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Abstract

The real-time path integral propagator approach is used to study the fusion prob-
ability of massive nuclei including quantum effect. An analytical expression of the
probability to pass over barrier of an inverted harmonic potential is obtained, in which
both height and curvature of the barrier are controlled by the neck degree of freedom.
The fusion probability of three systems in central collision as a function of the center-
of-mass energy are calculated and compared to experimental results. It is shown that
the quantum fluctuation enhances the fusion probability at low energies, and the neck
fluctuation makes the slope of the fusion probability curve become flatter.
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Dynamics of barrier is of both theoretical and particular interests in many areas of physics,
and many works have been done on the subjects of Kramers problem and dissipative tun-
nelling [1, 2]. Traditional approach to the quantum dissipative decay is the imaginary-time
path integral approach within the framework of the system-plus-reservoir model [1-7]. When
a particle decays from a metastable state to a true ground state, theory must occur through
either a thermally activated barrier crossing or a quantum tunnelling. But, such a theory is
not appropriate to solve the inverse problem of the quantum metastable-state decay. Nev-
ertheless, one can introduce exactly the effects of quantum noise on the dynamical system
using the real-time influence-functional method [4, 5] in cases where the motion is predomi-
nantly deterministic. For sake of simplicity, the model is limited to thermal diffusion over a
one-dimensional parabolic potential. Consideration of time-dependent quantum diffusion is
still an open question. Results are then applied to the fusion of massive nuclei.

Very recently, Abe et al. [8] obtained an analytical expression for multidimensional fusion
probability through solving the Langevin equation, however, realistic numerical calculations
were not done and initial distributions of position and momentum of the system were not
considered. In the present work, we focus on nearly symmetric reactions, because for these
systems, the calculations of the thermal fluctuation model underestimate the fusion proba-
bility at low energies [9], and the slope of the fusion probability of the theoretical results as
a function of the center-of-mass energy is steeper than that of the experimental data.

The paper is organized as follows: In Sec. 2 we describe the model and derive an
expression of the fusion probability with quantum effect in terms of real-time path integral
propagator approach, and the neck effect is considered by folding a Gaussian distribution
of the neck variable. In Sec. 3 the fusion excitation curves of three typical systems are

calculated and compared with experimental data. Finally, the conclusions are summarized



2. The model

Since the pioneering work of Feynman-Vernon [3] and Caldeira-Leggett [4, 5], the standard
model uses an infinite set of harmonic oscillators for the environment and a bilinear interac-

tion with the system. The Lagrangian of whole system is written as

L:LA—I'LB—I'LD

P
Ly=——_V
4= o V)
N 2 2
1| ps ¢
L Ly = — |2 —mpo? (R — — . 1
B+ Lr 2'221 5 [mZ m;w; ( mlwzx) ] (1)

The classical dynamics of the system A can be described by a generalized Langevin equation
from Eq. (1), i.e.,

Mi(l) + /Otfy(t — $)i(s)ds + V'(x) = (1), (2)
with (ri(¢)) = 0 and (ri(¢)1r(s)) = Tv(t — s), here 4(t) is the real-time damping kernel
function and 7' the nuclear temperature.

Our starting point is the real-time path-integral form of the density operator p(t) at
any time in the coordinate representation. The reduced density function of the system A is

determined by tracing out all environment coordinates R [3-5], i.e.,

A,y 1) = / dR(zR|p(1)|yR) = / d'dy' dR'dQ dR (zR | exp(—i H1/h)|+'R)

(y'Q'| exp(i Ht/h)|yR)(z'R'[p(0)|y'Q’). (3)

It is suitable to introduce new variables in order to solve the coupled classical equations of

motion for the variables z(7) and y(7), then we define

X(r)=2(r) +y(r), &(r) =a(r) —y(r), (4)



development of the reduced density of the system through a propagator J [5], i.e

P(Xp ) = [ [ AXidad (X, €4, X, €, 0)p(X:,6:,0). (5)
We initially have the system in a pure state described by a wave packed centered at the

position zg < 0 with initial average momentum py > 0, as well as the fluctuation widths of

the position and momentum are A and g, respectively. The reduced density function is then

P(Xi6:,0) = Ooexp( P ) exp { = (X — 200)? = L2} (6)

where (Y is the initial normalization constant.
We assume that the potential is an inverted harmonic potential V(z) = %MUJQ{I}Q, which
seems reasonable from Fig. 1. Of particular interest, is the expression we obtained for the

propagator J by making {5 = 2y —ys = 0 or Xy = 2z,

7 = doesp {2 [(K0) + {8 X6 - N0 Xs6 — zo0el] ] (7)

where Jy is an integral constant, N, K and C are all functions of time and defined by

Mp

N() = 4 sinh(33')

expl(551),

K(t) = lMﬁ’ coth(lﬂ't),

C(t) = / dl/l/coth< hy

2kgT

) sinh_Q(%ﬂ’t)
/ / smh "(t — 7)) cos[v(T — s)] sinh[%ﬁ’(i — 3] eXp[g(T + s)|drds.  (8)

In Eq. (8), 8/ = (8% + 4w?)'/?, B is the reduced friction coefficient, and € is a cutoff of high
frequency of the Ohmic friction used in this paper.

The reduced density function at any time can be evaluated by substituting Eqs. (6) and
(7) into Eq. (5), thus all integrals in Eq. (5) are Gaussian. Here we quote only the final

result,

(9)

(25— <xf<t>>>2]
QO'?Ef (1) ’

ﬁ(vaoat) = Cf exp [_
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and for the variation of the position, the only surviving terms proportional to exp[(3’ — 3)i]

are kept,
) B M -2 hMB 9 l/dl/coth(% T)
72, (1) = [ml xp(—A1) { I
st M 5+ 8 cotb( L) } , (12

where a = (' — 3)/2 > 0. The center of the peaked p(x¢,0,t) follows the motion of a
classical Brownian particle and its width is enlarged by the quantum fluctuation.
In this model the probability at a given time that the particle has passed over the barrier

is determined by

Jo~ pley,0,0)dzy 1 ( {zs(1)) )
P(xg,pg,t) = = —erfc | ——————]. 13
( P t) f—oo p(vaoat)dxf 2 ﬂaxf(t) ( )
For long times, the value of (x(1))/0,,(t) is finite, we have
p e(t) lw+ﬂ%m+mﬂl (14)
t—00 /2.
V20, (1) {22 [ 22 coth(5225) + 24 + IM(B + 42}

Eq. (13) with (12) is the main result of this paper. Let us analyze the behavior of Eq.

(14). When 2kgT > k) > ha, we write an approximation to the quantum term in Eq. (14),

23[9 vdy hv _ 2BkgT 1 ha
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becomes h3(M=) ' In(1 + Q%/a?) and is finite [10].

3. Results and discussion

Now we apply the quantum diffusion formula [Eqs. (13) and (14)] to massive heavy-ion
fusion. Here, the shape of nucleus is described by the two-center parameterization with
two collective variables {z, ¢}, in which z is the distance between the two colliding nuclei
and € (0 < ¢ < 1) the neck parameter. The inertia is adopted with the Werner-Wheeler
approximation, the wall-and-window one-body dissipation is used for the friction, as well as
the potential energy is calculated by the liquid-drop model.

In order to determine the nuclear temperature, we will assume that all the remaining
energy is totally dissipated around the fusion saddle points [8]. Therefore, with a level
density aj.,, we have a;.,T? = E.,, +Q — Vj, neglecting the collective kinetic energy. Here V;
is the energy difference of the fusion saddle point and the ground state. The initial kinetic

energy of the system when the two nuclei being in the contact shape is given by

1
[( = —p(Q) - Ecm —I_ Q - ‘/C - alSUTOQ' (16)

2m

Here K., is the center-of-mass energy, () denotes the ()-value of the reaction, V. is the energy
difference between the contact shape and the ground state of the compound nucleus, and Ty
is the initial excitation temperature determined from the nuclear surface friction model.

In the approaching phase of the heavy-ion fusion, the neck length of two colliding nuclei
is expected to grow and fluctuate as time goes, thus the height, location and curvature of
the fusion saddle also change, as shown on Fig. 1. Since z and e degrees of freedom are
to be simulteanously taken into consideration when calculating the quantum diffusion, an

effective diffusion over a 1-D barrier is considered. Thus the fusion probability is calculated



1
Pius(Eom) = /0 P(x0,po,t — oo)w(e)d(ae+ brg + c¢)de, (17)

where the distribution of the neck variable € is assumed to be a Gaussian function,

w(e) = (2m07) " exp[—(c 6*/(207)]. (18)

Here ¢ and &% are determined by the solution of the neck evolution equation [10],

1m fe= \/ QFYET/mET'Z(t% (19)

where m, and ~, are the mass and reduced friction of the fusion system along the neck

€(t) + 7e€(t) -

degree of freedom at the barrier, as well as (r2(2)) = 0 and (ro(t)ro(t")) = 6(t —t'). Eq. (17)
means that the fusion starts from the various configurations of the reacting nuclei which is
described by the distribution w(e) of the neck variable.

In Fig. 1, we plot the deformation potential energy for the reaction 'Mo+!"Mo as a
function of the elongation coordinate = for different neck parameters ¢. The black points
correspond to the cases of zero-radius neck, namely, the contact shapes. It shows clearly that
the behavior of the barrier depends on the neck degree of freedom. In the shape model of the
two-center parameterization, the distance of mass center of two fusing nuclei increases and
then the Coulomb repulsion energy decreases when the value of € decreases at the contact
points, thus the deformation energy of the system decreases. From this figure, we observe
that the contact point is close to the fusion saddle for the symmetrical systems near A = 200,
so that the values of mass and friction can be chosen at the fusion saddle, as well as the
curvature of the barrier is also treated reasonably to be a constant, though it is a function
of the neck variable. Within the two-dimensional space of = and ¢, the averaging path of the
particle shall drift off the highest potential energy barrier, namely, diffusion over the fusion

saddle and simultaneously falling along the e-direction.
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reaction systems: '©Mo+'Mo, #Kr+12Sbh, and ?°Zr+12*Sn for which the phenomenon
of the fusion hindrance appears. Experimental data are taken from Refs. [12-15] and for
the present calculations with quantum effects, £ = 100a. The fusion hindrance is defined
by the difference between the energy corresponding to Py,s = 0.5 and the Bass barrier.
Theoretically, Ps,s = 0.5 when lim;_q < x¢(t) >= 0, see eq. (13). Then, at this point, the
quantum fusion probability is the same as the classical one and the hindrance calculated by
the quantum diffusion equals to the classical one. Because the quantum width is larger than
the classical one, fusion probability is enhanced by the quantum noise at low energies. The
lower the energy is, the larger the effect is, naturally. At high energies, the quantum fusion
probability is lower than the classical one, but the difference is very small, as expected. The

effects of neck folding are discussed in Ref. [11].

4. Summary

In this paper, we have studied the diffusion over a 1-D parabolic barrier, including quantum
noise and derived an exact over-passing probability formula that is applied to the study of
the fusion of massive nuclei. The results shows that the quantum fluctuations enhance the
fusion probability at low energies. For comparision with experimental data, neck degree of
freedom 1s included by folding the initial distribution. Local harmonic approximation for
the propagator consisting of the coordinate-dependent mass and friction as well as a realistic

potential should be considered further.
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FIG. 1. The deformation potential energy as a function of the elongation coordinate
for different neck parameters ¢ = 1.0, 0.8, 0.6, 0.4, and 0.2 from top to bottom. Here the
black points correspond to the contact shapes of two fusing nuclei, Ry is the radius of the

compound nucleus.

FIG. 2. Calculated fusion probability of '"Mo+'"°Mo as a function of the center-of-
mass energy. The solid line is the present quantum diffusion result, the dotted line is the
classical diffusion result, and the dashed line is the 1-D classical diffusion result of Ref. [8]

without neck folding. The points are the experimental data.

FIG. 3. Calculated fusion probability of ®¢Kr +123Sb as a function of the center-of-mass

energy. The symbols are the same as Fig. 2.

FIG. 4. Calculated fusion probability of ?Zr +'24Sn as a function of the center-of-mass

energy. The symbols are the same as Fig. 2.
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