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A four-dimensional method to unfold NA38 experimental distributions is
presented. It is based on the Bayes theorem and uses an iterative pro-
cedure. Tests of this method on Monte-Carlo simulated distributions are
described. Subtraction of the background is discussed. This method is
applied to the S-U data collected in 1992 by the NA38 experiment.

1 Introduction

As is well known, the physical distributions studied in many experiments can-
not be directly inferred from the measured ones, due to various detector effects
such as acceptance and resolution. This is true for the NA38 experiment de-
voted to the study of dimuon production in heavy ion interactions at the
CERN SPS [1]. Physical (®(z)) and measured (I(z’)) quantities are related
by the following equation:

1(z) = / S(z'|2) A(z)®(z)dz (1)

where z', = are the sets of kinematical variables associated to the dimuon. A(z)
is the acceptance of the detector and S(z’|z) the smearing function giving the
probability that a dimuon generated with values z is reconstructed with values
z’. These acceptance and smearing functions are calculated via a Monte-Carlo
method with a program describing the experimental apparatus.

Up to now, only one-dimensional versions of equation (1) have been used in
our data analysis. Two methods have been studied. The first one [2] postu-
lates some analytical representation of the source function ®(z) whose pa-
rameters are fitted after convolution with the transfer function S(z'|z)A(z)
to the experimental distributions. The second method [3] evaluates (using a
Monte-Carlo simulation) the unfolding matrix D(z|z’) which gives the prob-
ability that an event measured with the value =’ has been generated with the
value z. Such a matrix applied to the data leads to events accepted by the
detector from which the physical distributions can be obtained. Note that the
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matrix D depends on the choice of generation functions used. Both methods
rely on the hypothesis that the different kinematical distributions describing
the physical processes are separable. For a given process, the acceptance of
the apparatus in one of the variables does not depend on this variable distri-
bution itself. However, it is a function of the shape of the other kinematical
variable distributions needed to describe the process. This implies knowing
the distributions which we want to extract from the data. In addition, these
methods do not take into account possible correlations among the variables.
To avoid these difficulties related to the one-dimensional unfolding methods,
one has to consider multi-dimensional methods. The purpose of this paper is
to describe one of these methods. We first discuss the procedure chosen for
evaluating acceptance and smearing matrices. The deconvolution technique
based on the Richardson-Lucy algorithm [4,5] is presented together with tests
of the method. Finally, this unfolding procedure is applied to the S-U data
collected in 1992.

2 Set-up description and dimuon kinematical variables

The NA38 set-up consists of beam counters, an active segmented target, an
electromagnetic calorimeter used to estimate the centrality of the interaction,
and a muon spectrometer [6]. The muon spectrometer (Fig. 1) is composed
of a beam dump surrounded by a hadron absorber, an air-core toroidal mag-
net of hexagonal symmetry, two sets of four multiwire proportional chambers
(MWPC) and six hodoscopes of plastic scintillator, four of them (R1, R2, R3
and R4) providing the trigger. Hodoscopes and MWPC also exhibit an hexag-
onal symmetry and a dimuon trigger occurs when two muons are detected
in two different sextants. Opposite-sign (utp~) as well as like-sign (utput
and g~ p~) muon pairs are recorded, as the background contribution to the
opposite-sign spectra can be deduced from the like-sign pair distributions (see
section 6).

The signal dimuon quadrivector (E,,, ?W), sum of two opposite-sign muon
quadrivectors, depends upon 8 variables. Taking into account the muon mass
reduces this number to six. Assuming rotation invariance, we are left with
5 variables. The following list of the dimuon kinematical variables has been
considered: mass M, transverse momentum Pr, rapidity ¥, in the center of
mass frame, polar and azimuthal angles ., and ¢, in the Collins-Soper sys-
tem [7]. Since we cannot infer the nucleon-nucleon reaction plane (needed for
¢.s determination) from the measured quantities, we restrict ourselves to four
useful variables and we will consider a four-dimensional unfolding of the data
with the M, Pr,y.m and cos 8., variables. Acceptance and smearing functions
will not depend on the shape of the distributions of these four variables.



Hadron absorber R1 R2 Toroidal magnet R3
Fig. 1. Overview of the NA38 spectrometer.

3 Acceptance and smearing matrices

As we are dealing with histogram data, Eq. (1) has to be discretized and the
acceptance and smearing continuous functions will be evaluated in a matrix
form. These matrices are computed using the NA38 detector simulation pro-
grams [8] (Dimujet/Dimurec) as explained below. We define in Table 1 the
ranges of the four dimuon variables considered.

Table 1
Range of the dimuon kinematical variables.

Variable Minimum Maximum Step Nb. channels
M(GeV/c?) 1 8 0.1 70
Pr(GeV/c) 0 5 0.1 50

Yern -0.3 1.2 0.05 30
cos 8., -0.8 0.8 0.05 32

3.1 Acceptance calculation

The grid defined in Table 1 contains 3.36 10° cells. We restrict the acceptance
calculation to M > 1.4 GeV/c?, 0 < yom < 1 and |cos .| < 0.5, in order to
avoid smearing edge effects. This subspace corresponds to 1.12 10° cells. As
the acceptance calculation for each cell would be extremely time-consuming,
we calculate a reduced set of acceptance points with Dimujet/Dimurec and
interpolate for the other nodes of the grid, in the regions where the acceptance
changes slowly. In practice, we evaluate the acceptance for 16 nodes (over 70)
for M, and 22 nodes (over 50) for Pr, and all the y., and positive cosé.,
nodes (as the acceptance is symmetrical with respect to cos f.,). In summary,



the computed nodes are those given in Table 2.

Table 2

List of the nodes for which the acceptance has been calculated.

M 1.45 1.55 1.75 2.05 2.55 3.05 3.55 4.05

(GeV/cz) 4.55 5.05 5.55 6.05 6.55 7.05 7.55 7.95

Pr 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05

(GeV/c) 1.25 1.45 1.65 1.85 2.05 2.25 2.75 3.25 3.75 4.35 4.95

Yem 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475
0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975
cos 8., 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475

This results in an array of 70.4 10 elements which can be easily stored. In-
terpolation for acceptance calculations is done in the (M, Pr) subspace using

the CERNLIB program DIVDIF [9].

3.2 Swmearing matriz evaluation

The smearing matrix depends upon 8 variables leading to ~ 10'3 elements to
be computed and stored, which is presently impossible. In addition, a direct
call to the simulation/reconstruction programs is not possible due to the large
amount of time needed to compute the 4-d smearing matrix for each dimuon.
We therefore evaluate the dimuon smearing from the single muon smearing,
which was determined using the simulation programs.

The procedure is the following: for a dimuon generated with (M, Pr, y.m,
cos f.,), the momentum components (p.,py,p.) of each of the muons is ob-
tained taking the nucleon Fermi motion in each nucleus randomly from dis-
tributions of ref. [10]. The azimuthal angles in the nucleon-nucleon center of
mass (@em) and in the Collins-Soper frame (y.,) are uniformly distributed
and the sign of the first muon is also taken randomly. The position of the
interaction subtarget (one out of the 10 subtargets used in the S-U setup) is
sampled uniformly within the target region. In order to describe the smear-
ing of the single muons due to multiple scattering in the absorber and to the
precision on the momentum measurement, one has to find uncorrelated distri-
butions of the kinematical variables. Simulation studies lead to the following
uncorrelated variables:

PrAyp with DAp=¢ —p (2)
PAG = f(P) with AG=06" -0 (3)



AP 1
P *(PTJrg):f(P) with AP— P — P ()
Pr

for 10 bins in polar angle § where P, Pr, 8 and ¢ are respectively the generated
total momentum, transverse momentum, polar and azimuthal angles of the
single muon, and P’, @, ¢’ refer to the reconstructed values. The distribution
(4) depends slightly on the polar angle 8 and has been computed for 10 values
of §. The distributions (2-4) are shown in Fig. 2 for the NA38 experiment
corresponding to the 1992 S-U set-up at 200 GeV/c per incident nucleon.

Counts

AP/P * (1/(P1)+(0.3/P))

012 150
P A¢ (rad GeVic) P (GeVic)

Counts

PA® (rad GeV/c)

102
S S 1\’«"" _25....|.,.‘1...11..
0o 05 1 15 2 0 S0 100 150 200
POy, ., (rad GeVic) P (GeVic)

Fig. 2. Distributions of the muon smearing functions.

From the sampling of these distributions, we can deduce the smeared values
Dy P> Py of each of the muons. One has then to check that the smeared muons
go through the spectrometer and fulfill the trigger requirements. This implies
the sampling of two other distributions which connect the estimated track from
the Badier plane {11} to the measured one after the absorber given by the four
multiwire chambers before the magnet (see Fig. 3). The simulation program
shows that the polar angle 0pg4:.r between the two tracks can be determined
by sampling the P8g,4i., distribution (see Fig. 2), which does not depend on
the other kinematical variables of the muon, and that the azimuthal angle
©Badier can be generated isotropically. From these angles, the track position
on the first four multiwire chambers and on the two scintillator hodoscopes
R1 and R2 is computed. The track coordinates are then compared to the
geometrical limits of the different detectors. Then, the trigger condition based
on R1 and R2 is checked (a coincidence of slats from R1 and R2, R1;*R2; or
R1,*R2;_;, is required in order to select tracks from the target region). For
muons which survive these requirements, the deviation angle A« due to the



toroidal magnetic field is computed via a first order formula: Aa = If—T [6].
The hit positions in the backward telescope (4 MWPC, R3 and R4) can be
deduced and checked against the different geometrical dimensions. Depending
on the slat number 7 of the R1¥*R2 coincidence, the trigger requires a range of
slats in R3 and R4, and such a condition is checked for each of the muons. In
order to ensure the same acceptance for g* and p~, an additional condition
(“image cut”) is required: for a muon of a given charge, the muon with the
opposite charge and the same kinematical variables has to be accepted in the
apparatus. If all these requirements are fulfilled for both muons, and if the two
muons are in different sextants, then the kinematical variables (M’, Py, y/ |
cos §.,) of the smeared dimuon can be calculated. The whole process, starting
from the sampling of the Fermi motion distributions, is repeated several times
(more details below) to compute the 4-dimensional smearing sub-matrix for
the dimuon generated with (M, Pr,ycm, cos b.,).

A comparison of the smearing obtained with this method and the one calcu-
lated with the Monte-Carlo simulation program is shown in Fig. 4 for each
projection.

One can see that the agreement of the method described here with the stan-
dard simulation is quite good. This agreement has been checked for several
nodes (= 50), including non central ones. In addition this method is faster (by
a factor of ~ 50) than the simulation/reconstruction programs.

Badier plane

measured track Lo
i

T e%e_a ure

|

B e

beam

target.
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T wire chambers

magnet ¢

Fig. 3. Extrapolation of the measured track to the Badier plane.
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4 The Richardson-Lucy method

We are going to use the method proposed independently by Richardson [4]
and Lucy [5] to solve Eq. (1). It is based on the Bayes theorem. Let P(A|B)
be the probability that A is true given that B is, and P(A) and P(B) to be
the unconditional probabilities. The Bayes formula states that

P(A|B) = P(A)P}(%Lfl;)l)

Let us write Eq. (1) as:
I(z') = / S(z'|2)0(z)dz  with  O(z) = A(z)®(z)

One can write
O(z) = / Q(z|z")I(z')dz’
where Q(z|z’) can be related to S(z’|z) via Bayes theorem:
S(z'|z)
I(z')

Q(z|z') = O(=)

Q(z|z') in turn depends on the knowledge of O(z), which we are looking for.
To solve this problem, Q(z|z’') is calculated using an iteration approach:

@(al#') = 0"(2) oy
and
O™(z) = / Q™ (z|e")I°(z")dz’ = / o"-l(z)%(_fl'(’—%zﬂ(x')dx'

with I°(z’) being the measured data D(z’) and
I"(z') = / S(z'|2)0™(z)dz

In a discrete form:

0"(3) = 0" (1) 3= SGli) s (5)

i=1

This iterative method forces the deconvoluted spectra to be non-negative. In -
addition, it conserves the norm at each iteration:

Z:O"(j):ZD(i) Vn



Moreover, the Richardson-Lucy iteration converges to the maximum likelihood
solution for Poisson statistics in the data. Let us remark that this procedure
is non-linear.

A choice has to be made in formula (5) for the initial value O°(j). In prin-
ciple, any function can be choosen as a starting point. However, in order to
speed-up the convergence of the procedure, we take the measured data as the
starting distribution. A program based on this method and using the tech-
niques outlined in the previous paragraph for the multidimensional evaluation
of acceptance and smearing matrices has been written. Similar deconvolution
techniques can be found in [12].

5 Unfolding of test distributions

The accepted source distribution O™(j) is calculated in the kinematical ranges
defined in Table 1. Due to low values of acceptance and smearing edge effects
as stressed above, we restrict the calculation of the source distribution to the
following intervals:

l4< M <8 GeV/c?
0< Pr <5 GCV/C
0.2 < yem <0.8

~0.3 < cosf., < 0.3

These cuts remove 30% of the events from the total data sample. Further-
more, cells with acceptance lower than 1% are not taken into account. As
the maximum acceptance is about 65%, this cut does not affect significantly
the overall normalisation and avoids amplifying by a huge factor cells with
negligible content.

To evaluate the deconvolution method, we have generated and reconstructed
dimuons arising from a superposition of several mechanisms: Drell-Yan (DY),
J /4 and 7' with the following distributions [2,3]:

’Iéa}:)z:;:of the generated distributions for the different reaction mechanisms.
M Pr Yern cos 0.,
DY %exp—% Prexp— (%%)1'4 exp——;%’;‘g 1 + cos? 8.,
J/¢ 3.097 GeV/c?  Prexp-— (%)1'7 exp —2—3)2?7—2 uniform
¥ 3.685 GeV/c?  Prexp-— (I—I;Tl—s) o exp —% uniform




The number of reconstructed dimuons per cell chosen to evaluate the smearing
depends upon the mass region. This allows to improve the mass resolution in
the J/¢ and ¢’ regions without increasing too much the computing time. For

M < 2.8 GeV/c?, 2.8 < M < 3.4 GeV/c? and M > 3.4 GeV/c?, 1000, 5000
and 10000 reconstructed dimuons have been used, respectively.

Unfolding this test distribution with 50 iterations, enough to ensure proper
convergence (see Paragraph 7.1), leads to a deconvoluted mass spectrum in
which fluctuations appear for M < 2.8 GeV/c?. In order to get rid of this
noise, we have to use a different number of iterations, depending on the mass
region: 10 for M < 2.8 GeV/c* and 50 for M > 2.8 GeV/c?. This is done
by fixing O™(j) = 0'°(3) for n > 10 in the corresponding mass region. The
unfolded distributions in the four variables are compared to the generated ones
in Fig. 5(a,b) after 50 iterations, and show an overall good agreement. They
have been in turn multiplied by the acceptance and smearing matrices and
then compared to the reconstructed starting distributions. The agreement is
good, as can be seen in Fig. 5(c,d).

One can see, on the mass distribution, that the initial width of the J/¢ and
%)’ resonances is not fully restored. In addition, the deconvolution procedure
underestimates the continuum in the resonance tails. This so called “Gibbs
ring” effect [13] is due to the method itself. Indeed, the factor relating O™ (7)
to O™(j) in formula (5) depends on the ratio between data and smeared data
which is lower than one in the tails of the peaks. We have checked that such
an effect does not affect the normalisation of the resonances, as long as the
final mass resolution is good enough. The fit of the unfolded mass distribution
is displayed on Fig. 6.

In order to take into account the underestimation of the continuum due to
the Gibbs rings, the fit has been performed after removal of four points lo-
cated on both sides of the J/3. The histogram channels for M > 4 GeV/c?
have been regrouped in larger width bins. Such a fit allows to subtract the
amount of continuum under J/¢ and 7’ resonances in order to extract their
Pr distributions. The analysis of the mass and transverse momentum unfolded
distributions leads to values of the parameters which are compared to the gen-
erated ones in Tables 4 and 5. A satisfactory agreement between unfolded and
generated parameters is obtained. Note, however, that the unfolded J/ peak
position is far from the generated one. This effect is related to a systematic
error of the deconvolution method itself and does not affect the peak normal-
isation. this remark is also true to a lesser extent for the 3’ position. We have
also checked that if we introduce a correlation between the variables M and
Pr, the deconvolution process is able to reproduce it. Furthermore, it does not
create any spurious correlation.

11
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Fig. 5. Comparison (a) between unfolded (points) and Monte-Carlo generated dis-
tributions (dashed lines) together with their ratio (b). The distribution obtained by
smearing the (unfolded) source mass spectrum is compared in (c) with the recon-
structed starting distribution. Their ratio is shown in (d).

6 Treatment of background

6.1 Combinatorial background calculation

In addition to signal dimuons, the data include background g%~ pairs orig-
inating from uncorrelated = and K decays. In one-dimensional deconvolution
methods, this background is evaluated from the recorded like-sign pairs (u*

and g~ p7). Assuming that the probabililty to detect a muon of any sign is in-
dependent of the sign of the second one and that the multiplicity distributions
obey a Poisson law, the number of background events is given by 2/ Nt+ N——,
where N** and N~ are the numbers of p*pt and p~p~, respectively. Such
a procedure cannot be applied in a multi-dimensional method, where the cell

12
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Fig. 6. Fit of the unfolded mass distribution (black dots correspond to points re-
moved from the fit).

Table 4
Comparison between generated and unfolded mass distributions.

Generated Unfolded

DY Norm 113169  115449+4288
J/4 Norm 26418 265774372
¥’ Norm 195 169466
J/¢ Width (MeV/c?) 0 7142
J/% Position (GeV/c?)  3.097 3.087+0.002
3’ Position (GeV/c?) 3.685 3.7540.05
DY Slope (GeV/c?) 1.00 1.02:0.03
Table 5

Comparison between generated and unfolded Pr distribution moments: < Pr >
(GeV/c) and < P2 > (GeV/c)2.

Generated Unfolded
Pr <Pr> <Pi> <Pr> < P: >
21 <M <27 GeV/c? 0.86 1.00 0.86 £0.02 1.00+0.03
J/9 1.14 1.69 1.12 +£0.02 1.64 +0.04
P’ 1.21 1.92 1.154+0.36 2.00 £+ 0.65
M > 4.2 GeV/c? 0.86 1.00 0.91 £0.10 1.14+0.16

13



content is frequently zero for N** or N~ (or both). To overcome this diffi-
culty, we use a method [14] which calculates the background by means of com-
binations between all the 4t and p~ distributions from like-sign events. The
calculated integrated ptp~ background is normalized to 2/ N++N-- with
N+t and N~~ being the total numbers of u*u* and g~ p~ recorded events.
The combinatorial background is evaluated for each subtarget and each cen-
trality bin as determined by the transverse energy released in the collision,
measured by the electromagnetic calorimeter. The 4-dimensional background
ptu~ is then subtracted from the 4-dimensional p*u~ data. However, in the
subtraction process, it may happen that a background cell is filled whereas
the corresponding data cell is empty. In this situation, we look for a nearby
filled data cell and use it to subtract the background. If the background to
be subtracted is larger than the data content of that cell, only the part of
the background equal to the cell content is subtracted and the background in
excess is in turn reported to the next closest filled data cell. This procedure
is repeated until all the background content of the cell is subtracted. In this
way, cell contents are always positive or null, never negative. A comparison of
background with and without count redistribution is shown in Fig. 7, indicat-
ing that this procedure leaves the kinematical distributions of the background
unchanged.
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Fig. 7. Comparison between redistributed (solid lines) and non redistributed (dashed
lines) background.

6.2 Subtraction of a test background distribution

A trial background has been built as described hereafter. Instead of comput-
ing the background with some generator, we consider biparametric spectra
(Piot, tan 0) of single pu* and p~ extracted from the like-sign muon pairs of the

14



S-U data, where P, and tan # are the total momentum and polar angle of the
muon. After sampling these distributions and tracking the muons through the
apparatus, the corresponding pu*u* and g~ pu~ distributions are compared to
the experimental ones. If they do not agree, the initial bi-parametric spectra
(Piot, tan 0) are weighted by the ratio reco:;;“(::‘e‘g(’;:rt)m % and this procedure
is repeated until the simulated ptu* and p~u~ distributions agree with the
data. The ratio between positive and negative muons is also verified against
the experimental ratio N*t*/N~~. It is then possible to get the simulated
background for utut, p=p~ and putp~ pairs. The opposite-sign pairs are then
added to the data set of section 5, giving the signal+background test dis-
tribution. From the corresponding u*u™ and p~u~ pairs, the combinatorial
background is calculated and subtracted from the signal+background events
following the procedure outlined above. Finally, the resulting distribution is
unfolded in the same way as presented earlier. The mass projection of the
deconvoluted 4-d distributions is presented in Fig. 8 and compared to the test
one. Again, the agreement is satisfactory. Similar comparisons (not shown
here) have been done for the other variables, leading to an agreement of the
same quality.
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Fig. 8. Comparison (a) between unfolded (points) and Monte-Carlo generated
(dashed lines) mass distributions together with their ratio (b). The distribution
obtained by smearing the (unfolded) source mass spectrum is compared in (¢) with
the reconstructed starting distribution. Their ratio is shown in (d).
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The analysis of mass and Pr spectra gives the results shown in Tables 6 and 7.

Table 6
Comparison between generated and unfolded mass distributions.

Generated Unfolded

DY Norm 113169  116315+5913
J/4 Norm 26418 25995+ 389
' Norm 195 16970

J /4 Width (MeV/c?) 0 7142
J/4 Position (GeV/c?)  3.097 3.089+0.002
' Position (GeV/c?) 3.685 3.76+0.05
DY Slope (GeV/c?) 1.00 0.9940.03

The corresponding unfolded mass and Py distributions are shown in Fig. 9.
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Table 7
Comparison between generated and unfolded Pr distribution moments: < Pr >
(GeV/c) and < P2 > (GeV/c)2

Generated Unfolded
Pr <Pr> <Pi> <Pr> < P:>
21 < M <27 GeV/c2 0.86 1.00 0.85 +£0.03 1.01+0.04
.]/‘l,/) 1.14 1.69 1.12 4+ 0.02 1.65+0.04
P’ 1.21 1.92 1.13 £ 0.31 1.89 £+ 0.57
M > 4.2 GeV/c2 0.86 1.00 0.924+0.10 1.15+0.16
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Fig. 9. Unfolded mass and Pr distributions (black dots correspond to points removed

from the fit).

35<M< 3.9 GeVic?
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7 Unfolding of S-U data

The unfolding technique presented in the preceding paragraphs has been ap-
plied to the S-U data collected in 1992. Before presenting the results, one has
to discuss two important points:

— when to stop the iterations,
- how to evaluate the uncertainties.

7.1 Convergence

The number of steps necessary to get the source distribution is not easy to
determine. We have used a x% comparison between successive unfolded distri-
butions. The x? value decreases continuously and does not saturate when the
number of iterations increases. This technique does not seem very appropriate
to determine the optimum number of iterations. Another criterion uses the
fit of the J/+) peak with a gaussian shape. The corresponding width has been
plotted in Fig. 10 as a function of the iteration number. This figure shows that
above 50 steps, the width decrease is negligible. From this figure alone, one
can conclude that taking about 100 steps would be good enough. However, the
shape of the deconvoluted spectra shows that the noise starts to increase when
we use a high number of iterations. Therefore, we have decided to stop the
iterations after 50 steps to avoid amplifying the fluctuations. We have checked
that, above 50 steps, the different fitted parameters extracted from the mass
and Pr spectra show a negligible variation with the number of iterations.

7.2  Error calculation

From formula (5), one can compute the error matrix, assuming that errors
on smearing and acceptance matrices are negligible. However, the practical
calculation of the 4-d error matrix involves computing matrices with 8 indices,
leading to ~ 102 elements, which is completely out of reach. Thus, one has to
find some realistic approximation. After several trials, it turns out that giving
to each cell an error corresponding to the error of the data corrected only
for acceptance, is a reasonable choice. This has been checked by computing
a complete 1-d error matrix for the mass spectrum. Both error evaluation
methods lead to similar values.
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Fig. 10. Fitted width of the unfolded simulated J/i peak as a function of the
iteration number. The solid line corresponds to a fit using the function: % + Ps.

7.8 Results

The resulting deconvoluted mass spectrum is shown in Fig. 11. After fitting the
mass distribution with the same physical processes as considered in section 5,
one can extract the Pr distributions (Fig. 11) and the < Pr > and < P2 >
values (Table 8) in different mass regions. These values are in agreement with

those of Ref. [3].

Since the gaussian shapes used for the J/¢ and %’ mass regions do not re-
produce well the resonances, the numbers of J/% and %’ have been extracted
from the unfolded mass spectrum by subtracting the contribution of the fitted
mass continuum in the corresponding mass intervals, that is 2.8 < M < 3.4

GeV/c? for the J/4 and 3.5 < M < 3.9 GeV/c? for the 7. The resulting ratio
Y’ /4 is (0.74 = 0.06)%, in agreement with Refs. [3,15].

8 Conclusion

We have described a method to unfold in a four-dimensional way the NA38
experimental data. We have used a non-linear iterative algorithm based on the
method first proposed by Richardson and Lucy. This method has been shown
to converge rapidly. The subtraction of the four-dimensional background re-
quires special care and a technique has been proposed to avoid negative cell
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Table 8

Unfolded Pr distribution moments < Pr > (GeV/c) and < P} > (GeV/c)® in

different mass intervals for S-U data.

< Pr > < P} >
21 < M < 2.7 G‘reV/c2 0.89 £0.02 1.074+0.03
J/1/1 1.16 £ 0.01 1.75 + 0.02
P’ 1.21 £0.12 2.16 +£0.29
M > 4.2 GeV/c2 1.02 £0.05 1.44+0.11
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Fig. 11. Unfolded mass and Pr distributions for S-U data (black dots correspond

to points removed from the fit).
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contents. We have presented a practical approximation which allows to esti-
mate the errors which cannot be exactly computed. Tests of the method have
been shown in detail for the S-U experiment. It should be stressed that the
main advantage of this multi-dimensional technique is to avoid any hypothesis
concerning the shapes of the distributions in each variable and concerning the
different physics processes which contribute to the measured spectra.
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