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Abstract

The CPLEAR experiment measured time-dependent decay-rate asymmetries ofK0 andK
0

decaying to�+���0 in order to study the interference between the decay amplitudes ofK0
S

— either CP-violating or CP-conserving — and the CP-conservingK0
L decay amplitude.

From the analysis of the complete data set we find for the CP-violating parameter�+�0,
Re(�+�0) =

�
�2� 7 stat.+4

�1 syst.
�
� 10�3; Im(�+�0) =

�
�2� 9 stat.+2

�1 syst.
�
�

10�3 and for the CP-conserving parameter�, Re(�) = (+28� 7 stat. � 3 syst.)� 10�3;

Im(�) = (�10� 8 stat. � 2 syst.)� 10�3: From the latter, the branching ratio of the CP-

conservingK0
S ! �+���0 decay is deduced to beB =

�
2:5+1:3

�1:0 stat:
+0:5
�0:6 syst:

�
�10�7:
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1 Introduction
The CPLEAR experiment at the Low Energy Antiproton Ring at CERN uses taggedK0

andK
0

to study CP, T and CPT symmetries in the neutral kaon system. In previous CPLEAR
publications, the measurements of the CP-violating parameter�+�0 [1] and the value of the CP-
conserving parameter� [2], obtained from the analysis of neutral kaons decaying into�+���0,
were reported for a 25% data sample. In this letter, new measurements of�+�0 and� based on
our complete data set are presented.

Interest in the search of the CP-violating amplitude ofK0
S ! �+���0 extends beyond

the search for CP violation in theK0
S decays. Firstly, increasing experimental precision in the

measurement of the phase,'+�, of the CP-violating parameter�+� can be fully exploited for an
indirect CPT test, only if the precision of the CP-violating parameters of neutral kaons decaying
to three pions is improved substantially [3]. Secondly, the measurement of the CP-conserving
K0
S ! �+���0 amplitude allows the results to be cross-checked with the phenomenological

global fits to all known neutral- and charged-kaon decay rates and to be compared with the
predictions of chiral perturbation theories [4–8].

The CP eigenvalue for the�+���0 final state is given by(�1)l+1 wherel is the relative
angular momentum between the two charged pions (or between the�0 and the�+�� pair).
As the sum of the masses of the three pions is close to the kaon mass, the pions have a low
kinetic energyECM(�) in the kaon rest-frame, and the states withl > 0 are suppressed by the
centrifugal barrier. This implies two contributions to theK0

S ! �+���0 decay amplitudeA+�0
S :

one from the decay to a�+���0 state with CP= +1 (kinematics-suppressed and CP-allowed),
and the other from the decay to a CP= �1 state (kinematics-favoured but CP-suppressed). The
K0
L ! �+���0 decay is dominated by the CP-allowed decay amplitudeA+�0

L with l = 0 and
CP= �1.

TheK0
L decay amplitudeA+�0

L interferes with both the CP-conservingK0
S decay ampli-

tudeA3�(CP=+1)
S and the CP-violatingK0

S decay amplitudeA3�(CP=�1)
S . These amplitudes depend

on the Dalitz variablesX andY [2], which can be estimated to beX ' (2mK=m
2
�)(ECM(�

+)�
ECM(�

�)) andY ' (2mK=m
2
�)(mK=3� ECM(�

0)). The former interference term is antisym-
metric inX, and is observed by separating the events withX > 0 andX < 0. We define the
CP-conserving parameter� as

� =

R
X>0 dX dY A�L(X; Y )A

3�(CP=+1)
S (X; Y )R

X>0 dX dY jAL(X; Y )j2
= �

R
X<0 dX dY A�L(X; Y )A

3�(CP=+1)
S (X; Y )R

X<0 dX dY jAL(X; Y )j2
: (1)
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This contribution vanishes when data are integrated over the whole phase space, allowing the
observation of the latter interference term through the measurement of the CP-violating param-
eter�+�0 given by

�+�0 =

R
dX dY A�L(X; Y )A

3�(CP=�1)
S (X; Y )R

dX dY jAL(X; Y )j2
:

We define the decay rates for an initialK0 decaying to�+���0 to beR+(�) andR�(�)
for X > 0 andX < 0 respectively, where� is the decay eigentime. Similarly the decay rates
for an initialK

0
are defined asR+(�) andR�(�). The time-dependent asymmetry integrated

over the whole phase space,

A+�0(�) =

h
R+(�) +R�(�)

i
� [R+(�) +R�(�)]h

R+(�) +R�(�)
i
+ [R+(�) +R�(�)]

(2)

= 2Re(")� 2 e��� �=2 [Re(�+�0) cos (�m�)� Im(�+�0) sin (�m�)] ;

where�m is theK0
L–K0

S mass difference,�� theK0
S–K

0
L decay-width difference and" the CP-

violation parameter in theK0–K
0

mixing, is used to extract the CP-violation parameter�+�0.
The two asymmetries obtained by separating the rates forX > 0 andX < 0,

A�(�) =
R�(�)� R�(�)

R�(�) +R�(�)
(3)

= 2Re(")� 2 e��� �=2 [Re(�+�0 � �) cos(�m�)� Im (�+�0 � �) sin(�m�)] ;

are used to determine the CP-conserving parameter�.

2 Data selection
The CPLEAR method and detector have been described elsewhere [9]. In this experiment,

initial K0 andK
0

are produced in the reactions

pp (at rest)! K+��K
0

and pp (at rest)! K��+K0;

where the strangeness of the neutral kaon is identified on an event-by-event basis.
The results reported in the present paper are based on the complete data set recorded by

CPLEAR. The selection criteria are mostly identical to those described in our previous papers
[1, 2]. The differences are due to upgrades of our detector in 1994 and 1995. During the 1994
data-taking, the spherical target (radius 7 cm) was replaced by a cylindrical one with a radius of
1.1 cm, filled with gaseous hydrogen at a pressure of 27 bar. In 1995, a cylindrical proportional
chamber with a radius of 1.5 cm was added around the new target. This chamber, located close
to the annihilation vertex, was used in the first stage of the trigger to reject more efficiently
the annihilation background, resulting in a smaller dead time and in an increase in the rate of
recorded signal events by a factor of two.

In addition, an improvement of the selection criteria was possible by requiring in the
new chamber a hit on each of theK��� tracks coming from thepp annihilation vertex, and
no hit associated with the secondary particles from the neutral-kaon decay. This new condition
allowed the release of some selection cuts used in the previous analysis in order to rejectpp!

K+K��+�� andpp ! �0K+��K
0

(or c.c.) background. This leads to a substantial increase
(about 30%) in the signal acceptance at short decay time.

However, the increased material around the interaction region enhanced the background
due toK

0
n! hyperon production followed by�(1115)! p�� decay. Such events only appear
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in theK
0

data set, simulating CP-violation asymmetry. This background is strongly reduced by
using time-of-flight to identify the protons.

The final data sample contains a total of 508 000 events with a decay time� > 0:25 �S,
where�S is theK0

S mean life. The decay-time distributions of initialK0 andK
0

are denoted by
N(�) andN(�) respectively. Figure 1 shows the measured decay-time distributionN(�)+N(�)
of the full data set, together with the simulated decay-time distribution which includesK0

L !

�+���0 events and the contribution from semileptonic decays. The simulated distribution is
normalized to the real data for decay-times above 6�S, where semileptonic decays are the only
source of background, by fitting a constant to the ratio of these two decay-time distributions.

The total-background fraction distribution�(�), defined in [1] as the relative difference
between the data and the simulated�+���0 events, is parametrized by

�(�) = exp(�(0:2 + 4:1� �))� 0:008 + 0:006� �:

The linear part describes the semileptonic contribution which amounts to 4.15% of the selected
events. The exponential part accounts for the background at short decay time (0.16%, possibly
resulting fromK+K��+��and�0K+��K

0
(or c.c.) events,K0

S decays into�0�0 followed by a
�0 Dalitz decay, and�(1115)! p�� decays).

3 Decay asymmetries and fitting
We followed the procedure described in Ref. [1], taking into account normalization (i.e.

the tagging efficiency ofK
0

relative toK0), regeneration and acceptance effects, to compute the
measured asymmetry

Aexp
+�0(�) =

N(�)�N(�)

N(�) +N(�)

�=

 
� � 1

� + 1

!
+

4 �[1� �(�)]

(� + 1)2
A+�0(�); (4)

whereA+�0(�) is given by Eq. (2) and� is the averageK
0
/K0 normalization factor. The param-

eter�+�0 and the normalization factor� are left free when fitting Eq. (4) to the data. The current
world average values are used for�m and�S [10] , and�L andRe(") [11].

The fit yields
Re(�+�0) = (�2� 7 stat.)� 10�3

Im(�+�0) = (�2� 9 stat.)� 10�3

� = 1:116� 0:004
(5)

with a statistical correlation coefficient of the parameters Re(�+�0) and Im(�+�0) of 68%. Fig-
ure 2 shows the measured asymmetry and the results of the fit.

In an analogous way, we followed the procedure of Ref. [2] to compute the measured
decay-rate asymmetries forX > 0 andX < 0:

A
exp
� (�) =

N�(�)�N�(�)

N�(�) +N�(�)

�=

 
� � 1

� + 1

!
+

4 � [1� �(�)]

(� + 1)2
A�(�); (6)

whereA�(�) are the asymmetries given by Eq. (3). We first performed a six-parameter fit for
the variables�+�0, �, and the normalization factors for events with positive and negativeX,
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�X>0 and�X<0 respectively. This fit gives for�+�0 values consistent with those of Eq. (5) and
not correlated with�. It also gives values of�X>0 and�X<0 which are statistically compatible.
We therefore assumed�X>0 = �X<0 = �, and, in order to improve the determination of the
normalization factor�, we fixed�+�0 = �+�[11]. Simultaneous fits of the two asymmetries
A
exp
� (�) were then performed allowing only� and� to vary. The fit gives

Re(�) = (+28� 7 stat.)� 10�3

Im(�) = (�10� 8 stat.)� 10�3

� = 1:116� 0:003

with a statistical correlation coefficient of the parametersRe(�) andIm(�) of 68% and a negli-
gible correlation between� and�. Figure 3 shows the measured asymmetries and the result of
the fit.

4 Systematic errors
Tables 1 and 2 summarize the sources of systematic errors which may affect the deter-

mination of�+�0 and�.

Table 1: Summary of systematic errors on the real and imaginary parts of�+�0

Source of systematic error Re(�+�0)� 10+3 Im(�+�0)� 10+3

Amount and normalization of the background
+1.5
–0.7

+0.7
–0.2

�(1115) background +4.1 +1.9
CP-conservingK0

S decay amplitude –0.1 –
Decay-time dependence of normalization� �0:3 �0:4
Decay-time resolution �0:2 �0:2
Regeneration < 0:1 < 0:1
�m, �S and�L – –
� Error determination limited by Monte Carlo statistics.

Table 2: Summary of systematic errors on the real and imaginary parts of�

Source of systematic error Re(�)� 10+3 Im(�)� 10+3

Amount of background and background asymmetry inX
+1.3
–1.4

+0.5
–0.3

�(1115) background and asymmetry inX
+0.7
–2.3

+0.2
–0.8

Decay-time dependence of normalization� �0:2 �0:2
Decay-time resolution +1.1 +0.7
Regeneration < 0:1 < 0:1

�m, �S and�L �0:1
+0.1
–0.2

Acceptance �2:0 �1:8
� Error determination limited by Monte Carlo statistics.
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� Amount of background
The amount and shape of the background at short decay time are estimated by comparing
the decay-time distributions of real data and of simulated events. This determination is
limited by the accuracy of our simulation. By comparing evaluations performed either
on the decay-time or on the decay-radius distributions, and by varying the region where
the simulated data are normalized to the real data, the total-background fraction at short
decay time is estimated with an error of+2� 10�3.

� Normalization of background
TheK

0
/K0 normalization factor for background events at short decay time may be differ-

ent to signal events. This contribution to the systematic error was estimated by using the
normalization either of the rejectedK+K��+�� events or of the rejected�0K+��K

0
(or

c.c.) events for the maximum amount of background computed at short decay time.
� Background asymmetry inX

TheK
0
/K0 normalization factor for background events may depend on the variableX.

This is the case for the�0K+��K
0

(or c.c.) background where the inversion of the pri-
mary pion with the same-sign secondary pion introduces a systematic shift ofX which is
positive for aK0–tagged event and negative for aK

0
event. From the rejected�0K+��K

0

(or c.c.) events we estimated that the difference between the normalization factors for
background events atX > 0 andX < 0 was less than 20%. The resulting systematic er-
ror was determined by applying this normalization asymmetry to the estimated maximum
amount of background at short decay time.

� The�(1115) background
The remaining�(1115) ! p�� component, which only contributes to theK

0
data set,

may be asymmetric inX because of the misidentification of the proton as a pion. These
events were estimated to be less than 0.019% of the selected events and have a positive
X in (40� 20)% of the cases.

� CP-conservingK0
S decay amplitude

The CP-conservingK0
S ! �+���0 decay amplitude does not cancel in the CP-violating

asymmetryA+�0(�) if there is any difference in the detector acceptance for the phase-
space regionsX > 0 andX < 0. The asymmetry of the acceptance was estimated by
comparing the Dalitz plot distribution of real events with the one computed from the
theoretical parametrization of the decay amplitudesA+�0

L (X; Y ) andA3�(CP=+1)
S (X; Y )

[7]. The systematic error on�+�0 from this source is negligible.
� Decay-time dependence of normalization

The error introduced by the statistical uncertainties in theK
0
/K0 normalization correction

was taken into account. Although data were corrected for any time dependence of the
normalization, a search for a residual effect due to different event topologies was carried
out and found to lead to a small error.

� Decay-time resolution
The systematic errors due to finite decay-time resolution, bin size, and the lower limit of
the decay-time interval used in fitting the asymmetries, were determined using simulated
events.

� Regeneration
The effect of neutral kaon regeneration is expected to be negligible at short decay time,
where the asymmetries are maximal. This uncertainty was found to be less than a few
10�5 when changing the regeneration amplitudes within the uncertainties of the values
extrapolated from higher energy data (�13% for the modulus and�9� for the phase
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[12]).
� �m, �S and�L

The experimental uncertainties on the values of�m, �S and�L used in the fit have a
negligible impact on the results, which are also insensitive to the input value ofRe("),
see Ref. [1].

� Acceptance
Owing to the separate integration over the phase space in the different parts of Eq. (1), the
acceptance does not cancel in the expression for�. Simulated data were used to determine
the effect of the acceptance as a function ofX, Y and� .

5 Final results and conclusions
Our final result for�+�0, shown in Fig. 4, is

Re(�+�0) =

 
�2� 7 stat.

+4
�1

syst.

!
� 10�3

Im(�+�0) =

 
�2� 9 stat.

+2
�1

syst.

!
� 10�3:

Assuming no correlation between the systematic errors, we obtainj�+�0j < 0:017 at the 90%
confidence level. Currently, this is the most precise determination of the real and imaginary
parts of�+�0.

Our final result for�, shown in Fig. 5, is

Re(�) = (+28� 7 stat.� 3 syst.)� 10�3

Im(�) = (�10� 8 stat.� 2 syst.)� 10�3:

We do not fixIm(�) to zero, in order to take into account strong-interaction phase-shift differ-
ences between theI = 2 andI = 1 components of the decay amplitudes. The branching ratio
for the CP-conservingK0

S ! �+���0 decay is estimated fromRe(�) and theK0
L decay param-

eters [2, 4]. Neglecting second-order terms in the strong-interaction phase-shift differences, we
obtained

B
K0

S
!�+���0(CP=+1)

=

 
2:5

+1:3
�1:0

stat.
+0:5
�0:6

syst.

!
� 10�7;

where the systematic errors also include a contribution from the uncertainty on theK0
L decay

parameters. Currently, these results are the most precise determination of the CP-conserving
parameters forK0

S decays into�+���0. These measurements are in good agreement with the
values predicted both by phenomenological fits to all known kaon decay rates [4, 7] and by
chiral perturbation theories [5–8].
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simulated (–) data. The simulated distribution (MC sum) results from�+���0 and semileptonic
decays of neutral kaons and is normalized to the real data set above 6�S. The background
contribution from semileptonic events is given by the shaded area.
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Figure 2: The measured CP-violating decay-rate asymmetry between 0.25 and 19.75�S. The
solid line is obtained by fitting Eq. (4) to the data. The broken line shows the asymmetry ex-
pected when assuming�+�0 = �+�.
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