement of 96Rb are presented. In Sec. IV, the properties of the rotational bands in 96Rb and 98Y, bandhead configurations and deformations are discussed. In Sec. V, the structure of the 10^- isomer observed in these two nuclei is discussed. Section VI contains a summary of our conclusions.

II. EXPERIMENTAL PROCEDURE

Nuclei of masses $A=96$ and 98 were produced by thermal-neutron induced fission of 241Pu. Two different setups have been installed at the focal plane of the spectrometer, in the first conversion electrons, X rays and γ rays were measured, while in the second the nuclear charge (Z) and γ rays were measured.

The Lohengrin mass spectrometer has been used to separate the fission fragments (FFs) recoiling from a thin target of about 400 μg/cm2, according to their mass to ionic charge ratios (A/q). The FFs were detected in a gas detector of 13 cm length, and subsequently stopped in a 12 μm thin Mylar foil. Behind the foil, two cooled adjacent Si(Li) detectors covering an area 2×6 cm2 were placed to detect the conversion electrons and X-rays, while the γ-rays were detected by two Ge of 60 % placed perpendicular to the beam. This setup
allows conversion electrons to be detected down to low energy (15 keV) and allows γ-electron coincidences to be obtained. Details on this experimental setup can be found in [13, 14].

In the second setup, the FFs were detected in an ionization chamber filled with isobutane at a pressure of 47 mb. This ionization chamber has good nuclear charge (Z) identification. It consists of two regions of gas, $\Delta E1=9$ cm and $\Delta E2=6$ cm, separated by a grid. This system is able to identify the nuclear charge in the $Z\sim 40$ region, with a resolution ($FWHM$) of about two units. The γ rays deexciting the isomeric states were detected by a Clover Ge detector and three single Ge crystals of the Miniball array [15] assembled in the same cryostat. All these detectors were placed perpendicular to the ion beam. They were packed in a very close geometry, thanks to the small thickness (6 cm) of the ionization chamber. The total efficiency for the γ detection is 20\% and 4\% for photons of 100 keV and 1 MeV respectively. More details on this experimental setup can be found in [8].

III. EXPERIMENTAL RESULTS

In the present work, we have observed the μs isomer in 96Rb previously reported by Genevey et al. [12].

FIG. 1: Time spectrum of the 300.0 keV transition in 96Rb.

The nuclear charge identification ($Z=37$) was confirmed from the measurement of the energy lost by the ions in the first stage of the ionization chamber and the X-ray energies measured...
with the Si detectors in coincidence with γ rays de-exciting the isomer (see below). The γ-counting rates obtained in this new measurement are about ten times higher than in the previous one. Consequently, while in the previous paper, only 9 γ rays having the strongest intensities were reported, in this new study, 25 γ rays were observed and are reported in Table I. Moreover, the low-energy γ rays of 38 and 59.3 keV were observed for the first time. The half life measured for the strong γ-line of 300.0 keV, $T_{1/2}=2.00(10) \mu$s, is shown in Fig. 1. It is more precise, and agrees in the limit of the error bars with the previous measurement ($T_{1/2}(240+300+461)=1.65(15) \mu$s [12]. Examples of $\gamma-\gamma$ coincidences are reported in Fig. 2.

![Graph](image_url)

FIG. 2: Examples of $\gamma-\gamma$ coincidences in 95Rb.

The Si(Li) spectrum in coincidence with the sum of four γ gates is reported in Fig. 3. The thinner lines at low energy are interpreted as K_α and K_β X rays of the Rb isotope, while the next two broad lines are the K- and L-conversion electrons of a 40(1) keV transition. For this transition, the measured electron intensity ratios are $I_K/I_L=2.5(4)$ and 2.9(5) in
FIG. 3: Electrons and X rays in coincidence with the sum of four γ gates in 96Rb.

the singles and in the coincidence spectrum respectively. The comparison with theory, which predicts a ratio of 8.7 for $E1$ or $M1$ multiplicities and 2.9 for $E2$, allows a pure $E2$ multipolarity to be assigned for the 40 keV transition. The results of the conversion electron measurements deduced from the singles Si(Li) spectrum are presented in Table II. The sum of the K and L electron intensities of the 40 keV transition represents $I_K + I_L = 95(9)$ % of the total decay intensity of the isomer. The very weak K electron line of the 148.8 keV transition (7% of the isomer decay) is observed only in the $\gamma - e$ coincidence spectrum of Fig 3. The evidence of this electron line suggests an $E2$ multipolarity for the transition. However, this assignment is only tentative because this K electron transition is missing in the singles Si(Li) spectrum.

IV. LEVEL SCHEME 96RB

The level scheme which is based on $\gamma - \gamma$ and $e - \gamma$ coincidences is reported in Fig. 4. An important change is observed between the group of low-lying levels below 230 keV and the higher energy structure, which is characterized by a cascade of γ rays linked by strong crossovers. Moreover, the conversion-electron measurements reported in Table II show that the more intense transitions in this group of levels have $M1$ multiplicities, while the crossovers are $E2$ in nature. This observation strongly suggests that the levels above 460 keV
FIG. 4: Decay scheme of the 2.0 μs isomer in 96Rb obtained in the present work. The low-lying levels and the isomer at 1135 keV have rather spherical configurations, while a rotational band develops above 460 keV.
behave like a rotational band. An analogous rotational band was reported in the odd-odd, $N=59$ isotope 98Y [10, 11]. In this nucleus, the band is built on a band head at 496.2 keV excitation energy. Apart from this rotational band, the authors of Ref. [10] have also shown that the low-lying levels below the rotational band are rather spherical as well as the 10$^-$ isomeric state at 1181.5 keV. This isomer in 98Y decays by an $E2$ transition of 110.8 keV energy and 0.83 μs half life. The $E2$ multipolarity found for the 40 keV transition in 96Rb and its total intensity, suggest that it could be the isomeric transition. The $B(E2)$ values found for these two isomers, 3.7(2) and 1.4 $W.u.$ for 96Rb and 98Y respectively, are roughly comparable and are weakly accelerated together.

The observed analogies between 98Y and 96Rb allow the level scheme of the latter nucleus to be built, and spins and parities to be assigned to several levels. The $g.s.$ spin $I=2$ was already measured for 96Rb by laser spectroscopy and the magnetic and quadrupole moments were also investigated [16]. The measured value of the intrinsic quadrupole $Q_0=0.86(16)$ b corresponds to a weak deformation $\beta_2=0.10(2)$, which means that this state is rather spherical as is the case for the $g.s.$ of 98Y. From these considerations, Genevey et al. [12] have proposed the spherical configuration $\pi(f_{5/2})\nu(s_{1/2})$ for the $2^- g.s.$ This configuration gives a good agreement between the experimental magnetic moment and its computed value.

For this calculation, the unique ingredients were the experimental magnetic moment of the $I=1/2^+$ $g.s.$ of the odd-neutron 97Sr [16] and the $I=5/2^-$ $g.s.$ of the odd-proton 95Rb [17]. Consequently, the dominant configurations of the low-lying states in 96Rb are expected to result from the coupling of the proton $\pi(f_{5/2})$ orbital with the three neutron states $\nu(s_{1/2}), \nu(d_{3/2})$ and $\nu(g_{7/2})$. We have to note that these neutron states are also the $g.s.$ and the first two excited states in the neighbouring $N=59$ isotones of 97Sr and 95Kr. The neutron orbitals are the same in 96Rb and 98Y, but the proton $\pi(p_{1/2})$ in 98Y is replaced by the $\pi(f_{5/2})$ in 96Rb. In this assumption, the first excited state at 59.3 keV in 96Rb which decays to the $g.s.$ by a $M1$ transition, is very likely the second member of the $\pi(f_{5/2})\nu(s_{1/2})$ multiplet and has a spin and parity $I^\pi=3^-$ (see Fig. 5).

The next 148.8 keV level, which decays by a $M1 + E2$ and an $(E2)$ transition, has then a spin and parity $I^\pi=4^-$ and is member of the multiplet of dominant configuration $(\pi(f_{5/2})\nu(d_{3/2}))_{4^-}$. The decay pattern of this level is analogous to the one of the 170.8 keV in 98Y and in these two configurations, the neutron and proton are fully aligned.

It is difficult to fix unambiguously the spin of the band head of the rotational band in
FIG. 5: Comparison of the low-lying levels in odd and odd-odd $N=59$ isotones. The configurations of these states originate from the coupling of the $s_{1/2}$, $d_{3/2}$ and $g_{7/2}$ neutrons with the $p_{1/2}$ or $f_{5/2}$ protons in ^{98}Y or ^{96}Rb, respectively.

^{96}Rb. However, these two bands are fed by μs isomers close in excitation energy, 1181.5 keV in ^{98}Y and 1135 keV in ^{96}Rb, and the isomeric transitions have comparable $B(E2)$ values. All these features, strongly suggest that the two isomers have the same $(\pi \nu (g_{9/2})10)$ configuration. In this hypothesis, it is possible to assign spins to the levels above 460 keV and the band head of ^{96}Rb has a spin and parity $I^\pi = 3^-$. The decay patterns of the band head and first excited states of the band to the low-lying levels are compatible with this assignment.

V. PROPERTIES OF THE ROTATIONAL BAND

A. CONFIGURATIONS OF THE ^{98}Y AND ^{96}Rb BAND HEADS

The two odd-odd nuclei have effective moments of inertia $J=44$ and 47 MeV$^{-1}h^2$ for ^{98}Y and ^{96}Rb respectively, values which are well beyond the rigid body value $J \sim 30$ MeV$^{-1}h^2$
FIG. 6: Experimental alignments for the $\pi(g_{9/2})$, $\nu(h_{11/2})$ and for the $\pi(g_{9/2})$ $\nu(h_{11/2})$ configurations in odd-neutron, odd-proton and odd-odd nuclei close to 96Rb. For an odd-odd nucleus the alignment is expected to be the sum of the neutron and proton contribution. The even 98Sr is used as reference configuration.

for this mass region. This result suggests that these nuclei have some aligned angular momentum along the rotational axis. To find an approximate value of the alignment, the total aligned angular momentum $I_X = \sqrt{(I + 1/2)^2 - K^2}$ for the experimental bands in 98Y and 96Rb is displayed in Fig. 6 as a function of the rotational frequency $h\omega$.

In this transitional region, it is difficult to find a reference configuration which presents rotational characteristics comparable to these two nuclei; the collective band in 96Sr has a vibrational structure [6] and only the g.s. band of 98Sr is therefore available. This nucleus is known to have the maximum deformation observed in this region, and this value is expected to be equal or greater than the value for the two odd-odd nuclei. In the latter nuclei, $I_X = i + R = i + J\omega$, where i is the alignment, R is the rotational angular momentum, and J is the moment of inertia. In contrast, $i = 0$ in 98Sr, and only the second term, corresponding to the collective rotation is present. Consequently, one may compute the aligned angular momentum i from difference between the I_X values in the odd-odd nuclei and the reference configuration. The value found $i \sim 2 - 3h$, is almost identical for the two nuclei. In an odd-odd nucleus, the total aligned angular momentum is the sum of the individual neutron and proton contributions. It is therefore interesting to compare the alignment in the odd-odd nuclei with odd-neutron and odd-proton nuclei having the same orbitals. For this purpose,
we have also reported in Fig. 6 the I_X experimental values for the $\pi[422 \, 5/2]$ orbital in 99Y [18] and $\nu[541 \, 3/2]$ orbital in 97Sr [2]. These two orbitals are the two components previously proposed for the band head of the rotational band in 98Y [10]. One may note in Fig. 6, that the alignment $i_n \sim 2\hbar$ for the neutron is much larger than the value $i_p \sim 0.5 \hbar$ for the proton and that the sum $i_n + i_p \sim 2.5 \hbar$ is close to the value found for the two odd-odd nuclei. This result gives a posteriori some support to the configurations proposed for the rotational bands in 98Y. Moreover, the comparable alignment observed for the bands in 98Y and 96Rb suggests also analogous configurations for these two nuclei. However, 97Sr has two protons less than 98Y and its proton orbital is very likely the $\pi[431 \, 3/2]$ Nilsson state. This produces the configuration $\pi[431 \, 3/2] \times \nu[541 \, 3/2]K = 3^-$ and explains the K value difference between the two nuclei. Although possible bands based on the $\pi[431 \, 3/2]$ orbital are still unknown in this mass region, one may conclude from the comparison of the I_X values for 98Y and 96Rb in Fig. 6 that the alignments do not change substantially between the $\pi[431 \, 3/2]$ and the $\pi[422 \, 5/2]$ Nilsson orbitals.

We have seen that, the alignment is much higher for the $h_{11/2}$ than for the $g_{9/2}$ orbital and consequently, for the favoured odd-odd band, the neutron is always placed in the in the $[h_{11/2}, \alpha = -1/2]$ while the proton may be placed either in the $[g_{9/2}, \alpha = -1/2]$ giving a total signature $\alpha = -1$ (odd spins), or in $[g_{9/2}, \alpha = +1/2]$ giving $\alpha = 0$ (even spins). Consequently, in these two nuclei, the staggering is expected to be caused by the odd proton and the favoured signature corresponds to the maximum alignment which is for $\alpha = 0$ (even spin). The staggering is also expected to increase when K decreases, which explains the increase observed in 96Rb.

All these predicted features are correctly reproduced, as shown in Fig. 7, where the experimental staggering observed for the two odd-odd bands is reported and for also the neighbour proton and neutron bands. This plot shows also that the staggering curve is much higher for the odd-proton band than for the three other bands. This effect reflects the fact that the effective moment of inertia is smaller in the odd-proton band, because the alignment is smaller for the proton than for the neutron as discussed above.
FIG. 7: Experimental staggerings in odd-neutron, odd-proton, and odd-odd nuclei close to ^{96}Rb.

The staggering of the $K = 3/2^-$ odd neutron is much stronger than in the $K = 5/2^+$ odd proton.

The staggering observed in the two odd-odd nuclei is closer to the one of the odd proton.

B. DEFORMATIONS IN ^{98}Y AND ^{96}Rb

The deformation of these two rotational bands is experimentally unknown. In their IBFFM calculations of ^{98}Y, Brant et al. [10] have taken the strongly deformed nucleus ^{98}Sr as the effective core of the odd-odd nucleus. However, the poor agreement with theory obtained cannot justify this hypothesis.

In the absence of a direct measurement of the quadrupole moment Q_0, it is possible to tentatively extract this value from the experimental γ branching ratios of $\Delta I = 1$ to $\Delta I = 2$ intraband transitions. In these two nuclei, the Nilsson orbitals of the configuration $\pi[422\ 5/2] \times \nu[541\ 3/2]K = 4^-$ in ^{98}Y and $\pi[431\ 3/2] \times \nu[541\ 3/2]K = 3^-$ originate from the shell-model unique-parity states $\pi(g_{9/2})$ and $\nu(h_{11/2})$. These intruder states cannot mix strongly with the other levels of the shell, which allows reliable estimates of the intrinsic gyromagnetic factor g_K to be made. These values are obtained from the formula :

$$g_K = \frac{g_l + (g_s - g_l)}{2K}GMS(K \to K)$$

where $g_s = 0.6 g_s$(free) and $GMS(K \to K)$ is a quantity dependent of deformation and is tabulated in [19]. Assuming a collective gyromagnetic factor $g_R = Z/A = 0.39$, it is possible to compute the quantity $(g_K - g_R)/Q_0$ as a function of Q_0. For the two considered nuclei,
it is also possible to deduce the experimental quantity $|g_K - g_R|/Q_0$ for all the states of the band with spins $I \geq K + 2$. These values are reported in Fig. 8 as a function of I.

For 98Y, we have used the branching ratios deduced from Table III, where our re-measured intensities of the γ decay of the 98Y isomer are reported. The comparison between the experimental values reported in Fig. 9 and the theoretical estimations allow a Q_0 value to be deduced. The drawing shows that the two nuclei have intrinsic quadrupole values $Q_0 \sim 2.3$ and 2.6 b for 96Rb and 98Y respectively, which corresponds to a mean deformation $\beta_2 \sim 0.28$. However, the effective quantity g_R is experimentally unknown in this region and the quantity $g_R = Z/A$ is very likely a maximum value. In their analysis of the $1^+ g.s.$ band of the odd-odd neighbour 100Y, Mach et al. [20] used a value $g_R = 0.75Z/A$. Assuming this value, the theoretical quadrupole moments in 96Rb and 98Y increases by about 1 b and the nuclei reach a very high deformation $\beta_2 = 0.39$. One can conclude that the true value is between these two estimations.

The experimental and theoretical estimations of the quantity $(g_K - g_R)/Q_0$ are made under the assumption of pure K bands (i.e. Alaga rules). This hypothesis seems inconsistent with the observed alignments in these two bands and suggests some possible K mixing. However, the experimental values reported in Fig. 8 are rather constant as function of spin, with the possible exception of the 8^- state in 98Rb, which justifies a posteriori our hypothesis.
FIG. 9: Computed values of \((g_K - g_R)/Q_0\) for \(^{98}\text{Y}\) and \(^{96}\text{Rb}\) assuming \(g_R = Z/A\) and pure \(K\) bands (see text). The comparison with experimental values allows estimations of the quadrupole moment values \(Q_0\) to be extracted.

After this analysis, one may conclude that the deformation of the rotational bands in \(^{96}\text{Rb}\) and \(^{98}\text{Y}\) is \(\beta_2 > 0.28\). This value has to be compared with the deformation \(\beta_2 = 0.32(2)\) deduced for the \(\nu[5413/2]\) band in the \(N = 59\) isotones by Urban et al. [2] from picosecond half-life measurements.

It is also possible to find an experimentally based prediction for the value of the quantity

\[
GQ_{o-o} = (g_K - g_R)/Q_0 \text{ in } ^{98}\text{Y from the } GQ_p \text{ and } GQ_n \text{ values in the neighbour nuclei } ^{99}\text{Y} \text{ and } ^{97}\text{Sr}. \text{ In this case one has:}
\]

\[
GQ_{o-o} = \frac{K_p \times GQ_p - K_n \times GQ_n}{K}
\]

The negative sign in this expression comes from theory, which predicts a negative value for \(GQ_n\), while only the modulus of this quantity may be deduced from experiment. A value \(GQ_p = 0.291(30) \text{ } \text{b}^{-1}\) was previously measured for the \(K = 5/2^+\) band in \(^{99}\text{Y}\) [18] and we have found a value \(GQ_n = 0.122(13) \text{ } \text{b}^{-1}\) for \(K = 3/2^-\) band in \(^{97}\text{Sr}\). The last value was deduced from the branching ratio of the \(9/2^-\) state measured by Wu et al. [6]. The predicted value \(GQ_{o-o} = 0.136(20) \text{ } \text{b}^{-1}\) for \(^{98}\text{Y}\) is in good agreement with the observed value \(GQ_{o-o} = 0.130(15) \text{ } \text{b}^{-1}\).
VI. THE SPHERICAL ISOMER

In the two nuclei, the fully aligned 10^- isomers of configuration $\pi(g_9/2)\nu(h_{11/2})$ have comparable excitation energies of about 1100 keV. A strongly attractive $n-p$ interaction explains the presence of these isomers at a relatively low energy. Consequently, the strong $n-p$ interaction may induce a competition between high-spin-fully-aligned spherical configurations and the levels of rotational bands in this transitional region. Moreover, it is interesting to note that the neutron and proton orbitals present in the configuration of the spherical isomer and in the deformed band of these odd-odd nuclei originate together from the same spherical unique-parity states $\pi(g_9/2)$ and $\nu(h_{11/2})$. To our knowledge, it seems that this situation is unique in the whole nuclear chart. For the future, it would be interesting to know if the competition between spherical and deformed states is still present at higher spins.

VII. CONCLUSIONS

The present γ-rays and conversion-electron measurements have allowed a reliable level scheme to be built for the 96Rb doubly-odd nucleus. This very neutron rich nucleus has a structure comparable to the previously known 98Y isotope. Both show rather spherical levels at low energy, while deformed states appear at about 500 keV. Minor differences observed in the configurations of the low-lying spherical levels and in the band head of the deformed band are due to a different occupation of the proton orbitals in these two nuclei. The comparable behaviours observed for the decay of the isomer in both nuclei, suggest that they have the same $\pi(g_9/2)\nu(h_{11/2})$ configuration. These two unique parity states and the $\nu(g_9/2)$ neutron level play a considerable role in all these nuclei. The relative occupation of these orbitals is able to change drastically the shape of the nucleus. But the same spherical $\pi(g_9/2)$ and $\nu(h_{11/2})$ unique parity states may also produce μs isomers in competition with deformed states, due to a very strong attractive $n-p$ interaction. Then, in the same nucleus, these unique-parity orbitals are present in spherical and deformed configurations.

In conclusion, a great wealth of information was recently gained in the odd mass and odd-odd $N=59$ isotones. These new data stress the importance of the unique-parity states in shape coexistence phenomenon. We hope that the new results obtained in odd mass and odd-odd nuclei of the $N=59$ isotones will trigger new theoretical calculations in this mass...
TABLE 1: Absolute intensities of the γ transitions observed in the isomer decay of 96Rb

<table>
<thead>
<tr>
<th>E_γ (keV)</th>
<th>I_γ</th>
<th>E_γ (keV)</th>
<th>I_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.0(5)</td>
<td>7(2)</td>
<td>240.3(2)</td>
<td>42(3)</td>
</tr>
<tr>
<td>59.3(2)</td>
<td>17(2)</td>
<td>276.3(3)</td>
<td>5(1)</td>
</tr>
<tr>
<td>89.5(2)</td>
<td>8(1)</td>
<td>300.0(3)</td>
<td>68(5)</td>
</tr>
<tr>
<td>92.8(2)</td>
<td>37(2)</td>
<td>301.0(4)</td>
<td>17(3)</td>
</tr>
<tr>
<td>116.8(2)</td>
<td>36(3)</td>
<td>329.0(4)</td>
<td>7(1)</td>
</tr>
<tr>
<td>122.0(3)</td>
<td>32(3)</td>
<td>366.8(3)</td>
<td>10(1)</td>
</tr>
<tr>
<td>123.5(3)</td>
<td>36(3)</td>
<td>369.2(3)</td>
<td>13(2)</td>
</tr>
<tr>
<td>126.0(3)</td>
<td>7(2)</td>
<td>402.4(4)</td>
<td>3(1)</td>
</tr>
<tr>
<td>148.8(3)</td>
<td>7(1)</td>
<td>405.5(4)</td>
<td>4(1)</td>
</tr>
<tr>
<td>166.1(3)</td>
<td>7(1)</td>
<td>461.6(2)</td>
<td>48(3)</td>
</tr>
<tr>
<td>177.6(2)</td>
<td>12(1)</td>
<td>495.2(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>185.4(2)</td>
<td>12(2)</td>
<td>554.5(3)</td>
<td>5(1)</td>
</tr>
<tr>
<td>209.9(2)</td>
<td>16(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

region.

Acknowledgments

Two of the authors (A. S. and N. W.) acknowledge support from BMBF under grant O6K-167. We would like to thank the MINIBALL collaboration for the use of one of their detectors.
TABLE II: Absolute conversion-electron intensities and multipolarities of 98Rb transitions

<table>
<thead>
<tr>
<th>Transition</th>
<th>I_e</th>
<th>I_γ</th>
<th>α_K</th>
<th>α_K</th>
<th>α_K</th>
<th>α_K</th>
<th>Multipolarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keV</td>
<td></td>
<td>Exp.</td>
<td>E_1</td>
<td>M_1</td>
<td>E_2</td>
<td></td>
</tr>
<tr>
<td>K 40</td>
<td>68(7)</td>
<td>27(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 59.3</td>
<td>10.5(15)</td>
<td>17(2)</td>
<td>0.62(9)</td>
<td>0.40</td>
<td>0.56</td>
<td>5.32</td>
<td>M1</td>
</tr>
<tr>
<td>K 89.5(15)</td>
<td>4.7(10)</td>
<td>8(1)</td>
<td>0.59(15)</td>
<td>0.12</td>
<td>0.18</td>
<td>1.26</td>
<td>M1+E2</td>
</tr>
<tr>
<td>K 92.8</td>
<td>8.5(20)</td>
<td>37(2)</td>
<td>0.23(5)</td>
<td>0.11</td>
<td>0.16</td>
<td>1.06</td>
<td>M1</td>
</tr>
<tr>
<td>K 116.8</td>
<td>3.0(9)</td>
<td>36(3)</td>
<td>0.09(2)</td>
<td>0.05</td>
<td>0.095</td>
<td>0.47</td>
<td>M1</td>
</tr>
<tr>
<td>K 122.0+123.5</td>
<td>3.5(10)</td>
<td>68(6)</td>
<td>0.05(2)</td>
<td>0.045</td>
<td>0.072</td>
<td>0.38</td>
<td>E1,M1</td>
</tr>
<tr>
<td>K 240.3</td>
<td>1.7(5)</td>
<td>42(3)</td>
<td>0.040(12)</td>
<td>0.007</td>
<td>0.013</td>
<td>0.035</td>
<td>E2</td>
</tr>
<tr>
<td>K300.0+301.0</td>
<td>1.2(5)</td>
<td>85(8)</td>
<td>0.018(8)</td>
<td>0.004</td>
<td>0.007</td>
<td>0.02</td>
<td>(E2)</td>
</tr>
</tbody>
</table>

TABLE III: Absolute intensities of the γ transitions observed in the isomer decay of 98Y

<table>
<thead>
<tr>
<th>Transition</th>
<th>E_γ (KeV)</th>
<th>I_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5^- \rightarrow 4^-$</td>
<td>100.7</td>
<td>100.0(2,5)</td>
</tr>
<tr>
<td>$10^- \rightarrow 8^-$</td>
<td>110.9</td>
<td>69.0(14)</td>
</tr>
<tr>
<td>$6^- \rightarrow 5^-$</td>
<td>129.8</td>
<td>95.8(17)</td>
</tr>
<tr>
<td>$7^- \rightarrow 6^-$</td>
<td>158.0</td>
<td>80.6(6)</td>
</tr>
<tr>
<td>$8^- \rightarrow 7^-$</td>
<td>186.4</td>
<td>94.4(12)</td>
</tr>
<tr>
<td>$6^- \rightarrow 4^-$</td>
<td>230.6</td>
<td>6.9(4)</td>
</tr>
<tr>
<td>$7^- \rightarrow 5^-$</td>
<td>287.8</td>
<td>19.8(8)</td>
</tr>
<tr>
<td>$8^- \rightarrow 6^-$</td>
<td>344.4</td>
<td>27.2(5)</td>
</tr>
</tbody>
</table>

[8] J. Genevey et al., to be published.

