Chaos-revealing multiplicative representation of quantum eigenstates

Abstract : The quantization of the two-dimensional toric and spherical phase spaces is considered in analytic coherent state representations. Every pure quantum state admits there a finite multiplicative parametrization by the zeros of its Husimi function. For eigenstates of quantized systems, this description explicitly reflects the nature of the underlying classical dynamics: in the semiclassical regime, the distribution of the zeros in the phase space becomes one-dimensional for integrable systems, and highly spread out (conceivably uniform) for chaotic systems. This multiplicative representation thereby acquires a special relevance for semiclassical analysis in chaotic systems.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 1990, 23, pp.1765-1774. <10.1088/0305-4470/23/10/017>


https://hal.archives-ouvertes.fr/hal-00164337
Contributeur : Marc Gingold <>
Soumis le : vendredi 20 juillet 2007 - 10:28:22
Dernière modification le : vendredi 9 octobre 2015 - 01:04:02
Document(s) archivé(s) le : jeudi 8 avril 2010 - 23:41:34

Fichiers

publi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

P. Leboeuf, André Voros. Chaos-revealing multiplicative representation of quantum eigenstates. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 1990, 23, pp.1765-1774. <10.1088/0305-4470/23/10/017>. <hal-00164337>

Exporter

Partager

Métriques

Consultations de
la notice

104

Téléchargements du document

156