Virtual Compton Scattering at low energy and the generalized polarizabilities of the nucleon

H. Fonvieille

To cite this version:

HAL Id: in2p3-00014005
http://hal.in2p3.fr/in2p3-00014005
Submitted on 22 Sep 2003

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Virtual Compton Scattering at low energy and the Generalized Polarizabilities of the Nucleon

Hélène Fonvieille

Laboratoire de Physique Corpusculaire IN2P3-CNRS
Université Blaise Pascal Clermont-II, 63170 Aubière Cedex, France

For the Jefferson Lab Hall A Collaboration
and the VCS Collaboration

Virtual Compton Scattering has opened a new field of investigation of nucleon structure. At low center-of-mass energies, the process $\gamma^* p \to \gamma p$ allows the determination of the Generalized Polarizabilities (GPs) of the proton [1]. These observables generalize the concept of nucleon polarizabilities to any photon virtuality Q^2. The GPs are predicted by many models, including Heavy Baryon Chiral Perturbation Theory [2]. A first generation of experiments studying photon electroproduction $ep \to ep\gamma$ have been performed at MAMI [3], Jefferson Lab [4] and Bates [5]. They measure the unpolarized VCS structure functions $P_{LL} - P_{TT}/\epsilon$ and P_{LT} which are linear combinations of the lowest order dipole GPs. Analysis methods are based on the Low Energy Theorem [1] or the Dispersion Relation formalism [6]. Results of the MAMI [3] and JLab [7] experiments are presented, together with the future prospects in the field.

References

