, RU) and increasing concentrations of VHH (0.33, 1, 3.33, 10, 30 nM, duplicates). (D) E. coli periplasmic expression (E) chemical synthesis (F) P. pastoris secretion (G) anti-ADORA2A

. Vhh, D. For, and G. , experimental curves (black) were fitted with a 1:1 Langmuir binding model (red) using scrubber 2.0c software, residual plots obtained in global analysis of each binding curves are shown and are randomly distributed

G. Bertoli, C. Cava, and I. Castiglioni, MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for, Breast Cancer. Theranostics, vol.5, pp.1122-1143, 2015.

C. Godfrey, . Desviat, . Lr, B. Smedsrød, F. Piétri-rouxel et al., Delivery is key: lessons learnt from developing splice-switching antisense therapies, EMBO Mol Med, vol.9, pp.545-557, 2017.

A. Singh, P. Trivedi, . Jain, and . Nk, Advances in siRNA delivery in cancer therapy, Artif Cells Nanomed Biotechnol, vol.46, pp.274-283, 2018.

A. Campbell, T. Brieva, L. Raviv, J. Rowley, K. Niss et al., Concise Review: Process Development Considerations for Cell Therapy, vol.4, pp.1155-1163, 2015.

A. Cahn, R. Miccoli, A. Dardano, and D. Prato, New forms of insulin and insulin therapies for the treatment of type 2 diabetes, The Lancet Diabetes & Endocrinology, vol.3, pp.638-652, 2015.

H. M. Shepard, G. L. Phillips, C. Thanos, and M. Feldmann, Developments in therapy with monoclonal antibodies and related proteins, Clin Med (Lond), vol.17, pp.220-232, 2017.

. Acheampong, . Do, . Adokoh, . Ck, P. Ampomah et al., Bispecific Antibodies (bsAbs): Promising Immunotherapeutic Agents for Cancer Therapy, Protein Pept Lett, vol.24, pp.456-465, 2017.

E. R. Goldman, J. L. Liu, D. Zabetakis, . Anderson, and . Gp, Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview, Front. Immunol, vol.8, p.865, 2017.

S. Muyldermans, Nanobodies. Annu. Rev. Biochem, vol.82, pp.775-797, 2013.

F. Van-bockstaele, J. Holz, and H. Revets, The development of nanobodies for therapeutic applications, Curr Opin Investig Drugs, vol.10, pp.1212-1224, 2009.

A. Skerra, Alternative non-antibody scaffolds for molecular recognition, Curr Opin Biotechnol, vol.18, pp.295-304, 2007.

M. Bacchi, B. Fould, M. Jullian, A. Kreiter, A. Maurras et al., Screening ubiquitin specific protease activities using chemically synthesized ubiquitin and ubiquitinated peptides, Anal Biochem, vol.519, pp.57-70, 2017.

M. Bacchi, M. Jullian, S. Sirigu, B. Fould, T. Huet et al., Total chemical synthesis, refolding, and crystallographic structure of fully active immunophilin calstabin 2 (FKBP12.6), Protein Sci, vol.25, pp.2225-2242, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01498750

S. Kent, Novel protein science enabled by total chemical synthesis, Protein Sci, vol.28, pp.313-328, 2019.

J. Zheng, M. Yu, Y. Qi, S. Tang, F. Shen et al., Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry, J Am Chem Soc, vol.136, pp.3695-3704, 2014.

S. F. Loibl, Z. Harpaz, R. Zitterbart, and O. Seitz, Total chemical synthesis of proteins without HPLC purification, Chem Sci, vol.7, pp.6753-6759, 2016.

G. Fang, Y. Li, F. Shen, Y. Huang, J. Li et al., Protein chemical synthesis by ligation of peptide hydrazides, Angew Chem Int Ed Engl, vol.50, pp.7645-7649, 2011.

M. Kozak, Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles, Microbiol Rev, vol.47, pp.1-45, 1983.

C. Atmanene, E. Wagner-rousset, M. Malissard, B. Chol, A. Robert et al., Extending Mass Spectrometry Contribution to Therapeutic Monoclonal Antibody Lead Optimization: Characterization of Immune Complexes Using Noncovalent ESI-MS, Anal. Chem, vol.81, pp.6364-6373, 2009.

D. A. Shepherd, K. Holmes, . Rowlands, . Dj, N. J. Stonehouse et al., Using Ion Mobility Spectrometry-Mass Spectrometry to Decipher the Conformational and Assembly Characteristics of the Hepatitis B Capsid Protein, Biophysical Journal, vol.105, pp.1258-1267, 2013.

C. Pritchard, G. Connor, . Ashcroft, and . Ae, The Role of Ion Mobility Spectrometry-Mass Spectrometry in the Analysis of Protein Reference Standards, Anal. Chem, vol.85, pp.7205-7212, 2013.

G. Terral, A. Beck, and S. Cianférani, Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization, J Chromatogr B Analyt Technol Biomed Life Sci, vol.1032, pp.79-90, 2016.

O. Hernandez-alba, E. Wagner-rousset, A. Beck, and S. Cianférani, Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies, Anal. Chem, vol.90, pp.8865-8872, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327964

Y. Huang, . Salinas, . Nd, E. Chen, N. H. Tolia et al., Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding, J Am Soc Mass Spectrom, vol.28, pp.2515-2518, 2017.

Y. Tian, L. Han, A. C. Buckner, . Ruotolo, and . Bt, Collision Induced Unfolding of Intact Antibodies: Rapid Characterization of Disulfide Bonding Patterns, Glycosylation, and Structures, Anal. Chem, vol.87, pp.11509-11515, 2015.

K. Pisupati, Y. Tian, S. Okbazghi, A. Benet, R. Ackermann et al., A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima, Anal. Chem, vol.89, pp.4838-4846, 2017.

Y. Tian, . Ruotolo, and . Bt, Collision induced unfolding detects subtle differences in intact antibody glycoforms and associated fragments, International Journal of Mass Spectrometry, vol.425, pp.1-9, 2018.

T. Botzanowski, S. Erb, O. Hernandez-alba, A. Ehkirch, O. Colas et al., Insights from native mass spectrometry approaches for top-and middle-level characterization of site-specific antibody-drug conjugates, MAbs, vol.9, pp.801-811, 2017.

Y. Tian, J. L. Lippens, C. Netirojjanakul, I. Campuzano, . Ruotolo et al., Quantitative collision-induced unfolding differentiates model antibody-drug conjugates, Protein Sci, vol.28, pp.598-608, 2019.

M. J. Hinner, J. , and K. , How to obtain labeled proteins and what to do with them, Curr Opin Biotechnol, vol.21, pp.766-776, 2010.

E. M. Sletten, . Bertozzi, and . Cr, Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality, Angew. Chem. Int. Ed, vol.48, pp.6974-6998, 2009.

L. Hartmann, V. Kugler, and R. Wagner, Expression of Eukaryotic Membrane Proteins in Pichia pastoris, Methods Mol Biol, vol.1432, pp.143-162, 2016.

M. F. Bush, Z. Hall, K. Giles, J. Hoyes, C. V. Robinson et al., Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology, Anal. Chem, vol.82, pp.9557-9565, 2010.

B. Johnsson, S. Löfås, and G. Lindquist, Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors, Anal Biochem, vol.198, pp.268-277, 1991.

E. Pol, H. Roos, F. Markey, F. Elwinger, A. Shaw et al., Evaluation of calibration-free concentration analysis provided by Biacore? systems, Anal Biochem, vol.510, pp.88-97, 2016.

R. Karlsson, Biosensor binding data and its applicability to the determination of active concentration, Biophys Rev, vol.8, pp.347-358, 2016.

D. G. Myszka, Improving biosensor analysis, J. Mol. Recognit, vol.12, pp.279-284, 1999.

D. G. Myszka, S. J. Wood, and A. L. Biere, Analysis of fibril elongation using surface plasmon resonance biosensors, Amyloid, Prions, and Other Protein Aggregates, vol.25, pp.386-402, 1999.

B. T. Ruotolo, . Benesch, . Jlp, A. M. Sandercock, S. Hyung et al., Ion mobilitymass spectrometry analysis of large protein complexes, Nat Protoc, vol.3, pp.1139-1152, 2008.