N

N

Improving Simulations of MPI Applications Using A
Hybrid Network Model with Topology and Contention
Support
Paul Bedaride, Stéphane Genaud, Augustin Degomme, Arnaud Legrand,
George Markomanolis, Martin Quinson, Mark Lee Stillwell, Frédéric Suter,

Brice Videau

» To cite this version:

Paul Bedaride, Stéphane Genaud, Augustin Degomme, Arnaud Legrand, George Markomanolis, et
al.. Improving Simulations of MPI Applications Using A Hybrid Network Model with Topology and
Contention Support. [Research Report] RR-8300, INRIA. 2013, pp.22. hal-00821446

HAL Id: hal-00821446
https://inria.hal.science/hal-00821446
Submitted on 10 May 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00821446
https://hal.archives-ouvertes.fr

Improving Simulations of
MPI Applications Using
A Hybrid Network Model

with Topology and
Contention Support

Paul Bédaride, Augustin Degomme, Stéphane Genaud, Arnaud
Legrand, George S. Markomanolis, Martin Quinson, Mark Stillwell,
Frédéric Suter, Brice Videau

RESEARCH
REPORT

N° 8300

May 2013

Project-Teams ALGORILLE,
AVALON, MESCAL

ISSN 0249-6399 ISRN INRIA/RR--8300--FR+ENG

informatics g#” mathematics

2L —

Improving Simulations of MPI Applications
Using A Hybrid Network Model with
Topology and Contention Support

Paul Bédaride, Augustin Degomme, Stéphane Genaud, Arnaud
Legrand, George S. Markomanolis, Martin Quinson, Mark
Stillwell, Frédéric Suter, Brice Videau

Project-Teams ALGORILLE, AVALON, MESCAL

Research Report n® 8300 — May 2013 — 22 pages

Abstract: Proper modeling of collective communications is essential for understanding the be-
havior of medium-to-large scale parallel applications, and even minor deviations in implementation
can adversely affect the prediction of real-world performance. We propose a hybrid network model
extending LogP based approaches to account for topology and contention in high-speed TCP net-
works. This model is validated within SMPI, an MPI implementation provided by the SimGrid
simulation toolkit. With SMPI, standard MPI applications can be compiled and run in a simulated
network environment, and traces can be captured without incurring errors from tracing overheads
or poor clock synchronization as in physical experiments. SMPI provides features for simulating
applications that require large amounts of time or resources, including selective execution, ram fold-
ing, and off-line replay of execution traces. We validate our model by comparing traces produced
by SMPI with those from other simulation platforms, as well as real world environments.

Key-words: Simulation, MPI, Performance Analysis, Collective Communications, Contention

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Amélioration de la simulation d’applications MPI a ’aide
d’un modéle réseau hybride rendant compte de la topologie
et de la contention

Résumé : Une bonne modélisation des communications collective est indispensable & la com-
préhension des performances des applications paralléles et des différences, méme minimes, dans
leur implémentation peut drastiquement modifier les performances escomptées. Nous proposons
un modéle réseau hybrid étendant les approches de type LogP mais permettant de rendre compte
de la topologie et de la contention pour les réseaux hautes performances utilisant TCP. Ce
modéle est mis en ceuvre et validé au sein de SMPI, une implémentation de MPI fournie par
Penvironnement SimGrid. SMPI permet de compiler et d’exécuter sans modification des appli-
cations MPI dans un environnement simulé. Il est alors possible de capturer des traces sans
Iintrusivité ni les probléme de synchronisation d’horloges habituellement rencontrés dans des
expériences réelles. SMPI permet également de simuler des applications gourmandes en mémoire
ou en temps de calcul & 'aide de techniques telles ’exécution sélective, le repliement mémoire ou
le rejeu hors-ligne de traces d’exécutions. Nous validons notre modéle en comparant les traces
produites a I’aide de SMPI avec celles de traces d’exécution réelle. Nous montrons le gain obtenu
en les comparant également & celles obtenues avec des modéles plus classiques utilisés dans des
outils concurrents.

Mots-clés : Simulation, MPI, analyse de performances, communications collectives, contention

Improving Simulations of MPI Applications 3

1 Introduction

Correctly modeling collective communications, including their low-level breakdown into individ-
ual point-to-point messages and how these messages interact and interfere with one another
within the network environment, is essential for understanding the higher-level behavior of
medium and large scale parallel applications. In this work we demonstrate how even relatively
minor deviations in low-level implementation can adversely affect the ability of simulations to
predict real-world performance, and propose a new network model that extends previous LogP
based approaches to better account for topology and contention in high-speed TCP networks.
This is part of a larger effort to study distributed computing platforms as natural objects, rec-
ognizing that the remarkable complexity of such systems makes it increasingly difficult to make
useful claims from a purely theoretical viewpoint. Indeed, the computation and communication
behavior of many, if not most, existing scientific codes is understood at only the most basic
level, even by the application programmers. We propose to study these systems through simu-
lation based on empirically validated models, thus turning the tools and techniques afforded by
advanced computational resources back on those resources themselves.

This approach is further justified by the recent recognition of computational science and
simulation as an essential “third pillar” of scientific methodology, on par with and distinct from
experimentation and theory. Well thought out simulations can provide results that are more
easily understood and analyzed than a physical experiment at significantly lower costs. Further,
because of the difficulty in ensuring the precise configuration of the experimental environment, in
some fields the results from simulation are regarded as more accurate and informative than those
from physical experiments; A notable example of this can be seen in the field of fluid mechanics,
where the overall importance of micro-bubbles in reducing drag coefficients for moving objects
(such as ships) had been long understood, but difficulties in observational methods made it
impossible to make significant advances prior to the advent of techniques for simulation[29].
The real-world environment for distributed systems is plagued with similar problems, in that
proper instrumentation and monitoring is extremely difficult and may alter the system behavior.
Real-world networks are also subject to transient or periodic faults caused by unknown and
hard-to-detect hardware problems that can invalidate the applicability of results outside of the
testing facility. Another advantage of simulation is that it makes it easier for independent third
parties to analyze experiments and reproduce results, thus forwarding the cause of open science.

In this context, network modeling is a critical point. Tools that address such concerns tend
to rely either on “accurate” packet-level simulations or on simple analytical models. Packet-level
simulation has high overheads, resulting in simulations that may take significantly longer to run
than the corresponding physical experiments. Additionally, while packet-level simulation has
long been considered the “gold standard” for modeling the behavior of network communications,
this assumption has not been rigorously validated and it may be the case large disparities ex-
ist between predicted and actual behavior. Recent work suggests that well-tuned flow-based
simulation may be able to provide more accurate results at lower costs[28]. The problem with
analytic approaches is that many simulators implement communications from the ground up,
using simplified models that ignore phenomena such as network topology and contention or even
how the collective communications are actually implemented. While these inaccuracies have been
long-acknowledged within the field, until recently there were few alternatives, and much work
has been done with the intuition that while these simplifying assumptions might make it difficult
to predict exact performance on a particular platform, overall application behavior would remain
basically unchanged. Our own experiments have shown that this is simply not the case.

We seek to improve the accuracy of simulations of medium-to-large scale parallel distributed
applications, while capturing the advantages of a flow-based approach by extending existing

RR n° 8300

4 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

validated models of point-to-point communication to better account for network topology and
message contention. The proposed model is validated within SMPI, an implementation of the
Message Passing Interface (MPI) that interfaces directly with the SimGrid simulation toolkit|[5].
With SMPI, standard MPI applications written in C or Fortran can be compiled and run in a
simulated network environment, and traces documenting computation and communication events
can be captured without incurring errors from tracing overheads or improper synchronization of
clocks as in physical experiments. SMPT also provides a number of useful features for predicting
the behavior of applications that may require large amounts of time or system resources to run,
including selective execution, ram folding, and off-line simulation by replay of execution traces.
We validate our results by comparing application traces produced by SMPI using our network
model with those from real world environments. Further details regarding SMPI, including
comparisons with other simulation platforms are given in Section3.

In this article, we explain our efforts in proposing more realistic network models than what was
proposed in other tools and how it improves upon their ability to derive more meaningful results.
We justify our results by comparing traces produced by SMPI with those from other simulation
platforms, as well as traces gathered from physical experiments on real-world platforms.

More specifically, our contributions are: .
e We propose a new flow-based network model that extends previous LogP-based approaches

to better account for network topology and message contention.

e We describe this model in detail and make comparisons to other models proposed within
the literature.

e We describe SMPI, the simulation platform, and some useful extensions that we have
developed to make this tool more useful to developers and researchers alike.

e We provide a number of experimental results demonstrating how these extensions improve
the ability of SMPI to accurately model the behavior of real-world applications on existing
platforms, and also provide comparisons with competing simulation frameworks.

e We demonstrate the effectiveness on our proposal by making a thorough study of the
validity of our models against hierarchical clusters using Gigabit Ethernet with TCP as it
is known to be much more difficult than high-end HPC networks that are more regular.

This paper is organized as follows: In Section2 we discuss related work, particularly in the

area of network modeling. In Section3 we describe SMPI, our chosen implementation, along with
some key features that make it suitable for simulation of large scale systems, and comparisons to
competing simulation platforms. In Section4 we describe our proposed hybrid network model,
focusing particularly how this model captures the complexities of network topology and message
contention. In Section5 we describe experiments conducted to validate the model, including
comparisons of traces produced using other approaches as well as from real-world environments.
In Section6 we demonstrate the capacity of SMPI to simulate complex MPI applications on a
single machine. We conclude in Section7 and also provide a description of proposed areas of
future work.

2 Related Work

In the High Performance Computing (HPC) field, accurately predicting the execution time of
parallel applications is of uttermost importance to assess their scalability. While much effort has
been put towards understanding the high-level behavior of these applications based on abstract
communication primitives, real-world implementations often provide a number of confounding

Inria

Improving Simulations of MPI Applications 5

Ty Ts T T, T
(a) Asynchronous mode (k < S). (b) Rendez-vous mode (k > S).
Routine Condition | Cost
MPI_Send |k<S T
k>S Ty +T5+ T
MPI_Recv |k < S max(Ty + 1o — (t, — t5),0) + 15
k>S max(o + L — (t, — t5),0) + o+
Ts+T1+ T+ 13
MPI_Isend o
MPI_Irecv o

(¢) MPI routine costs.

L+ kg ifk<s

T3 = 0o+kO, Ty = max(L+o,t.—ts)+o0 Ts =20+ L
L+ sg+ (k—s)G otherwise s * ()

Ty =0+kO, Th= {

Figure 1: The LogGPS model[16] in a nutshell.

factors that may break basic assumptions and undermine the applicability of these higher level
models. For example, implementations of the MPI standard can select different protocols and
transmission mechanisms (e.g., eager vs. rendez-vous) depending on message size and network ca-
pabilities. Such optimizations generally result in complex heterogeneous performance. Also,
HPC platforms usually rely on a complex network interconnection topology, including switch
hierarchies or mesh-based arrangements where connections between nodes map onto abstract N-
dimensional figures such as toruses or hypercubes. These arrangements lead to non-homogeneous
communication capabilities between processors and possible bottlenecks depending on the appli-
cation workload. Another important factor is the network protocol provided by interconnect
fabric. InfiniBand has very stable and regular transmission times, but a simple congestion con-
trol mechanism. The result is that well-provisioned platforms suffer from almost no congestion,
but cheaper settings may experience terrible performance degradation in the case of network
overload. Conversely, Gigabit Ethernet networks using TCP-like protocols exhibit much more
variable performance, but are expected to be more scalable due to better handling of network
congestion. Finally, the MPI standard includes a very rich set of collective operations that
have been optimized over time and are still the objects of active research. Performance may vary
by several orders of magnitude between “good” and “bad” implementations of a given collective
operation. In what follows we describe a number of network modeling approaches and how they
address these various issues.

Packet-level network simulations are usually implemented as discrete-event simulations with
events for packet emission or reception as well as network protocol events. Such simulations
reproduce the real-world communication behavior down to movements of individual packets,
which will contain both user data and control information, such as flow-control digits, or flits.
Some tools following this approach, e.g., NS2, NS3, or OMNet+-+, have been widely used to
design network protocols or understand the consequences of protocol modifications[18]. How-
ever, such fine-grain network models are difficult to instantiate with realistic parameter values

RR n° 8300

6 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

for large-scale networks and generally suffer from scalability issues. While parallel discrete-
event simulation techniques[32, 20] may speed up such simulations, the possible improvements
remain quite limited as the underlying systems are usually not well separable. That is, data-
interdependencies necessitate the use of shared data structures, which cut down on the efficiency
of parallel simulation.

When packet-level simulation becomes too costly or intractable, the most common approach
is to resort to simpler delay models that ignore the network complexity. Among these models, the
most famous are those of the LogP family|7, 1, 17, 16]. The LogP model was originally proposed
by Culler et al.[7] as a realistic model of parallel machines for algorithm design. It was claimed
as more realistic than more abstract models such as PRAM or BSP. This model captures key
characteristics of real communication platforms while remaining amenable to complexity analysis.
In the LogP model, a parallel machine is abstracted with four parameters: L is an upper bound
on the latency of the network, i.e., the maximum delay incurred when communicating a word
between two machines; o denotes the CPU owerhead, i.e., the time that a processor spends
processing an emission or a reception and during which it cannot perform any other operation;
g is the gap between messages, whose reciprocal is the processor communication bandwidth for
short messages; and P represents the number of processors. Assuming that two processors are
ready to communicate, the time to transfer a message of size k is then o+ (k—1) max(g, 0)+ L+o.
Ideally, these four parameters should be sufficient to design efficient algorithms. Indeed, this
model accounts for computation/communication overlap since for short messages, as the sender
is generally released before the message is actually received on the receiver side. While this
model somehow reflects the way specialized HPC networks used to work in the early 90s, it
ignores many important aspects.

The LogGP model proposed in[1] introduces an additional parameter G to represent the
effective bandwidth for long messages, which is generally larger than that for short messages.
The communication time for short messages is unchanged but is equal to o+ (k—1)G+ L + o for
long ones. This simple distinction between short and long messages was extended in[17] with the
parameterized LogP model in which L, o, and g depend on the message size. The rationale is that
the overall network performance results from complex interactions between the middleware, the
operating system, the transport layer, and the network layer. Hence, performance is generally
neither strictly linear nor continuous. This model also introduces a distinction between the
sender overhead os and the receiver overhead o,. While such models may account for most of the
idiosyncrasies of a parallel machine, they become quite difficult to use to design algorithms. For
instance, they assume that senders and receivers synchronize and include that synchronization
cost in the overhead. However, some MPI implementations use schemes that may not require
synchronization, depending on message size.

Finally, Ino et al. proposed in[16] the LogGPS model that extends LogGP by adding two
parameters s and S to capture the lack of linearity and the existence of a synchronization
threshold. Overheads are represented as affine functions o + KOs where O, (resp. O,.) is the
overhead per byte at the sender (resp. receiver) side. This model is described in Figurel, where
ts (resp. t,) is the time at which MPI_Send (resp. MPI_Recv) is issued. When the message
size k is smaller than S, messages are sent asynchronously (Figurel(a)). Otherwise, a rendez-
vous protocol is used and the sender is blocked at least until the receiver is ready to receive
the message (Figurel(b)). Regarding message transmission time, the s parameter is used to
distinguish small messages from large messages and is thus continuously piece-wise linear in
message size (Figurel(c)).

To summarize, the main characteristics of these models derived from the seminal LogP model
are: the expression of overhead and transmission times as continuous piece-wise linear func-
tions of message size; accounting for partial asynchrony for small messages, i.e., sender and

Inria

Improving Simulations of MPI Applications 7

receiver are busy only during the overhead cycle and can overlap communications with compu-
tations the rest of the time; a single-port model, i.e., a sequential use of the network card
which implies that a processor can only be involved in at most one communication at a time;
and no topology support, i.e., contention on the core of the network is ignored as all processors
are assumed to be connected through independent bidirectional communication channels. Most
of these hypothesis are debatable for many modern computing infrastructures. For example,
with multi-core machines, many MPI processes can mapped to the same node. Furthermore, the
increase in the number of processors no longer allows one to assume uniform network communi-
cations. Finally, protocol switching typically induces performance modifications on CPU usage
similar to those on effective bandwidth, while only the latter are captured by these models.

An alternative to expensive packet-level models and simplistic delay models is flow-level
models. These models account for network heterogeneity and have thus been used in simulations
of grid, peer-to-peer, and cloud computing systems. Communications, represented by flows, are
simulated as single entities rather than as sets of individual packets. The time to transfer a
message of size S between processors i and j is then given by T; ;(S) = L;; + S/B; ;, where
L; ; (resp. B; ;) is the end-to-end network latency (resp. bandwidth) on the route connecting
i and j. Estimating the bandwidth B; ; is difficult as it depends on interactions with every
other flow. It generally amounts to solving a bandwidth sharing problem, i.e., determining how
much bandwidth is allocated to each flow. While such models are rather flexible and account
for many non-trivial phenomena (e.g., RTT-unfairness of TCP or cross-traffic interferences)[28],
they still ignore protocol oscillations, slow start, and more generally all transient phases between
two steady-state operation points. Some specific examples of unrepresented phenomena that can
have major impacts on performance include saturation of the network to the point congestion
would cause packet loss, and massive reemissions conditioned by timeout events.

These models have not been used extensively in the HPC field so far for at least two reasons.
First, until a few years ago contention could be neglected for high-end machines. Second, such
models are quite complex to implement and are often considered as too slow and complex to
scale to large platforms. As we demonstrate, neither of these assumptions remains true today,
and flow-based approaches can lead to significant improvements over classical LogP models.

While the aforementioned approaches model point-to-point communications, the modeling
of collective communications is another critical point when studying MPI applications. Some
projects model them with simple analytic formulas[2, 27]. This allows for quick estimations
and may provide a reasonable approximation for simple and regular collective operations, but
is unlikely to accurately model the complex optimized versions that can be found in most MPI
implementations. An orthogonal approach is to thoroughly benchmark collective operations to
measure the distribution of communication times with regard to the message size and number
of concurrent flows. Then, these distributions are used to model the interconnection network
as a black box[13]. This approach has several drawbacks. First, it does not accurately model
communication/computation overlap. Second, it cannot take the independence of some concur-
rent communications into account. Finally, it does not allow for performance extrapolation on
a larger machine with similar characteristics. A third approach consists in tracing the execution
of collective operations and then replaying the obtained trace using one of the aforementioned
delay models[15, 32]. However, current implementations of the MPI standard dynamically select
from up to a dozen different communication algorithms when executing a collective operation.
Thus, using the right algorithm becomes critical when trying to predict performance.

Studying the behavior of complex HPC applications or operations and characterizing HPC
platforms through simulation has been at the heart of many research projects and tools for
decades. Such tools differ by their capabilities, their structure, and by the network models they
implement. BigSIM[32], LAPSE[8], MPI-SIM[3], or the work in[25] rely on simple delay models

RR n° 8300

8 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

(affine point-to-point communication delay based on link latency and bandwidth). Other tools,
such as Dimemas|2], LogGOPSim[15], or PHANTOM]J31] use variants of the LogP model to
simulate communications. Note that BigSIM also offers an alternate simulation mode based on
a complex and slow packet-level simulator. This approach is also followed by MPI-NeTSim|[22]
that relies on OMNeT++. Finally PSINS[27] and PEVPM][13] provide complex custom models
derived from intensive benchmarking to model network contention.

3 The SMPI Framework

The goal of our research is to use modeling and simulation to better understand the behav-
ior of real-world large-scale parallel applications, which informs the choice of an appropriate
simulation platform. That is, simulations for studying the fine-grain properties of network pro-
tocols may have little in common with simulations for studying the scalability of some large-scale
parallel computing application. Likewise, models used in algorithm design are expected to be
much simpler than those used for performance evaluation purposes. Our choice of SMPI as an
implementation environment reflects this goal, as SMPI allows for relatively easy conversion of
real-world applications to simulation, and provides a number of useful features for enabling large-
scale simulations. SMPI implements about 80% of the MPI 2.0 standard, including most of the
network communication related functions, and interfaces directly with the SimGrid simulation
tool kit. In this section we describe SMPI in greater detail, focusing first on its general approach
and then later highlighting some of these features.

Full simulation of a distributed application, including CPU and network emulation, carries
with it high overheads, and for many cases it can be a more resource intensive approach than
direct experimentation. This, coupled with the fact that a major goal in many simulations
is to study the behavior of large-scale applications on systems that may not be available to
researchers, means that there is considerable interest in more efficient approaches. The two most
widely applied of these are off-line simulation and partial on-line simulation, both of which are
available through SMPI.

In off-line simulation or “post-mortem analysis” the application to be studied is first modified
to add monitoring and instrumentation code if necessary, and is run in a real-world environment.
Data about the program execution, including periods of computation, the start and end of any
communication events, and possibly additional information such as the memory footprint at
various points in time, is logged to a trace file. For distributed applications that run in parallel
across multiple computational resources, it may be necessary to combine individual traces into
a single unified trace file, in which case it is very important to make sure that any clock skew is
properly accounted for so that the traces are correctly synchronized and the true order of events is
preserved. These traces can then be “replayed” in a simulated environment, considering different
“what-if?” scenarios such as a faster or slower network, or more or less powerful processors
on some nodes. This replay is usually much faster than direct execution, as the computation
and communications are not actually executed but abstracted as trace events. A number of
tools[15, 27, 21, 31, 14] support the off-line approach.

Off-line simulation carries with it a number of caveats: It assumes that programs are essen-
tially deterministic, and each node will execute the same sequence of computation and commu-
nication events regardless of the order in which messages are received. A bigger challenge is that
it is extremely difficult to predict the result of changing the number of nodes—while there is con-
siderable interest and research in this area[9, 15], the difficulty of predicting the execution profile
of programs in general, and the fact that both applications and MPI implementations are likely
to vary their behavior based on problem and message size, suggests that reliably guaranteeing

Inria

Improving Simulations of MPI Applications 9

results that are accurate within any reasonable bound may be impossible. Another problem with
this approach is that instrumentation of the program can add delays, particularly if the program
carries out large numbers of fine-grained network communications, and if this is not carefully
accounted for then the captured trace may not be representative of the program in its “natural”
state.

By contrast, the partial on-line approach relies on the execution of the program within a
carefully-controlled real-world environment: computational sections are executed in full speed
on the available hardware, but timing and delivery of messages are determined by the simulation
environment (in the case of SMPI this is provided by SimGrid). This approach is much faster
than full emulation (although slower than trace replay), yet preserves the proper ordering of
computation and communication events. This is the standard approach for SMPI, and a number
of other simulation toolkits and environments also provide this facility[22, 8, 3, 25].

In a previous work[4] we showed that this partial online approach (coupled to a precise
model of the platform) is only slightly slower than LogGoPSim, a performance-oriented off-line
simulator that disregards contention effects and only models the network latency. To support
simulations at very large scale, SMPI provides a method of trading off accuracy for performance
by benchmarking the execution of the program on some nodes, while skipping it on others and
inserting a computation time in the simulated system clock based on the benchmarked value.
This corrupts the solution produced by the application, but for data independent applications
(those not containing large numbers of branching statements within the parallel code) is likely
to result in a reasonably accurate execution profile. A related technique, also provided by SMPI,
is “memory folding”, whereby multiple simulated processes can share a single copy of the same
malloc’d data structure. Again, this can corrupt results and potentially result in inconsistent or
illegal data values, but allows larger scale simulations than what would be possible otherwise,
and may be reasonable for a large class of parallel applications, particularly in engineering or the
sciences. These features are disabled by default, and have to be enabled by an expert user by
adding macros and annotations to the application source code. Potential areas for future work
include improving this process so that it can be semi-automated, and building more sophisticated
models based on benchmarked values.

4 A “Hybrid” Network Model

In this section, we report the issues that we encountered when comparing the predictions given by
existing models to real measurement on a commodity cluster with a hierarchical Ethernet-based
interconnection network. The observed discrepancies motivate the definition of a new hybrid
model building upon LogGPS and fluid models, that captures all the relevant effects observed
during this study. All the presented experiments were conducted on the graphene cluster of
the Grid’5000 experimental testbed. This cluster comprises 144 2.53GHz Quad-Core Intel Xeon
x3440 nodes spread across four cabinets, and interconnected by a hierarchy of 10 Gigabit Ethernet
switches. A full description of the interconnection network is available online[12].

4.1 Point-to-point communications’ model

Models in the LogP family resort to piece-wise linear functions to account for features such
as protocol overhead, switch latency, and the overlap of computation and communication. In
the LogGPS model the time spent in the MPI_Send and MPI_Recv functions is modeled as a
continuous linear function for small messages (o + kO or o+ kO,.). Unfortunately, as illustrated
in Figure2, this model is unable to account for the full complexity of a real MPI implementation.
The measurements presented in Figure2 were obtained according to the following protocol: To

RR n° 8300

10 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

MPI_Send MPI_Recv
etached etached
le-02 4 Meaumﬁ Meaumﬁ
Medium1 Medium1
% group
5 Small Small Small
8 - Medium1
KD
- Medium2
o
'E 1e-04 - s Detached
>
a Large
T T T T T T
le+01 1e+03 1e+05 le+01 1e+03 1e+05

Message size (bytes)

Figure 2: MPI_Send and MPI_Recv duration as a function of message size.

avoid any measurement bias, the message size is exponentially sampled from 1 byte to 100MiB.
We ran two “ping” and one “ping-pong”’ experiments. The ping experiments aim at measuring
the time spent in the MPI_Send (resp. MPI_Recv) function by ensuring that the receiver (resp.
sender) is always ready to communicate. The ping-pong experiment allows us to measure the
transmission delay. We ran our analysis on the whole set of raw measurements rather than on
averaged values for each message size to prevent behavior smoothing and variability information
loss. The rationale is to study the asynchronous part of MPI (from the application point of
view) without any a priori assumptions of where switching may occur. This approach allows us

to clearly identify different modes interpreted as follows:

e Small (when £ < 1,420): this mode corresponds to messages that fit in a TCP packet
and are sent asynchronously by the kernel. As it induces memory copies, the duration

significantly depends on the message size.

e Medium (when 1,420 < k& < 10,000 or 10,000 < k < 65,536 = S,): these messages are
still sent asynchronously but incur a slight overhead compared to small messages, hence a
discontinuity at k = 1420. The distinction at £ = 10,000 does not really correspond to any
particular threshold on the sender side but is visible on the receiver side where a small gap
is noticed. Accounting for it is harmless and allows for a better linear fitting accounting

for MPI/TCP peculiarities.

e Detached (when 65,536 < k < 327,680 = S;): this mode corresponds to messages that do
not block the sender but require the receiver to post the reception before the communication

actually takes place.

e Large (when k& > 327,680): for such messages, both sender and receiver synchronize using
a rendez-vous protocol before sending data. Except for the waiting time, the durations on

the sender side and on the receiver side are very close.

As illustrated by Figure2, the duration of each mode can be accurately modeled through
linear regression. These observations justify the model implemented in SMPI that is described
in Figure3. We distinguish three modes of operation: asynchronous, detached, and synchronous.

Inria

Improving Simulations of MPI Applications 11

P, : -
B - Pyt o -
LT | {
Ty T, T
(a) SMPI Asynchronous (b) SMPI Detached mode (¢) SMPI Synchronous
mode (k < Sq) (Sa <k <Sq) mode (k > Sg)
Routine ‘ Condition ‘ Cost
MPI_Send | k< S T
k>SS max(Ty,0) + To
MPI_Recv | k< S min(ts + 7o — t,,0) + T3
k>S max(—T4,O) + T
Iftkel:

Ty = o +k0) Ty = L +k/BO
T3 = o) +kOY Ty =t,—t,
(d) SMPI communication costs

Figure 3: The "hybrid" network model of SMPI in a nutshell.

Each of these modes can be divided in sub-modes when discontinuities are observed. The “ping”
measurements are used to instantiate the values of og, Og, 0, and O, for small to detached
messages. By subtracting 2(o, + k.O,.) from the round trip time measured by the ping-pong
experiment, and thanks to a piece-wise linear regression, we can deduce the values of L and
B. 1t is interesting to note that similar experiments with MPI_Isend and MPI_Irecv show
that modeling their duration by a constant term o is not a reasonable assumption neither for
simulation nor prediction purposes'.

While distinguishing these modes may be of little importance when simulating applications
that only send particular message sizes, obtaining good predictions in a wide range of settings, and
without conducting custom tuning for every simulated application, requires accurately accounting
for all such peculiarities. This will be exemplified in Section5.

4.2 Topology and contention model

For most network models, dealing with contention comes down to assuming one of the simple
single-port or multi-port models. In the single-port model each node can communicate with
only one other node at a time, while in the multi-port model, each node can communicate with
every other node simultaneously without any slowdown. Both models oversimplify the reality.
Some flow-level models follow a bounded multi-port approach, i.e., the communication capacity
of a node is limited by the network bandwidth it can exploit, that better reflects the behavior
of communications on wide area networks. However, within a cluster or cluster-like environment
the mutual interactions between send and receive operations cannot safely be ignored.

To quantify the impact of network contention of a point-to-point communication between
two processors in a same cabinet, we artificially create contention and measure the bandwidth as

IMore information on how to instantiate the parameters of the SMPI model and about the study of non-
blocking operations is available at http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_loggps.php

RR n° 8300

http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_loggps.php

12 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

perceived by the sender and the receiver. We place ourselves in the large message mode where
the highest bandwidth usage is observed and transfer 4 MiB messages.

In a first experiment we increase the number of concurrent pings from 1 to 19, i.e., half the
size of the cabinet. As the network switch is well dimensioned, this experiment fails to create
contention: We observe no bandwidth degradation on either the sender side or the receiver side.
Our second experiment uses concurrent MPI_Sendrecv transfers instead of pings. We increase
the number of concurrent transfers from 1 to 19 and measure the bandwidth on the sender
(Bs) and receiver (B,) side. A single-port model, as assumed by LogP models, would suppose
that Bs; + B, = B on average since both directions strictly alternate. A multi-port model, as
assumed by delay models, would estimate that Bs; + B, = 2 X B since communications do not
interfere with each other. However, both fail to model what actually happens, as we observe
that By + B, ~ 1.5 x B on this cluster.

We model this bandwidth sharing effect by enriching the simulated cluster description. Each
processor is provided with three links: an uplink and a downlink, so that send and receive
operations share the available bandwidth separately in each direction; and a specific link, whose
bandwidth is 1.5 x B, shared by all the flows to and from this processor.

Preliminary experiments on other clusters show that this contention parameter seems constant,
for a given platform, with a value somewhere between 1 and 2. Determining this parameter re-
quires benchmarking each cluster as described in this section. Our set of experiments is available
on the previously indicated web page. We are currently working on a more generic benchmarking
solution that one could easily use to determine the exact contention factor for any cluster.

This modification is not enough to model contention at the level of the whole graphene
cluster. As described in[12], it is composed of four cabinets interconnected through 10Gb links.
Experiments show that these links become limiting when shared between several concurrent pair-
wise communications between cabinets. This effect is captured by describing the interconnection
of two cabinets as three distinct links (uplink, downlink, and limiting link). The bandwidth of
this third link is set to 13 Gb as measured.

This topology model could certainly be further refined. One intuitive lead is to consider the
bandwidth limitation due to the switch backplane that may be reached during a full cluster
bipartite communication. But such a refinement seems to be pointless as the experiments pre-
sented in Section) tend to show that this limit is never reached, or is at least hidden by other
inaccuracy sources, such as packet dropping.

4.3 Collective communications model

Many MPI applications spend a significant amount of time in collective communication oper-
ations. They are thus crucial to application performance. Several algorithms exist for each
collective operation, each of them exhibiting very different performance depending on various
parameters such as the network topology, the message size, and the number of communicating
processes[10]. A given algorithm can commonly be almost an order of magnitude faster than
another in a given setting and yet slower than this same algorithm in another setting. Every
widely-used MPI implementation thus provides several algorithms for each collective operation
and carefully selects the best one at runtime. For instance, OpenMPI provides a dozen distinct
algorithms for the MPTI_Alltoall function, and the code to select the right algorithm for a given
setting is several thousand lines long.

Simulation of the most commonly used algorithms for collective communications is not very
difficult as most are rather simple (in concept if not necessarily in detail). However, capturing
the selection logic of the various MPI implementations is much more complex. This logic is
highly dependent on the implementation and generally embedded deep within the source code.

Inria

Improving Simulations of MPI Applications 13

SMPI implements most of the collective algorithms by reusing the relevant source code of
Star MPI[10]. It also provides a simple algorithm selector that mimics the behavior of OpenMPI
in most cases. It was devised using both code inspection and execution trace comparisons.
While sufficient in most cases, it leaves room for further improvements. In future work, we hope
to provide additional selection algorithms, ideally one for each available MPI implementation.
Then, we will provide a generic way to specify the selection algorithm to use, enabling the
tuning of collective algorithms within SMPI. Finally, we would like to provide a semi-automatic
benchmarking solution to discover the selection algorithm used in a given MPI implementation
by extensive testing.

5 Model [In]Validation Study

5.1 Setup Description

All the experiments presented hereafter have been done on the graphene cluster that was de-
scribed in the previous section. The studied MPI applications were compiled and linked using
OpenMPI 1.6. For comparison with simulated executions purposes, we instrumented these ap-
plications with TAU[26]. The simulated executions have been performed either off-line or on-line
as SMPI supports both modes. The file describing the simulated version of the graphene cluster
was instantiated with values obtained independently from the studied applications. We used the
techniques detailed in the previous section to obtain these values. In what follows we compare
execution times measured on the graphene cluster to simulated times obtained with the hybrid
model proposed in Section4, the LogGPS model that supersedes all the delay-based models, and
a fluid model that is a basic linear flow-level model.

We did not limit our study to overall execution times as they may hide compensation effects,
and do not provide any information as to whether an application is compute or communication
bound or how different phases may or may not overlap. Our experimental study makes use of
Gantt charts to compare traces visually as well as quantitatively. We rely on CSV files, R, and
org mode to describe the complete workflow going from raw data the graphs presented in this
paper, ensuring full reproducibility of our analysis.

5.2 Collective Communications

We begin our validation process with the study of an isolated MPI collective operation. We focus
on the MPI_All1toall function call that, as its name says, sends data from all to all processors. We
selected this function as it is the most likely to be impacted by network contention. Here we aim
at assessing the validity of contention modeling as the message size varies rather than the impact
of using different collective operations. Toward this end, we enforce the use a single algorithm,
i.e., the ring algorithm, for all message sizes. We ran the experiment five times and only kept
the best execution time for each message size. Indeed, we noticed that first communication is
always significantly slower than those that follow, which tends to indicate that TCP require some
warm-up time. This phenomenon has also been noticed in experiments assessing the validity of
the BigSIM simulation toolkit. The same workaround was applied.

Figure4 shows the evolution of simulated and actual execution times for the MPI_Alltoall
operation when the number of MPI processes varies for the three contention models. Results are
presented for two message sizes: medium messages of 100 kiB and large messages of 4 MiB. We
can see that for large messages, the hybrid and fluid models both achieve excellent predictions.
In opposition to LogGPS, these two models account for network topology and contention, even
when transferring data across cabinets (for 64 and 128 processes). Unsurprisingly, the LogGPS

RR n° 8300

14 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

10.00 — Model
— —— Real
5
-4 Hybrid
& 1.00- Y
8 -=: L ogGPS
\f’:l —+ Fluid
© 0.10+
§ Size
> .
(@] medium
0.01-
—— large

I I I I I
4 8 16 32 64 128
Number of MPI Processes

Figure 4: Comparison between simulated and actual execution times for the MPI_Alltoall
operation.

DT

o

20
12
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ll
21 32 43 64 85 8 16 21 32 43 64 85 128 8 16 21 32 43 64 85 128
Number of MPI Processes

Class

i
1

A Model

307 + — Real
204 188 =
g 104 EEE -4 Hybrid
§ gE 39 -l->Log.GPS
£ 3] S 30 —+~ Fluid
S 27
g
=
o

a

-~ b

——C

Figure 5: Comparison between simulated and actual execution times for three NAS parallel
benchmarks.

model is overly optimistic in such setting and completely underestimates the overall execution
time. Its prediction error can be up to a factor of 4 when 128 processors are involved in the
All-to-All operation. For medium messages, the hybrid model is again the best contender, with
a prediction error under 5% for up to 64 nodes, while the LogGPS model is again too optimistic.
For such a message size, the lack of latency and bandwidth correction factors in the fluid model
leads to a clear underestimation of the execution time. Interestingly, when 128 processes are
involved in the collective communication, the actual execution time increases dramatically while
simulated times continue to follow the same trend. The reason for such a large increase can be
explained by packet dropping in the main switch that leads to timeouts and re-emissions, hence
incurring significant delays. For larger messages, TCP seems to be more stable, and if packet
are dropped it has little influence on the larger total execution time.

Inria

Improving Simulations of MPI Applications 15

5.3 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a suite of programs commonly used to assess the
performance of parallel platforms. From this benchmark suite, we selected three applications
with different characteristics. The DT (Data Traffic) benchmark is a communication intensive
application. In its Black Hole variant, DT consists in sending large messages of several MiB of
data from multiple sources towards a single sink. DT implies many long lasting communications,
but its scheme tends to prevent contention. For DT the class refers not only to the size of
the problem but also to the number of communicating processes: classes A, B, and C involve
21, 43, and 85 processes respectively. The LU benchmark is an iterative computation of a LU
factorization. At each iteration, it exhibits a communication scheme that forms a wave going
from the first process to the last one and back. This pattern is very sensitive to noise as each
process has to wait for the reception of a message before sending its own data. The third
studied benchmark is CG (Conjugate Gradient). It has a complex communication scheme that is
composed of a large number of point-to-point transfers of small messages. Moreover, processors
are organized in a hierarchy of groups. At each level communications occur within a group and
then between groups. This benchmark is then very sensitive to the mapping of the MPI processes
on to the physical processors with regard network organization, particularly in non-homogeneous
topologies. For this series of experiments, we use the off-line simulation capacities of SMPI, i.e.,
execution traces of the benchmark are first acquired from a real system and then replayed in a
simulated context.

Figure5 shows the comparison of the actual execution times measured on the graphene cluster
for various instances of the three NPB benchmarks with the simulated times obtained with the
studied models.

For the DT benchmark, which is composed of a few well distributed communications of
large messages, the three models lead to comparable results and give good estimations of the
actual execution times. These results confirm the observations made for the All-to-All collective
operations. To some extent the DT benchmark corresponds to a reduction. The LogGPS model
always underestimates the execution time, while the accuracy of the fluid model increases along
with the size of the problem. Our hybrid is the most accurate across the whole set of experiments.

For the LU benchmark we can see that for the class C instances the three models lead to
similar predictions and correctly estimate the evolution of the execution time. A more interesting
discrimination occurs for the smaller class B instances. As mentioned earlier, the simulation of
small messages is more problematic for the fluid and LogGPS models. Their representation of
asynchronous sends is too simple to be accurate, especially for the fluid model. This iterative
benchmark alternates computations and communications at a high rate. Similar or close comple-
tion times as shown by Figure5 may hide a bad, but lucky, estimation of each component of the
execution time. To be sure that estimation errors on computation times are not compensated
by errors on the communication times, we propose to compare (a part of) the Gantt charts of
the actual and simulated executions. Such a comparison is given by Figure6 that shows a period
of 0.2 seconds of the execution of the LU benchmark with 32 processes. The upper part of this
figure displays the actual execution while the lower corresponds to the simulation of the same
phase with the hybrid model.

Such Gantt charts are difficult to align perfectly due to the size of the initial execution traces
and clock skew that requires a synchronization for the real trace. Real executions are also subject
to system noise that does not occur in simulation causing some small discrepancies related to
the computation time. This then prevents the observation of a perfect match. However, Figure6
clearly shows that despite the small time scale, the simulation correctly renders the general
communication pattern of this benchmark.

RR n° 8300

16 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

Value
Gomputing
WPl lrecy
WPI_Recy
WPI_Send
WPI_Wsil

EC

Figure 6: Part of the Gantt chart of the execution of the LU benchmark with 32 processes. The
upper part displays the actual execution while the lower is the simulation with the hybrid model.

Finally, the results obtained for the CG benchmark are even more expressive. Indeed, this
benchmark transfers messages that never fall in the large category. It is then completely unfa-
vorable to the LogGPS and fluid models. Conversely, our hybrid model that distinguishes four
different classes of “small” messages produces good estimations for up to 64 processes. There
is a large difference between the actual execution time and the simulated time obtained with
the hybrid model when executing a class B instance with 128 processors, and to a lesser extent
for the larger class C. Then we have to determine if the source of this gap comes from a bad
estimation by the model or a problem during the actual execution. Our main suspect was the
actual execution, which is confirmed by the Gantt chart presented in Figure?7.

it

h’:ﬂy 'H‘ h“';: ” ‘

Value
MPI_lmcy

| [

WP Wail

M

i

i

H

HiEn sl oty ﬂ i ." "’\-!f“i‘-;_ f
- i ’fiii"fi ﬁii "Ifl‘?\}tﬂ i ’““!"‘ _!?vf' |
‘1 "ruwus é, L i
'} |<;Ti }‘ fhs ! ’

i IH it
|[I5.:'ti Mty H ”
ihr; M}i i vf‘i* }!ﬁ.‘ "‘f ﬂ i %ﬁ‘ t“?a t‘ i W ﬂ “ IM

HHEHAY
30 35 40 45 50

Figure 7: Two seconds Gantt-chart of the real execution of a class B instance of CG for 128
process.

The execution time is 14.4 seconds while the prediction of the hybrid model is only of 9.9
seconds. We see two outstanding zones of MPI_Send and MPI_Wait. Such operations typically
take few microseconds to less than a millisecond. Here they take 0.2 seconds. Our guess is
that, due to a high congestion, the switch drops packets and slows down one (or several) process
to the point where it stops sending until a timeout of .2 seconds is reached. Because of the
communication pattern, blocking one process impacts all the other processes. This phenomenon
occurs 24 times leading to a delay of 4.86 seconds. Without this bad behavior, the real execution
would take 9.55 seconds, which is extremely close to the prediction of the hybrid model. The same

Inria

Improving Simulations of MPI Applications 17

phenomenon was for class C. This behavior of the interconnection network can be considered as
a bug that needs to be fixed in a production environment.

5.4 Sweep3D

Here we consider another benchmark representative of the heart of real applications. The
Sweep3D kernel solves a time-independent discrete ordinates 3D Cartesian geometry neutron
transport problem. This Fortran code makes heavy use of pipelining techniques, and thus over-
laps communications with computation. Eight waves traverse the 3D grid, each starting from one
corner and moving towards the opposite corner. In terms of MPI communications it corresponds
to a complex pattern of point-to-point communications, with some collective operations. In our
experiments, the Sweep3D application is simulated on-line by SMPI.

Model

—— Real
-4 Hybrid
-®: L ogGPS
—+ Fluid

=
o
1

o
()]
1

Problem
10x10x400-10mk—-3mmi
—— 5x5x400-10mk—-3mmi

Duration (seconds)

o
o
1

I I
2 4 8 16 32 64 128
Number of MPI Processes

Figure 8: Comparison between simulated and actual execution times for two Sweep3D instances.

Figure8 presents the achieved results for two small instances of the Sweep3D benchmark.
With regard to the previous experiments, these results show two interesting differences. First,
the measured execution times are very short, less than 1.4 seconds for the longest run. It allows
us to see whether models can be distinguished even over such a short time period. Second,
such small instances of the benchmark do not scale at all and are even badly impacted by the
addition of extra processors. This then tells us if simulation can be useful not only to predict
good and expected scalability results, but also to detect when a scalability limit has been reached
or exceeded. The answer to both questions is yes. We see that small messages are badly handled
by the simple fluid model, which is far less accurate than the hybrid and LogGPS models. These
two models provide very similar estimations of the execution time. It is also interesting to note
that all three models, including the imprecise fluid models, are able to reflect the increasing
trend of the execution time. This shows the benefits of partial on-line simulation to analyze the
performance of MPI applications.

RR n° 8300

18 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

6 Simulating a Real Application

In this section we aim at demonstrating the capacity of SMPI to simulate a real, large, and com-
plex MPT application. BigDFT is a Density Functional Theory (DFT) code that develops a novel
approach for electronic structure simulation based on the Daubechies wavelets formalism[11]. The
code is HPC-oriented, i.e., it uses MPI, OpenMP and GPU technologies. So far, BigDFT is the
sole electronic structure code based on systematic basis sets which can use hybrid supercomput-
ers. For our experiments, we disable the OpenMP and GPU extensions at compile time to study
behaviors related to MPI operations. BigDFT alternates between regular computation bursts
and important collective communications. Moreover the set of collective operations that is used
is determined by the problem size.

While this application can be simulated by SMPI without any modification to the source
code, its large memory footprint means that to run the simulation on a single machine would
require an improbably large amount of system ram. Applying the memory folding techniques
mentioned in Section3 and detailed in[6], we were able to simulate the execution of BigDFT with
128 processes, whose peak memory footprint is estimated to 71 GiB, on a single laptop with
12GB of memory. Figure9 shows the execution trace corresponding to this simulated execution.

EREEEnniiRennnni R nnnininnmuininnnnniiinnnnniininnni i inmEm
NEEEEEERERRREEEEERREEREEEEEREEEEEEERRNRRRERRREERRRERRRRRRRREEE

Figure 9: Simulated execution trace of BigDFT with 128 processes.

In addition to this particular application, we were also able to simulate another geodynamics
application called SpecFEM3D[23] and the full LinPACK suite. SMPI also is tested upon 80%
of the MPICH test suite every night to make non-regression tests. We can thus claim that SMPI
is not limited to toy applications but can effectively be used for the analysis of real scientific
applications.

7 Conclusion and Future Work

We have demonstrated that accurate modeling and performance prediction for a wide range of
parallel applications requires proper consideration of many aspects of underlying communication
architecture, including the breakdown of collective communications into their component point-
to-point messages, the interconnect topology, and contention between competing messages that
are sent simultaneously over the same link. Even relatively minor inaccuracies may compromise

Inria

Improving Simulations of MPI Applications 19

the soundness of the simulation, yet none of the models previously used in the literature give
due consideration to these factors. We have described the implementation of a proposed network
model that improves on this situation within SMPI, and shown that SMPI-based simulations do
a better job of tracking real-world behavior than those implemented using competing simulation
toolkits.

Our priority in this work was the validation of the model at a small scale and for TCP over
Ethernet networks. Such a tool would prove very useful for efforts such as the European Mont-
Blanc project[19, 24], which aims to prototype exascale platforms using low-power embedded
processors interconnected by Ethernet. A next step will be to analyze its adequacy for simulating
larger platforms when we can get access to such large machines for experimental purposes.
The study should then extend to other kinds of interconnects (such as InfiniBand) and more
complicated topologies.

While experimental data have been collected by hand for the present analysis, the need to
collect more and more traces to test against various platforms is a strong incentive to automate
this task. Thus, one future work will be to build a systematic validation/invalidation framework
based on the automatic collection of traces.

As a base line, we advocate for an open-science approach, which should enable other scientists
to reproduce the experiments done in this paper. For that purpose, the traces and scripts used
to produce our analysis are available[30]. Accordingly, SMPI and all the software stack are
provided as open-source software available for download from the public Internet. We also
intend to distribute the MPI benchmarks used to measure platform parameters and check model
validity, and the R scripts exploiting the resulting data along with the next packaged version of
SimGrid.

8 Acknowledgments

This work is partially supported by the SONGS ANR project (11-ANR-INFRA-13) and the
CNRS PICS N° 5473. Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.1r).

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incorporating Long
Messages Into the LogP Model — One Step Closer Towards a Realistic Model for Parallel
Computation. In Proc. of the 7th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 95-105, Santa Barbara, CA, 1995.

[2] R. M. Badia, J. Labarta, J. Giménez, and F. Escalé. Dimemas: Predicting MPI Applica-
tions Behaviour in Grid Environments. In Proc. of the Workshop on Grid Applications and
Programming Tools, June 2003.

[3] R. Bagrodia, E. Deelman, and T. Phan. Parallel Simulation of Large-Scale Parallel Applica-
tions. International Journal of High Performance Computing and Applications, 15(1):3-12,
2001.

[4] L. Bobelin, A. Legrand, D. A. G. Marquez, P. Navarro, M. Quinson, F. Suter, and C. Thiery.
Scalable Multi-Purpose Network Representation for Large Scale Distributed System Simu-

RR n° 8300

https://www.grid5000.fr

20

Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

[5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

lation. In Proc. of the 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pages 220-227, Ottawa, Canada, May 2012.

H. Casanova, A. Legrand, and M. Quinson. SimGrid: a Generic Framework for Large-Scale
Distributed Experiments. In Proc. of the 10th IEEE International Conference on Computer
Modeling and Simulation, Cambridge, UK, Mar. 2008.

P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and M. Quinson. Single Node
On-Line Simulation of MPI Applications with SMPI. In Proc. of the 25th IEEE Intl. Parallel
and Distributed Processing Symposium (IPDPS), Anchorage, AK, May 2011.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Proc. of
the fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 1-12, San Diego, CA, 1993.

P. Dickens, P. Heidelberger, and D. Nicol. Parallelized Direct Execution Simulation of
Message-Passing Parallel Programs. IEEE Transactions on Parallel and Distributed Systems,
7(10):1090-1105, 1996.

C. Ernemann, B. Song, and R. Yahyapour. Scaling of workload traces. In Proc. of the 9th
International Workshop on Job Scheduling Strategies for Parallel Processing, pages 166—-182,
June 2003.

A. Faraj, X. Yuan, and D. Lowenthal. STAR-MPI: self tuned adaptive routines for MPI
collective operations. In Proceedings of the 20th annual international conference on Super-
computing, ICS ’06, pages 199-208, New York, NY, USA, 2006. ACM.

L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste,
O. Zilberberg, M. Rayson, A. Bergman, and R. Schneider. Daubechies Wavelets as a Basis
Set for Density Functional Pseudopotential Calculations. Journal of Chemical Physics,
129(014109), 2008.

Technical specification of the network interconnect in the graphene cluster of grid’5000.
https://www.grid5000.fr/mediawiki/index.php/Nancy:Network.

D. A. Grove and P. D. Coddington. Communication benchmarking and performance mod-
elling of mpi programs on cluster computers. Journal of Supercomputing, 34(2):201-217,
Nov. 2005.

M.-A. Hermanns, M. Geimer, F. Wolf, and B. Wylie. Verifying Causality between Distant
Performance Phenomena in Large-Scale MPI Applications. In Proc. of the 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing, pages 78—
84, Weimar, Germany, Feb. 2009.

T. Hoefler, C. Siebert, and A. Lumsdaine. LogGOPSim - Simulating Large-Scale Applica-
tions in the LogGOPS Model. In Proc. of the ACM Workshop on Large-Scale System and
Application Performance, pages 597-604, Chicago, IL, June 2010.

F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: a Parallel Computational Model for Syn-
chronization Analysis. In Proc. of the eighth ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (PPoPP), pages 133-142, Snowbird, UT, 2001.

Inria

https://www.grid5000.fr/mediawiki/index.php/Nancy:Network

Improving Simulations of MPI Applications 21

[17]

[18]

[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

T. Kielmann, H. E. Bal, and K. Verstoep. Fast Measurement of LogP Parameters for Message
Passing Platforms. In Proc. of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, IPDPS 00, pages 1176-1183, London, UK, UK, 2000. Springer-Verlag.

C. Minkenberg and G. Rodriguez. Trace-Driven Co-Simulation of High-Performance Com-
puting Systems Using OMNeT++. In Proc. of the 2nd International Conference on Simu-
lation Tools and Techniques (SimuTools), Rome, Ttaly, 2009.

The mont-blanc project. http://www.montblanc-project.eu.

M. Mubarak, C. D. Carothers, R. Ross, and P. Carns. Modeling a million-node dragonfly
network using massively parallel discrete-event simulation. High Performance Computing,
Networking Storage and Analysis, SC Companion:, 0:366-376, 2012.

A. Nuafiez, J. Fernandez, J.-D. Garcia, F. Garcia, and J. Carretero. New Techniques for
Simulating High Performance MPI Applications on Large Storage Networks. Journal of
Supercomputing, 51(1):40-57, 2010.

B. Penoff, A. Wagner, M. Tiixen, and I. Riingeler. MPI-NeTSim: A network simulation
module for MPI. In Proc. of the 15th IEEE Intl. Conference on Parallel and Distributed
Systems, Shenzen, China, Dec. 2009.

D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher,
F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini, and J. Tromp. Forward and Ad-
joint Simulations of Seismic Wave Propagation on Fully Unstructured Hexahedral Meshes.
Geophysical Journal International, 186(2):721-739, 2011.

N. Rajovic, N. Puzovic, L. Vilanova, C. Villavieja, and A. Ramirez. The low-power archi-
tecture approach towards exascale computing. In Proceedings of the second workshop on
Scalable algorithms for large-scale systems, ScalA "11. ACM, 2011.

R. Riesen. A Hybrid MPI Simulator. In Proc. of the IEEE International Conference on
Cluster Computing, Barcelona, Spain, Sept. 2006.

S. Shende and A. D. Malony. The Tau Parallel Performance System. International Journal
of High Performance Computing Applications, 20(2):287-311, 2006.

M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely. PSINS: An Open Source Event
Tracer and Execution Simulator for MPI Applications. In Proc. of the 15th International
EuroPar Conference, volume 5704 of Lecture Notes in Computer Science, pages 135—148,
Delft, Netherlands, Aug. 2009.

P. Velho, L. Schnorr, H. Casanova, and A. Legrand. Flow-level network models: have we
reached the limits? Rapport de recherche RR-7821, INRIA, Nov. 2011. Under revision in
TOMACS.

J. Xu, M. Maxey, and G. Karniadakis. Numerical simulation of turbulent drag reduction
using micro-bubbles. Journal of Fluid Mechanics, 468:271-281, 9 2002.

Improving simulations of MPI applications using a hybrid network model with topol-
ogy and contention support. http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/
smpi_scl3.php. Online version of the Article with access to the experimental data and
scripts.

RR n° 8300

http://www.montblanc-project.eu
http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_sc13.php
http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_sc13.php

22 Bédaride, Degomme, Genaud, Legrand, Markomanolis, Quinson, Stillwell, Suter, Videau

[31] J. Zhai, W. Chen, and W. Zheng. PHANTOM: Predicting Performance of Parallel Appli-
cations on Large-Scale Parallel Machines Using a Single Node. In Proc. of the 15th ACM

SIGPLAN Symp. on Principles and Practice of Parallel Programming, pages 305314, Jan.
2010.

[32] G. Zheng, G. Kakulapati, and L. Kale. BigSim: A Parallel Simulator for Performance
Prediction of Extremely Large Parallel Machines. In Proc. of the 18th International Parallel
and Distributed Processing Symposium, Santa Fe, NM, Apr. 2004.

Inria

V4

: informatics , mathematics

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	The SMPI Framework
	A ``Hybrid'' Network Model
	Point-to-point communications' model
	Topology and contention model
	Collective communications model

	Model [In]Validation Study
	Setup Description
	Collective Communications
	NAS Parallel Benchmarks
	Sweep3D

	Simulating a Real Application
	Conclusion and Future Work
	Acknowledgments

