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Abstract

In this work the analysis of the intermittency signal observed in high energy experi-
ments is done using multiparticle distributions and correlation functions. The effect of
the dimensional projection of the multiparticle distributions on one or two-dimensional
subspace is discussed, The structure of the multiparticle cumulants is analyzed for the
DELPHI e*e~ annihilation data. The language of the seif-similar distribution func-
tions, which is used in this work, is shown to be largely equivalent to the well known
a-model. In the case of the ultrarelativistic nuclear collisions, where the Monte-Carlo
simulations fail to reproduce the data, we argue that the observed intermittency pattern
is a signal of some nonlinear effect beyond the simple superposition of nucleon-nucleon
collisions. The model of spatiotemporal intermittency is discussed in details and is
shown to reproduce qualitatively the dependence of the intermittency strength on the
target and projectile nuclei. Similar effects are also observed in the statistical systems
undergoing a higher order phase transition. We study in particular a 1-dimensional
(1D) cellular-automaton (CA) and a 1D forest-fire model. On the example of the
noncritical 1D Ising model we illustrate the difficulties of the scaled factorial moment
(SFM) method in extracting genuine scaling behaviour. The problem of the finite-size
effect in connection to the dimensional projection can be easily exemplified in the case
of the 2D critical system with conformal symmetry. All these studies could serve as
tools to test the sensibility of the SFM method as used in the analysis of the high
energy production.
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Streszczenie

W tej pracy analiza sygnalu intermitentnego obserwowanego ekserymentalnie jest
wykonana za pomocg wieloczgstkowych funkcji rozkladu i funkecji korelacji. Dysku-
towany jest efekt rzutowania z przestrzeni wielowymiarowej, w ktorej powstaja niefak-
toryzowalne korelacje. Pokazano dobrg zgodnoié opisu za pomoca funkeji rozkladu
niezaleznych od skali i za pomocg modelu a . Ciekawe jest zjawisko intermitencji
dla ultrarelatywistycznych zderzen jagdrowych, w ktorych symulacje Monte-Carlo nie
odtwarzaja danych eksperymentalnych. Pokazujemy, Ze obserwowany sygnat intermi-
tencji jest zjawiskiem nielinowym, wychodzgcym poza proste zlozenie zderzeri nukleon-
nukleon. W szczegélnosci analizowany jest model intermitencji czasoprzestrzenne;j.
Odtwarza on jakosciowo obserwowang eksperymentalnie zaleznoéé od rodzaju pocisku
i tarczy. Podobne efekty zastaly stwierdzone w systemach statystycznych w poblizu
punktu przejécia fazowego wyzszego rzedu. Pokazano tego typu zachowanie dla pewnego
jednowymiarowego automatu komérkowego i dla jednowymiarowego modelu pozZaru
lasu. Na przykladzie niekrytycznego jednowymiarowego modelu Isinga pokazujemy
problemy zwigzane z identyfikacjg skalujgcego zachowania rozkladéw w metodzie mo-
mentéw faktorialnych. Na prostym dwuwymiarowym modelu z symetrig konforemng
ukazujemy efekt skoriczonych rozmiaréw w polaczeniu z rzutowaniem wymiarowym.
Wszystkie te badania mogg stuzyé do sprawdzenia czuloéci metody skalowanych mo-
mentéw faktorialnych uzywanej w analizie produkeji przy wysokich energiach.
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1. Introduction

Since few years intermittency in the phase-space distributions of produced parti-
cles is studied experimentally in the high energy collisions. Intermittency, which was
discussed first in the connection with turbulence bursts in classical mechanics [1], is a
manifestation of the scale-invariance of the physical process.

It was conjectured that the multiplicity fluctuations in small bins can reveal impor-
tant aspects of the multiparticle production mechanism such as the intermittent pattern
of fluctuations [2, 3]. Intermittency is characterized by large nonstatistical fluctuations
at all scales , i.e. the SFMs F; of a studied distribution rise like F;(dy) o (6y)™ with
decreasing bin size §y (for the definitions see sect. 2.1). Even though the underlying
physical interpretation in the spirit of some multifractal structures in the multiparticle
distributions is experimentally not clear, the method of the SFMs in limited rapidity
intervals, proposed by Bialas and Peschanski, became a powerful tool in the studies of
nonstatistical fluctuations in the multiparticle production.

The two basic results of the work of Bialas and Peschanski [2] were the proposition
of applying SFMs in order to reduce the statistical noise and the study of the SFMs
with changing resolution scale. The SFMs reduce the statistical noise which is present
in the events with a finite multiplicity, and they remove it completely in the case of
the Poissonian noise. Thus, this method permits to study effects of the nonstatistical,
dynamical fluctuations in the probability distributions of produced particles without
the bias from the statistical fluctuations.

The dependence of the SFMs on the resolution scale in rapidity, azimuthal angle,
transverse momentum or any combination of these variables was proposed as a tool to
search for fractal probability distributions in multiparticle production. The method of
the SFMs is a beautiful method to investigate the multiparticle correlations on small
scales and/or for high order correlations which otherwise would be inaccessible. The
SFMs have also the advantage of selecting spikes in the particle distributions. The
SFM of rank i has contributions only from bins with at least i particles, so higher
moments are sensitive to the clusters of particles well collimated in momentum. An
important tool in these studies is the a-model of density fluctnations {4] which was
introduced in the high energy phenomenology by Bialas and Peschanski [2, 3]. This
model was used to study the different questions of the intermittency analysis, giving
predictions in agreement with the experimental results. It is also the only model which
predicts consistently the relations between the SFMs of different rank.

In the present work, we shall study the intermittency phenomena in a different ap-
proach, which is based on the relation between the multiparticle distribution functions
and the SFMs [5]. This approach was used extensively with non-singular parametriza-
tion of the correlations (6, 7, 8, 9]. We shall mostly assume the presence of singularities
in the multiparticle distributions and study in this language the different issues of the
intermittency phenomenology. These include the dimensional projection, the finite-size
scaling (FSS), the regimes of strong and weak intermittency, the scaled factorial cor-
relators (SFCs) and the relation between the two-particle distributions and the higher
multiparticle distributions. In all these questions, with the exception of this last issue,
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the singular multiparticle distribution is largely equivalent to the a-model. As it was
already mentioned, the a-model is the only one that relates consistently the SFMs of
different ranks. In this domain the singular (or nonsingular) multiparticle distribution
approach is much less successful. A related problem is the phase-structure of the a-
model allowing for different regimes of fluctuations [10]. Of course, this very interesting
problem cannot be studied in the approach presented in this work.

The nonstatistical fluctuations in ultrarelativistic nuclear collisions deserve in our
opinion special attention. We argue that it is a nonlinear effect, which cannot be ac-
counted for by the simple nucleon-nucleon superposition models and may have strong
implication on our understanding of the collision dynamics. The presence of spatiotem-
poral intermittency in the interaction region could explain the essential features of the
experimentally observed intermittency patterns (impact parameter and projectile de-
pendence). Assuming that the onset of the spatiotemporal intermittency is due to
the higher order phase-transition [11], the detailed calculations with the inclusion of
the non-ideal inside-outside dynamics and the resonance decay are presented. Also
the behaviour of the fluctuations during the hydrodynamical evolution of the colliding
system and the implication of the fractal structures in space-time for Bose - Einstein
(B-E) correlations are studied.

Another domain where the study of the SFMs was performed are the fluctuations in
the critical Ising systems [12, 13]. We analyze in a similar way the SFMs behaviour for
two simple CA models, finding a scaling behaviour in the SFMs for 1D (non-projected)
and 2D analysis. In order to study the noncritical intermittent-like behaviour we
calculate the SFMs for the distributions of the number of particles or links (nearest
neighbour interactions) in the 1D lattice gas model. The intermittent-like behaviour
present in this model could serve as an illustration of the difficulties in the procedures
searching for some fractal source of the phenomena observed in the experimental data.
The intermittency signals in the particles and links are compared and a possible influ-
ence of the clustering in hadronization on the fluctuations is also discussed. The effect
of the finite size of a critical system on intermittency pattern is studied. It is shown
that the correlations in a system of the infinitely long strip with a finite width exhibit
different behaviour on the distances of the order of the induced effective correlation
range than the correlations in the infinite system. It is difficult however to discuss the
possible implications of this effect on the observation of the intermittency signal at the
present stage of the experimental results.

The study of fluctuations in the density of particles produced in ultrarelativistic
collisions attracted much attention from the experimental groups [14] - [33] .

To close this chapter, we list below most of the published experimental data on the
intermittency analysis by the SFM method. The ete~ annihilation was first analyzed
by the TASSO Collaboration [14]. The analysis was performed in the 1D rapidity
(y) distribution along the sphericity axis and in the 2D rapidity-azimuthal angle (y-¢)
distributions. At LEP energies, DELPHI [15], ALEPH [16] and OPAL {17] Collabo-
rations performed the intermittency analysis in 1D or 2D distributions. The LUND
model predictions were found to be consistent with the data. The CELLO Collabora-
tion analyzed the 3D intermittency signal in e*e~ annihilation and also found a good
agreement with the LUND model [18]. The 1D apalysis was made also for the u-p
scattering, the data could not be reproduced by the LUND and Marchesini-Webber
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models [19]. Unlike in the other experiments, the authors found that a significant part
of the effect could be due to the B-E correlations.

The multiparticle production in the v-nucleus interactions was analyzed, finding an
intermittency signal in 1D rapidity analysis for #-Ne interactions and no intermittency
for v-D interactions [20]. The intermittency in this case was interpreted as an effect of
rescattering in the v-nucleus interaction.

The n*/K*-p collisions were extensively analyzed by the NA22 Collaboration
[21, 22] which calculated also the SFCs for their data [23]. In this process, neither
the magnitude, nor the pr-dependence of the effect are reproduced by the FRITIOF
Monte-Carlo. The data of the UA1 collaboration for pp collisions at 630 GeV in-
dicated an increase of the intermittency signal for the low muitiplicity sample [24].
Again, this tendency is not reproduced by the models. The pp collisions at 360 GeV
were analyzed in 1D for different multiplicity samples. The Monte-Carlo generators
also do not reproduce the multiplicity dependence of the fitted intermittency slopes
[25]. The NA22 Collaboration performed the intermittency analysis of the particles
produced in 7*/K™-nucleus interactions [26], using the same experimental setup as
for the 7% /K *-p collisions studied earlier by this group [21, 22, 23]. The results show
weaker intermittency signal for larger targets.

The proton-nucleus and nucleus-nucleus collisions were first analyzed by the KLM
Collaboration {27, 28] in 1D and 2D distributions. The intermittency signal decreased
for larger projectiles, but this decrease was smaller than expected from the increase
of the mean multiplicity in the collision. It was impossible to reproduce this nonlin-
ear dependence on the multiplicity by the models independent collisions. The EMU01
Collaboration performed also the intermittency analysis for different nuclear projectiles
and targets [29, 30] and found a similar dependence as the KLM Collaboration. Gen-
erally, the intermittency signal decreased rapidly for increasing incident energy (14.6,
60 and 200 GeV). The NA35 Collaboration analyzed the multiparticle production in
the nuclear collisions also in the 3D momentum space [31]. 1D and 2D analysis of
the nuclear collisions was also performed for emulsion experiments at different ener-
gies [32]. Few events from cosmic ray experiments were analyzed finding rather strong
intermittency effect [33).

In summary, one can say that all processes show an increase of fluctuations with
increasing resolution. However, the SFMs dependence on the bin size flattens for small
bins in 1D analysis. An intermittency signal was found stronger in 2D and even stronger
in 3D analysis, where no sign of flattening is seen. Recent results for the SFMs in 3D
for e*e™ annihilation (34}, p-p [35], x*/K*-p [36] and nucleus-nucleus collisions [31]
show that the dependence of the SFM on the resolution is stronger than a power-law.
Fiatkowski showed that these results could be explained if only a part of the two-particle
distribution is scale-invariant [37], in contrast to the predictions of the a-model where
the whole two-particle distribution is scale-invariant [2]. The e*e~ annihilation results
are consistent with the predictions of the LUND model. The hadron-hadron collisions
show however a reverse dependence of the intermittency signal on the multiplicity cuts
as the FRITIOF model. In the nuclear collisions, the Monte-Carlo calculations fail to
reproduce the strength of the intermittency signal.
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2. Scale-invariant multiparticle disiributions

This chapter gives the essential definitious fo, the i ctorial moments and their

; relation to the correlation functicns. The rise of the SFMs was explained by some
J . authors using the extrapolation of the known non-singular short range ~arrelatiens to
i very small rapidity bins |6, 7]. Ir this chapter we give the description of ‘Le depe.«dence

or 3D space. This lzads, after the dimensional projection, to similar tcsults as in
the non-singular 1D description. The description of th.. intermittency patterns in the
language of the n-particle distributions is discussed in the relation to a-model and to
some experimental results.

% of the SF¥Ms on ihe resolrtion scale by the singular multiparticle distributions in 2D
|

- 2.1 Bas:~ definition:

In this section we shall give same ba_. definitions of the quantities that e shall
study and some relations between them. We shall assume in this work the existence
of only one particle specie, which is what in most of the experiments is classified as
charged particles. The total inelastic cross section oy can be written as a sum of the
cross sections o, for the production of exactly n-particles in an evext :

. LEDIA (2.1)
, n=0

Further, orie can define the probabilities P, = o,/a; of observing n-particles in an
inelastic event. From those probabilities one can construct the moments of the multi-

W plicity distribution, the i-th moment is given as :
\§‘ -
<n>= Zn‘P,. . (2.2)
A n=1
or the scaled moments )
<z >
i = - . 2.3
<a> (2:3)

The scaled moments C; are frequently used to compare multiplicity distribution for
different processes in restricted rapidity intervals or for different energies, i.e. for
distributions with different < = > . In particular the energy independence of C; was
expected to be a consequence of the KNO scaling of the multiplicity distributions. As
we shall see below the SFMs are a better tool to study the multiplicity distributions,
because they are not contaminated by the statistical noise, Actually, they deconvolute
the observed multiplicity distributions from the Poisson distribution, which is a natural
ansatz for statistical noise superimposed on top of the "physical” distribution. The
factorial moment is defined as :

<nn-1)...(n—-i+1) >= in(n—l)...(n—i+ 1)P,, (2.4)

n=1
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and the SFM as
<nn-1)...(n—i+1) >
<n> '
Let us write the discrete multiplicity distribution P, in form of a Poisson trans-
form (see ref. [38] for a discussion of the Poisson transform in the context of high
energy phenomenology) :

F =

(2.5)

[ (zR)re—=n
P = /0 f@) = —ds (2.6)
where 7i =< n > and f(z) fulfils the normalization conditions :
'/:o f(z)dz =1
[ ef@yz=1. 2.7)

The Poisson transform means a convolution of the statistical Poissorian noise of mean
7 with the "physical” distribution f(z). The SFMs of the discrete distribution P, are
related to the moments of the function f(z) :

Fi= /0 " f(e)dz . (2.8)

This analysis was used to study the multiplicity distributions in the full phase-space
or in some restricted rapidity windows. Some bin to bin correlations and, in particular
the forward-backward correlations were studied.

The studies of the multiplicity distribution cannot show the structure of the cor-
relations between the momenta of the produced particles. In the independent particle
production, the probability of producing a particle does not depend on the fact that
and how many other particles are produced. If, on the contrary, some correlations
are present, the production of i particles enhance the probability of the production
of the (i + 1)-st particle. As a result, the multiplicity distributions are broader then
the Poisson distribution. This gives us information on the global number of the parti-
cles produced, i.e. on the integrated correlation functions and not on the correlations
between particles with definite momenta.

The information about n-particle correlations is contained in the n-particle distri-
bution function pn(y1,...,¥n) , where y; denotes generally the momentum vector of
the i-th particie. This quantity denotes the probability density of observing n-particles
with momenta y,,..., ¥y, irrespective of the number and positions of any other particles.
These distribution densities are related to the n-particle inclusive cross sections :

1 de
ordy’

1 do
o1dy,...dy,

n(n) =
pn(yh eee 9yu) = (2.9)

The integration of the n-particle distribution over a domain { of the phase-space, gives
us the factorial moments of the multiplicity distribution in that domain [5] :

<n>q= fndy ri(y)

5
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<a(n—-1)...(n-i+1) >n=/ndy1.../ndy.< o w), (210

and correspondingly the SFM :

F = Jody - Ja dyi P-‘(yl{- - i) )
(fn dy Pl(!l))

If the one-particle inclusive distribution is approximately constant, i.e. in the "plateau”
region, we can rewrite the above relation as :

(2-11)

1
= A “ee d.’d.‘ ceoy¥i) .
Fi=g [dn... [ du di(an,...%) (2.12)
where the d; represents the i-particle redrnced density :

Pi(yh-' '1!/1')

P o) (2.13)

di(yls “oe ,!h') =
The use of the reduced density is very common in phenomenological parametrizations of
the 2-particle distribution, in the cases where the one-particle distributions are assumed
to factorize. Furthermore, we shall mostly assume in the model comparisons that the
one-particle density is almost constant. The n-particle distribution can be written
using the n-particle correlation function :

Pn(¥15-- %) = p1(11) ... P1(¥n) + Cul(¥15---3%n) » (2.14)

and analogously one can define the reduced correlation function :

Cn(yl, vee 9yn)
pi(m)---plyn)

The n-particle correlation function consists mainly of statistical combination of lower
order correlations. In order to study genuine n-particle correlations, one has to define
the n-particle cumulant K,(¥1,...,yn) , which enters into the expression for p,, together
with cumulants of the order lower than n. The first few densities are :

en(y1,- - 1¥n) = (2.15)

p2(y1,¥2) = pr(n)pr(v2) + Ko, 92) » (2.16)
1.e. Kz = Cg ’

P3(v1,¥2,93) = pr(m1)Pr(w2)P1(ws) + 3, p1(wi) K(w5, wk) + K91, 92, 93)
Pa(¥1,92,¥3,%4) = pr(w1)pr (¥2)P1 (wa)p1(wa) + X o1 (3)pa (v5) K2 (e, )
+ 3 p(¥) Ka(wiy v 1) + D Ko, 45) Koy, 1) + Ka(1, 920935 ¥4)
Ps(¥1y -+ -, ¥5) = pr(w1)pr (w2)P1 (y3)pr (wa)Pr (us) + X a () (¥5)pn (9 ) Ka (91, ym)
+3 n(@)er(¥) Ks (e, s ¥m) + 3, 21 (%) K2 (s v ) K2 (301, Urm)

+ z Pr(¥) Ka(Yis Yas 01y Ym) + Z Ka(¥iy¥5) K3(Yks Y1y Ym)
+K5(yl’“-’y5) ' (2'17)
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where the sums are taken over all permutation of {y,,...,y,} without the transposition
inside the factors of the sums.

The n-particle cumulant measures the statistical dependence of the whole n particle
set. The n-particle cumulant is zero, if anyone of the n particles is independent of the
others. Analogously, the n-particle reduced cumulant can be defined :

Kn(yh' .. ,yn)

i) - pi(yn) (2.18)

kﬂ(yl,-"’yﬂ) =

Bialas and Peschanski proposed to look on the dependence of the SFMs on the

resolution in the rapidity [2]. The idea was to study in the high energy event the

structure of the particle density in rapidity. They showed that the SFMs averaged over

M bins of width §y in the total rapidity window of length AY = M#éy , correspond to
the moments of the probability density in these bins :

o0 o L&A N MY ng. . (e —i+1)
/0 d"’l-"/o d”MP(”""””M)M_(,;”“)N N(N-1)...(N—-i+1) '

(2.19)
where n; is the number of particles in the bin k in the event of the total multiplicity
N in the whole rapidity interval AY . An average of the r.h.s. of the above equation
over a large number of events with fixed multiplicity N, should converge to the lLh.s.
The multiplicity distribution in different bins Ppru(n,,...,na) is 2 convolution of the
probability distribution P and the multinomial distribution :

N!

ﬂ]! eo s UM

T3V /0 dz, .. ./0 dzpP(zy,...,2pm)2] ... 23}

(2.20)
Thus, the factorial moments of the multiplicity distribution in different bins give the
moments of the probability distribution P. The intermittent behaviour! is defined as
a power-law dependence of the SFMs on the number of bins :

R~ My = (G0) " ~ @, (221)

Pru(ny,...,anm) =

where v; is called the intermittency exponent of rank 2 . This analysis was applied to
the JACEE event [2], confirming the observation of Takagi [39] that the rapidity density
fluctuations are of a nonstatistical origin. The SFMs can also be averaged for a sample
of many events. This allows to perform similar studies also in low multiplicity events
such as discussed in e*e~ or hadron-hadron collisions [2, 3]. The SFM is calculated for
each event in a definite bining, i.e. for each «vent the sum over all the M bins is taken,
and then the average over all events is taken. Generally, the events in the sample have
different multiplicities so the normalization N(N — 1)...(N —i + 1) from eq. (2.19),
which accounts for the Bernoulli character of the statistical fluctuations around the

!We shall use the name intermittency signal or intermittency patterns to describe the increase of
the SFMs with the resolution, but not necessarly & power-law. We shall also call an intermittency
signal a stronger one if the corresponding local slopes of the dependence of the SFM on the resolution
are bigger.
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studied probability P, is replaced by < n >', where < n > is the mean multiplicity in
the sample of events. This gives the horizontally averaged SFMs [3] :

M- -1 M
Fi=_— =P Z <m(ne—1)...(ne—i+1) >, (2.22)
where < ... > means an average over events. Generally, even if the particles are

uncorrelated (all correlation functions C,, = 0) the defined above F; contains a spurious
dependence on the scale due to the shape of the one-particle distribution py(y) . So
the horizontal SFMs should be corrected for this dependence by a factor [40] :

Ml— M
R; <n>,Z<nk> : (2.23)

The corrected SFMs : F
F| - E ] (2.24)

are less biased by the variations in the single-particle spectrum. Bialas, GaZdzicki and
QOchs proposed to look at the fluctuations in a different variable {41}:

D

X0) = e () (22)
now 0 < X(y) < 1. This change of variables before the intermittency analysis is
especially important for rapidly changing p;, such as for the transverse momentum
distribution, where this procedure was shown to better follow the true intermittent
correlation than the corrected horizontal analysis. The experimental data are almost
entirely analyzed using the corrected, horizontally averaged SFMs F; . The SFMs
calcuiated in that way for each chosen bin width are then fitted to the intermittent
relation :

In(F;) ~ a — viln(6y) - (2.26)
One can also define the vertically averaged SFMs [42] :

1 ¥ <my(ng—1).. (m:—1+1)>
=-ﬂz

F, .
k=1 <n; >

(2.27)

This corresponds to the average of the SFMs calculated in each of the M bins over all
the bins. This form of averaging is equivalent to the previous one for the case of the fiat
one-particle distribution. However, there are till now not many experimental data on
the vertical SFMs. The EMUC1 data on the nuclear collisions [29] show little difference
between the vertical SFMs and the corrected horizontal SFMs. From the theoretical
point of view, it is particularly easy to relate the vertical SFMs to the integrals of the
n-particle distributions :

min k in
F(by) = 1 f: :mm:(ksfl)s,, dy, ... fym :(’;5_", 1oy @Yi Pi¥1s - %)
= (f:.:'.:':('ff:)sy dy pi(y))y

(2.28)
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For slowly varying pi{y), SFMs can be written using the reduced densities as follows :

1 M 1 Ymin +kéy Yrmin +kby
Floy)= —3 — d / dyi di(yr, .- ow) . (2.29
(%) M,;(ﬁy)' ymin+(k=1)by v Ymin-+(k=1)by ¥i di(y 1 ¥i) (2.29)

Generally, one assumes translational invariance of the reduced densities and conse-
quently, of the SFMs in different bins. The reduced densities depend then only on the
relative variables y¥; — yx, so that one has :

Fi(by) = ﬁ/{:u dy, .. ./06:: dyidi(y1y .-y %) - (2.39)

The comparison of the horizontal SFMs to the phenomenological parametrization of
the reduced density is difficult because the contribution of different bins is weighted
by the single-particle distribution p;(y) for that bin. The vertical moments have the
contribution of each bin scaled so that all of them enter on equal footing to the sum
over the bins. For sufficiently small bins they are closer to the integrals of the reduced
density (eq. 2.30) than the horizontal moments even if the one-particle distribution
is not flat. One expects to have simple and approximately translationally invariant
parametrization for the reduced densities, which can be used in the expression (2.30).
In the next sections we shall extensively use this relation between the SFMs and the
reduced densities.

Till now, there are no experimental data on the dependence of the SFMs in small
bins on the position of the bin. Due to large experimental errors all results for the
SFMs in small bins are averaged over the whole rapidity window AY . There is some
experimental evidence for the dependence of the bin averaged SFMs on the position
of the rapidity window used in the analysis. Thus, one observes some change in the
results for the corrected horizontal SFM, depending on whether the target and projec-
tile fragmentations region are included into the analysis {19]. However, it is difficult
to draw definite conclusions from the horizontal SFMs, which are dominated by the
contributions from bins in the central region, where the singie-particie density is max-
imal. It would be interesting to make the analysis using vertical SFMs in different
windows, which would give information on the correlations in the different regions of
the phase-space. Another indirect evidence for the lack of the translational invariance
is provided by the SFCs (eq. 2.32) which are not symmetric :

F# i, (231)

for i # j in the asymmetric #*/K*-p collisions [23]. This shows that in this case
the fluctuations are different in the target fragmentation region and in the projectile
fragmentation region.

The SFM in a rapidity window 4y is equivalent te the n-particle distribution func-
tion integrated from the scale 0 to §y (eq. 2.30). Thus, F;(6y) has contributions from
the i-particle distribution on all this range of scales in rapidity. This makes difficult
to disentangle the true scaling behaviour of the multiparticle distributions in a certain
range of rapidity separations from other effects, which could be present at the lim-
iting scales. This concerns especially the behaviour of the n-particle distribution for
particle separation going to 0. The presence of some limit on the scaling behaviour
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in this region, can change dramatically the dependence of the integrated n-particle
distribution on the upper integration limit 6y (see {43, 44] and sects. 2.3, 4.2). On
the other hand, the limit §y — 0 tests only a limited part of the i-particle phase-space
(| v — & |< 6y — 0). To cure this disadvantage of the SFMs Bialas and Peschanski
: proposed to study the SFCs, which are the observables relating the fluctuations in
: ‘ separated bins {3]. The SFC F;; for two bins of width 8y separated by the distance D
is defined as :

<n(ny —1)...(ny —i4 ne(ne—1)...(n2—j +1) >

Fij(8y, D) = <nry—1)...(ny—i+1)><ny(n2~1)...(nz — 5+ 1) >

, (2.32)

where n,(y) is the number of particles in the first (second) bin. The so defined SFC is

then averaged over all the pairs of bins distant by D in the rapidity window AY, what

corresponds to the vertical averaging. In was shown in the a-model that the SFCs are

independent of the bin size §y and exhibit a power-law dependence on the bin distance \

D: '
Fij~ (D)™ . (2.33) '

v;; in the above expression is called the intermittency exponent of the SFC F; ; . The

SFCs can also be directly related to the integrals of the (i + j)-particle distribution

function :

F, i(8y,D) = Z/

M (3 Jumin+(k- 1)5v min+{k=1)6y

Ymin+D+kby d Ymin+D+kby d
o /|;.,..-..+D+(k-1)5y Yit1 .- "/Vmin+D+(k-l)6v Yi+j P-+J(yl,- .. syl+J) /

YUmin+kéy Umin +kby ‘
/ dy, ... / dyi pi(%rs---,¥i)
v v

min+(k-1)5U miu+(k'1)6|I

Ymin +kby /llmiu +kby
v

\\\ /llnu'n+D+k5|I /VMin+D+k5v
v 1

h
min+D+(k—1)6y min+D+(k—1)6y

dyJ' Pj(yl, —e 9y.1')) H (2'34)
\ ~ where M = (AY — D)/6y is the number of the bin pairs in the rapidity window
: [¥mins Ymin + AY] . For slowly varing single-particle density, the SFCs can be approxi-
mated by simple integrals of the (i + j)-particle reduced distributions. This form will
be used in the further investigations. Moments similar to the SFCs have also been
proposed by Seibert and Voloshin [45]. They proposed the split-bin correlators, i.e. the
bin of width éy is divided in two parts and the correlations in the left and right part
of the bin are calculated :

M
(53) <ngnp > .
B T M¢ Z < NLNrp>"~ (2-35) -

This definition corresponds to the SFC F); for the case §y = D. Due to the approx-
imative independence of the SFCs on the bin width §y both in the a-model [3] and
in the experiment (23], SFCs and the split-bin correlators are largely equivalent. The
split-bin moments have also the advantage that they allow the analysis of the fluctu-
ations in continuum observables such as the transverse energy in certain subdomains

10





















































































































































































































