Anomalous couplings at LEP2
D. Fayolle

To cite this version:

HAL Id: in2p3-00021466
http://hal.in2p3.fr/in2p3-00021466
Submitted on 17 Jan 2002

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ANOMALOUS COUPLINGS AT LEP2

D.Fayolle*

Laboratoire de Physique Corpusculaire
Université Blaise Pascal IN2P3/CNRS
24 avenue des Landais, 63177 Aubière Cedex, France

Abstract. In its second phase, LEP has allowed to study four fermion processes
never observed before. Results are presented on the charged triple gauge boson
couplings (TGC) from the W-pair, single W and single γ production. The anom-
ausal quartic gauge couplings (QGC) are constrained using production of WWγ,
eγγ and Zγγ final states. Finally, limits on the neutral anomalous gauge cou-
plings (NGC) using the Zγ and ZZ production processes are also reported. All
results are consistent with the Standard Model expectations.

1 Introduction

The Large Electron-Positron (LEP) collider has been running above the W-pair
production threshold since 1996 until the LEP stopped in 2000, at centre-of-
mass energies between 161 GeV and 208 GeV. This has allowed each of the
four experiments ALEPH, DELPHI, L3 and OPAL to collect nearly 700 pb$^{-1}$
of data.

The non-abelian structure of the Standard Model (SM) leads to three and
four charged gauge boson vertices of which the couplings are specified in the
bosonic part of the lagrangian. The self-interactions of these bosons correspond
to the vertices γWW, ZWW and four quartic WWXX', where XX' is either
WW, γγ, ZZ or Zγ. Even though the SM is experimentally so reliable, there
are still some theoretical problems if one looks at higher energies. One way
to cope with this is to consider the SM as an effective theory and assume
that New Physics (NP) exists at an higher energy scale, inducing deviations
of physical observable values from the SM predictions. The anomalous gauge
boson couplings are thus introduced in the upper-dimensional lagrangian.

The study of the charged TGCs is presented in the next section, and the
constraints on QGCs are reported in section 3. The NGCs are described in
section 4. Conclusions are given in section 5.

2 Charged TGCs

2.1 W^+W^- channel

One of the most important SM process at LEP2 energies is the W^+W^- pro-
duction because it allows to measure the W mass and the charged triple gauge
boson couplings.

*e-mail: fayolle@dermost.in2p3.fr
In addition to the t-channel ν-exchange, W-pair production in e^+e^- annihilation involves the triple gauge boson vertices $WW\gamma$ and WWZ which are present in the SM due to its non-abelian nature. The most general Lorentz invariant lagrangian which describes the triple gauge boson interaction involving W bosons has fourteen independent terms, seven describing each WWV vertex, with $V = Z, \gamma$. Assuming electromagnetic gauge invariance, C, P and CP conservation, a total of five couplings remain, which are Δg_1^Z, $\Delta \kappa_\gamma$, λ_γ, $\Delta \kappa_Z$ and λ_Z [1]. At the tree level in the SM, $g_1^Z = \kappa_\gamma = \kappa_Z = 1$, while $\lambda_\gamma = \lambda_Z = 0$. Requiring $SU(2)_L \times U(1)_Y$ leads to three independent couplings, Δg_1^Z, $\Delta \kappa_\gamma$, and λ_γ, related through $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma \tan^2 \theta_W$ and $\lambda_Z = \lambda_\gamma$.

Anomalous TGCs affect both the total cross-section and the production angular distributions. Moreover, the relative contributions of each helicity state would be modified, which in turn affect the angular distributions of the W decay products.

All the four collaborations use the event rate information in the three decay channels (hadronic, semileptonic and fully leptonic) to measure the values of the TGCs, together with the event shape. Different methods are used to analyse WW events in order to extract the TGCs [2]: multidimensional phase-space fit or optimal observables [2]. Then the distributions are compared with the expectations relative to different values of the parameters, as obtained from fully simulated WW Monte Carlo events. A new method consists in the Spin Density Matrix (SDM) of which the elements (see figure 1) are observables directly related to the polarisation of the W [3]. The comparison of the SDM elements with the theoretical predictions allows a model independent test of the TGCs.

There is no LEP combination since last summer because the experiments are waiting for a new WW generator including higher order corrections. With respect to the old generators, $\mathcal{O}(\alpha)$ Monte Carlos predict a lower WW cross-section (2.5%) and a sizeable change in the slope of the $\cos \theta_W$ distributions (2%). Only ALEPH has preliminary results [4], listed in table 1, including these higher order corrections.

<table>
<thead>
<tr>
<th>coupling</th>
<th>Δg_1^Z</th>
<th>$\Delta \kappa_\gamma$</th>
<th>λ_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit result</td>
<td>$0.015^{+0.034}_{-0.032}$</td>
<td>$-0.020^{+0.075}_{-0.072}$</td>
<td>$-0.001^{+0.034}_{-0.031}$</td>
</tr>
</tbody>
</table>

Table 1: ALEPH charged current TGC results including $\mathcal{O}(\alpha)$ corrections.

6 Δ denotes the difference of these couplings with respect to the SM value.

7 The common set used includes g_1^Z which is C- and P-violating.

8 The LEP experiments are also computing the CP-violating TGCs.
2.2 Other channels

The Single W, that is $W e \nu$ final state, also gives information on the $W W \gamma$ vertex. The signature is one electron lost in the beam pipe and missing transverse momentum coming from the neutrino. The $W e \nu$ channel has the same sensitivity to $\Delta \kappa$, than the WW channel and is also sensitive to λ.

The Single γ, that is $\nu \bar{\nu} \gamma$, concerns the $WW \gamma$ vertex only. The signature is a high energy photon isolated in the detector. The sensitivity to the couplings is about ten times lower than the WW sensitivity.

3 Quadratic gauge couplings

Four quadratic gauge boson vertices are predicted in the SM with fixed couplings, $W^+ W^- W^+ W^-$, $W^+ W^- Z^0 Z^0$, $W^+ W^- Z^0 \gamma$ and $W^+ W^- \gamma \gamma$, but their contributions to processes studied at LEP2 are negligible. On the other hand, anomalous contributions to effective QGCs arising from physics beyond the SM could lead to measurable effects.

The formalism of anomalous QGCs involving at least one photon leads to the "genuine" QGC operators of dimension 6 after neglecting operators leading to triple gauge couplings. Three anomalous QGCs, a_0, a_e and a_γ, are considered. a_0 and a_e are CP-conserving and contribute to the $WW\gamma \gamma$ and $ZZ\gamma \gamma$
vertices [5], whereas a_n is CP-violating and contributes to the $WW Z\gamma$ vertex only [6].

![Diagram of three anomalous vertices $WW Z\gamma$, $WW\gamma\gamma$ and $ZZ\gamma\gamma$.]

Figure 2: The three anomalous vertices $WW Z\gamma$, $WW\gamma\gamma$ and $ZZ\gamma\gamma$.

Limits on $a_i/\Lambda^2 (i = 0, c, n)$, with Λ the energy scale where this new physics is supposed to appear, are obtained by comparing the cross-section (see figure 3) and kinematic distributions (see figure 4) of the $WW\gamma$, $\nu\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma$ final states with the SM predictions. The results are listed in table 2 [7].

The $WW\gamma$ channel is analysed in the semileptonic and hadronic channels where the standard WW selection is applied in addition to the search of a high energy and isolated photon. A cut on low polar angles for the photon reduces the initial state radiations and a sharp mass window for the dijet reduces the final state radiations. The W radiations are negligible.

The second charged anomalous QGC comes from the $\nu\bar{\nu}\gamma\gamma$ channel where two acoplanar photons are expected. A cut on missing mass is used to reduce the $Z\gamma\gamma$ background.

The analysis concerning the neutral process leading to the $Z\gamma\gamma$ channel\(^1\) is based on the search of high energy and isolated photons in hadronic events.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vertex</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0^W/Λ^2</td>
<td>$WW\gamma + \nu\bar{\nu}\gamma\gamma$</td>
<td>$[-0.018, 0.018]$</td>
</tr>
<tr>
<td>a_c^W/Λ^2</td>
<td>$WW\gamma + \nu\bar{\nu}\gamma\gamma$</td>
<td>$[-0.033, 0.047]$</td>
</tr>
<tr>
<td>a_n/Λ^2</td>
<td>$WW\gamma$</td>
<td>$[-0.17, 0.15]$</td>
</tr>
</tbody>
</table>

Table 2: 95% CL combined LEP QGC results.

\(^1\)There is no combination of neutral and charged QGCs because under more general theoretical hypothesis, effects in neutral QGCs may be different from charged QGCs ($a_0^W \neq a_0^W$).

\(^2\)The $Z\gamma\gamma$ channel is not combined because the different generators used give different predictions.
4 Neutral TGCs

The SM does not predict any direct coupling between the neutral gauge bosons themselves, but there are two possible anomalous vertices in the neutral sector [8]. Each vertex is parametrized by the most general Lorentz and $U(1)_{em}$ invariant lagrangian plus Bose symmetry and requiring only one off-shell boson. These ZZ, ZZ and $Z\gamma$ vertices are all forbidden at tree level in the SM and have unobservably small values through loops.

$Z\gamma$ final states are sensitive to possible contributions from anomalous $Z\gamma$ and $Z\gamma Z$ vertices which are parametrized by height couplings: h_Y^D, h_Y^J (CP-violating) and h_Y^J, h_Y^J (CP-conserving) with $V = Z^*\gamma^*$. $Z\gamma$ events are investigated in $q\bar{q}\gamma$ and $\nu\bar{\nu}\gamma$ decay products where a hard visible photon and two jets or large missing energy and momentum for the neutrons are searched for. The h_Y^D couplings are fitted from the event rate (see figure 5), the angular and energy distributions of the photon. The results are shown in table 3 [7] and figure 6.

*DELPHI is also looking at off-shell couplings [9], canceling the condition of two outgoing on-shell bosons. This leads to 44 new couplings that are related to the h_Y^D and h_Y^J couplings.
6

Similarly to $Z\gamma$, Z-pairs can be used to constrain couplings related to the anomalous $ZZ\gamma$ and ZZZ vertices. There are four couplings: f_4^V (CP-violating) and f_5^V (CP-conserving) with $V = Z^*, \gamma^*$. The five visible decay channels are investigated: $Z \to q\bar{q}q\bar{q}$, $Z \to q\bar{q} \nu \bar{\nu}$, $Z \to q\bar{q}l^+l^-$, $Z \to l^+l^-\nu \bar{\nu}$ and $Z \to l^+l^-l^+l^-$ with an expected branching ratio of 49%, 28%, 14%, 4% and 1% respectively. The Z-pair event rate, as well as angular distributions (mainly $\cos \theta_Z$) are used to constrain the values of the f_i^V couplings. The results are summarized in table 3 [7] and figure 6.

<table>
<thead>
<tr>
<th>h_i^z</th>
<th>95% CL</th>
<th>h_i^z</th>
<th>95% CL</th>
<th>f_i^V</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1^z</td>
<td>-0.056(0.055)</td>
<td>h_2^z</td>
<td>-0.128(0.126)</td>
<td>f_4^V</td>
<td>-0.17(0.19)</td>
</tr>
<tr>
<td>h_2^z</td>
<td>-0.045(0.025)</td>
<td>h_3^z</td>
<td>-0.078(0.071)</td>
<td>f_4^V</td>
<td>-0.31(0.28)</td>
</tr>
<tr>
<td>h_3^z</td>
<td>-0.049(0.008)</td>
<td>h_4^z</td>
<td>-0.197(0.074)</td>
<td>f_5^V</td>
<td>-0.36(0.40)</td>
</tr>
<tr>
<td>h_4^z</td>
<td>-0.002(0.034)</td>
<td>h_5^z</td>
<td>-0.049(0.124)</td>
<td>f_5^V</td>
<td>-0.36(0.39)</td>
</tr>
</tbody>
</table>

Table 3: 95% CL combined LEP neutral current TGC results.

Figure 6: 2D fit contours for combined LEP neutral current TGC.

5 Conclusions

Values and limits for anomalous triple and quartic gauge couplings in e^+e^- collisions at centre of mass energies up to 208 GeV have been presented. The Standard Model predictions are in well agreement with data. The precision in the measurement of the gauge boson couplings has exceeded the expectations
prior to the LEP2 startup. The full potential of the LEP2 data is not yet fully exploited everywhere and future improvements of the combined LEP results can be expected.

Acknowledgments

I would like to thank my ALEPH colleagues for interesting discussions about the physics of \(W \) and \(Z \) bosons. Moreover, the warm hospitality of the 10th Lomonosov Conference has been well appreciated.

References