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ABSTRACT

The construction and performance of the barrel pre-series module 0 of the future ATLAS elec-
tromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of
ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be
7.1140.07. An energy resolution of better than 9.5%-GeV'/? /y/E (sampling term) has been obtained
with electron beams of up to 245 GeV. The uniformity of the response to electrons in an area of
An x A¢p =1.2 x 0.075 has been measured to be better than 0.8%.

(Submitted to Nucl. Instr. and Meth. A)
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1 Introduction

The electromagnetic calorimeter of the ATLAS experiment at CERN’s future proton-proton collider,
the LHC, is a lead-liquid argon sampling calorimeter with accordion shaped absorbers and electrodes.
Liquid argon calorimetry has been chosen because of its intrinsic linear behavior, stability of the response
and radiation tolerance.

Results of R&D work were reported in [1, 2, 3, 4]. In this paper the construction and tests of
the pre-series module 0 of the barrel calorimeter are described. The module has the same dimensions
as the 32 modules of the future barrel calorimeter of ATLAS. As a result of extensive Monte Carlo
optimizations [5], in particular the study of «/7° separation, the granularity of the presampler and of
the calorimeter module was changed with respect to the preshower detector and the prototype described
in [4]. The granularity of the presampler is coarser, while the granularity in 5 of the first calorimeter
sampling is finer and its depth is decreased. In addition the length (n) of the module is covered with only
two electrodes instead of five to minimize the dead zones between electrodes. The module 0 electronics
have the full functionality required for ATLAS, with the exception that not all components are resistant
to the high radiation levels expected at the LHC.

The module was the last prototype to be tested before the production of the series modules of the
ATLAS barrel calorimeter. Its purpose was to validate the construction chain and to study the electronics
performance. The module was exposed to electron and muon beams in the North Area at CERN’s SPS
in order to study the energy resolution and the uniformity of the calorimeter response.

The paper is organized as follows. In Sections 2 and 3 the construction and quality control of
the calorimeter module and of the presampler are discussed. The electronics chain is then described
(Section 4), followed by the description of the beam setup (Section 5). The modeling of the detector
response is described in Section 6, the signal reconstruction and performance are discussed in Section 7.
The response to muons and electrons is discussed in Sections 8 and 9 respectively, followed by conclusions
and prospects.

2 Calorimeter Module 0 Construction

The ATLAS barrel electromagnetic calorimeter, described in detail in [6], is made of two half-
barrels, centered around the z-axis (ATLAS beam axis). One half-barrel covers z> 0 (pseudorapidity
n > 0) and the other one z< 0 (n < 0), from || = 0 to |n| = 1.475; the length of each half-barrel is
3.2 m, the inner and outer diameters are about 2.8 m and 4 m respectively. A half-barrel is made of 1024
accordion shaped absorbers, interleaved with readout electrodes.

The electrodes are kept in the middle of the gap by spacers made from strips of honeycomb material,
joined into an accordion shaped sheet by resin impregnated threads. The drift gap on each side of the
electrode is 2.1 mm, which corresponds to a total drift time of about 450 ns for an operating voltage of
2000 V.

Once assembled, there is no discontinuity along the azimuthal angle ¢; but for ease of construction, a
half-barrel is divided into 16 modules. The total thickness of a module is at least 22 radiation lengths (Xp),
increasing from 22X to 30Xy between || = 0 and |n| = 0.8, and from 24X, to 33X, between || = 0.8
and |n| = 1.3.

A module, shown in Figure 1, has three compartments in depth (front, middle, back). The readout
granularity of the different compartments is shown in Table 1 for n < 1.3 (for module 0 we set n > 0 and
approximate values will be given for ¢ instead of the exact ones, e.g., 0.025 instead of 7/128). In total
there are 3428 readout cells per module.

2.1 Absorbers

The absorbers are made of lead sheets (thickness 1.53 mm for < 0.8, 1.13 mm for 5 > 0.8), glued
between two 0.2 mm thick stainless steel sheets by resin-impregnated glass fiber fabric. The fiber fabric
compensates for the difference in thickness of the two types of lead plates so that the nominal thickness
of an absorber is 2.2 mm.

A local non-uniformity of the thickness of the lead plates induces variations of the calorimeter
response [4, 7]. Its effect on the constant term of the energy resolution can be approximated by the relative
rms of the distribution of the sliding mean of the thickness of five consecutive lead plates multiplied by
one-half [8, 9]. In order to keep the constant term induced by inhomogeneities below 0.3%, the lead
thickness has been measured by radiography (using a setup developed with the help of CEA-DAMRI)
during the cold rolling process at the factory. This allowed for fast machine adjustments and rejection of
lead sheet sections out of tolerance. The precision of the lead thickness obtained, in an acceptance window
of 60 pm, is better than 0.8% (rms) for n < 0.8 (0.6% for n > 0.8). The production procedure improves
significantly the precision attainable by standard cold rolling alone. Plates were cut out of these rolls



and stored. Each plate was then measured by ultrasound to get a detailed thickness map [10]. A sorting
algorithm was used to match lead plates in order to compensate for local non-uniformities. Deduced from
the relative rms of the sliding mean thickness, a contribution to the constant term of 0.12% (n < 0.8)
and 0.18% (n > 0.8) is expected.

The absorbers are formed into an accordion shape as described in [6]. After the gluing cycle, they
are equipped with precisely machined G10 bars (maximal dispersion of +80 um for groups of 16 bars
in R¢). The final geometry is measured with a 3D coordinate machine to give feedback on the bending
machine stability [11]. The dispersions of the opening half-angles, varying from 46.5° at small radius to
34° at large radius, are of the order of 0.15° to 0.5°. For the straight section lengths a dispersion of
0.02 mm is obtained, while for the distance between the precision bars the dispersion is 0.15 mm. The
thickness profile are shown in Figure 2 for the raw and sliding averages. The rms of the absorber thickness
distribution is 19 pm (13 pm) for the raw (sliding average) thicknesses.

2.2 Electrodes

The readout electrodes, 275 um thick, consist of three conductive copper layers separated by insu-
lating polyimide sheets. The two outer layers are at the high voltage potential, the inner one is used for
reading out the signal through capacitive coupling. The granularity of the calorimeter in n and in depth
is obtained by etched patterns on the different layers. Each gap between two absorbers is equipped with
two electrodes: type A (n < 0.8) and type B (n > 0.8).

The main difference with respect to previous prototypes is the use of large size electrodes. Before
bending the electrodes are ~ 1.8 m x 0.8 m.

Copper clad polyimide (single-sided with pre-cured glue coating and double-sided) laminate is used
to make the three layered circuits. The base polyimide is (Dupont’s) Kapton-E type, which has a thermal
expansion coefficient, close to that of copper. This leads to minimal geometrical deformations relative to
the absorber system at cryogenic temperatures. The HV protection resistor pads are silk screened with one
component epoxy based resistive ink!?). Nominal resistivity is 1 MQ/square (at room temperature) [12].
The pads were measured individually for each electrode on dedicated testbenches. Each signal path and
HV connection is equipped with one or more gold plated female contacts, directly crimped (and soldered)
on copper pads on the circuit. The electrodes are equipped with springs for the ground return connection
between the electrode and absorber.

Several important production parameters were obtained with the pre-series electrode production
for this module 0. The global dimensions of etched images with respect to films are typically precise to
£0.2 mm. The copper etching is precise and well controlled over the whole area. For most electrodes the
alignment between layers is better than £0.4 mm, less than the £0.5 mm left as separation between cells.
This has been checked visually for all electrodes.

On the other hand several defects and problems were encountered. The film dimensions, not con-
trolled before usage, were ~ 0.7 mm smaller than design. About one-third of the electrodes had to be
discarded, as they did not tolerate the curing cycle for the resistive ink due to bad gluing of the laminates.
For about half of the remaining electrodes the curing cycle temperature had to be lowered, yielding large
values and a large dispersion of the serigraphied resistors. On about 20 electrodes, output traces (in the
signal layer) were damaged when etching the outer layers leading to a few dead cells in the front section.
For part of the electrodes, the positioning of the crimps was done manually resulting in a misalignment of
connectors up to ~ 1 mm between different gaps. One quarter of the electrodes suffered from positioning
defects between image and the stacking holes (used to fix the electrodes to the G10 bar of the absorber).
Most of these defects were understood and were due mostly to the lack of proper tooling at that time.

The electrodes were bent to accordion shape with the machine described in detail in [6]. All resistors
and blocking capacitances were measured with a semi-automatic setup (low voltage test). A high voltage
test was performed by measuring the leakage current between the electrode outer layers kept at 2000 V
and the inner layer connected to ground. The standard test had a duration of one hour. Both tests were
performed before and after bending [13, 14]. Depending on the degree of curing of the resistive ink,
some electrodes showed damaged resistors after bending the flat circuits. This was seen in particular for
resistors closer than 10 mm to the peak of the bend (see Figure 3).

In a module, 64 A- and 64 B-electrodes are needed. In total 150 electrodes were produced?, of
which 49 were unusable. 31 A-electrodes out of 47 and 22 B-electrodes out of 54 had high resistance
values with a large dispersion. The experience gained by the factories in the pre-series production for
module 0 and additional R&D and significant design changes have improved the situation and led to the

1) DL1216 ESL.
2) CICOREL SA, 8 route de I'Europe, CH-2017 Boudry and MCB Industrie, 107-11 rue du Moulin Sarrazin, F-95100
Argenteuil.



solution of most of the problems described in this Section. The efficiency in the series production has
been greatly improved.

2.3 Module Assembly

With the limited number of electrodes available, only the central region of the module could be
equipped with electrodes with normal resistance values. This region corresponds to 0.2 < ¢ < 0.3 in the
A electrodes and 0.1 < ¢ < 0.3 in the B electrodes. The other electrodes were placed around these central
regions, so that for n < 0.8 the region 0.125 < ¢ < 0.4 and for n > 0.8 the region 0.025 < ¢ < 0.35 was
equipped.

The geometry of the module is defined by the external and internal G10 bars. Their prismatic shape
is such that a stack of 64 absorbers makes a wedge with an angle of 22.5°. The outer bars are screwed
on support stainless steel ring pieces which define the external radius of the module.

The stacking is done on a rotating jig in a clean room (class ISO 8) with the relative humidity
controlled to 50% =+ 5%. The module is stacked in the horizontal position, but tightening the absorber to
the preceding one and to the ring piece is done in a vertical position to avoid sagging of the absorbers.

The stacking procedure is the following: the set of 6 ring-pieces fixed to its module assembly
backbone is aligned on the module assembly jig. Then the first absorber is fixed in place with references
in all axes (to about 0.1 mm). A first spacer plane, the electrode plane, a second spacer plane and a
new absorber are stacked. Dowel pins position the electrode accurately in r and z with respect to the
preceding absorber; other dowel pins position the new absorber in r, its z position being defined by a
stop at z= 0. After rotating to the vertical position, the new absorber is pressed against the preceding
one with pneumatic jacks acting on the outer and inner G10 bars. The screws linking the absorber to
the preceding one and to the ring-piece are tightened to the desired torque. This stacking sequence is
repeated 64 times. Typically four absorbers can be stacked per day.

Regularly, every 2 or 4 detector gaps, two electrical tests are performed. A low frequency signal
(1 to 6 Hz) is injected on the HV lines and the induced signals on the signal outputs are recorded [15].
This test checks the continuity of the electrical circuit and the electrode connections including the high
voltage distribution. Then a HV test is performed : 1800 V is applied to the electrodes and the leakage
currents are recorded.

Every 4 gaps, the thickness of the stack is measured at the inner and outer absorber G10 bars and
at several locations in z in order to control the final dimension of the module and also the thickness of the
gaps. The imperfect shape, due to a deviation from the nominal folding angle of the bent electrodes of
module 0, introduced a deformation of the module geometry with as consequence a small over-thickness
at the inner and external radii. The evolution of the module over-thickness at the external radius is shown
in Figure 4. After the last absorber is stacked, an increase of about 0.2 mm is observed.

The aim was to obtain an argon gap dispersion of the order of 50 um to keep the contribution to the
constant term of the energy resolution below 0.15%. In module 0, the gap capacitances were measured
and their dispersion translated into a dispersion of the gap thickness of 82 pm.

2.4 Cold Electronics and Cabling

The front section is read out at the inner radius, whereas middle and back sections are read out
from the back (outer radius). Summing boards are connected to the electrode connectors to group the
signals in ¢ to the desired readout granularity (Table 1): 16 electrodes are grouped into one cell for the
front section, 4 for the middle and back sections. The boards are 10 layer PCBs with 15 Q strip-lines
whose lengths are equalized in ¢ in order to ensure a uniform inductance.

The summing boards are connected to the motherboards. These boards route the outputs to
the readout cables through ”low profile” connectors and include precision injection resistors (0.1% and
70 ppm/°C) for the calibration system. The readout cables are miniature polyimide coaxial cables®) [16]:
25 Q) for the back and middle sections, 50 2 for the front section to optimize the noise contribution. The
readout cables are grouped in bundles of 64 channels and connected at the end of the module to high
density uD 100 connectors, fitting 64 channels and 32 ground connections in a 10 x 30 mm? area. The
connectors are fixed on a patch panel.

The high voltage is supplied to electrodes through boards connected at the back of the module.
The two sides of the electrodes are fed by different high voltage lines, thus providing a safety margin. In
1 the module is divided into seven HV sectors of An = 0.2; in ¢ the HV sector size is A¢ = 0.2.

After cabling, the HV connectivity is checked with a low frequency test. Each cell is pulsed and its
signal is recorded. A high voltage test is then performed. All tests are performed at room temperature.

3) AXON CABLE SA, Route de Chalons-en-Champagne, 51210 Montmirail, France.



3 Presampler Construction

The liquid argon barrel presampler [17] is placed in front of the electromagnetic calorimeter inside
the cryostat. In ATLAS it will consist of 64 sectors. The presampler’s dimensions are defined by an
envelope that for a half barrel is a 3.1 m long, 23 mm thick annulus with a diameter of about 2.9 m. Each
sector provides coverage in 9 from 0 to 1.52 and covers a region of A¢ = 0.2. The signal is sampled in a
thin active layer of 11 mm of liquid argon with a readout cell granularity of An x A¢ = 0.025 x 0.1.

Each sector is composed of eight modules of unequal lengths (constant An) held together by 3.1 m
long FR4 bars, as shown in figure 5. A module covers a region of 0.2 x 0.2 in (1, ¢), with the exception
of the modules located at the ends of the barrel, for which the n coverage is reduced to 0.12.

The electrodes are perpendicular to the longitudinal axis except for the electrodes of the type 1
and 2 modules (the closest to the barrel center) which are slanted in order to keep a triangular shape for
the signal response [18]. They are separated by ~ 2 mm liquid argon gaps and operated at a fixed high
voltage of 2 kV. There are 2 kinds of electrodes: cathodes which are (270+30) pum thick double sided
boards; and anodes which are (330+39) um thick 3-layered boards. The 2 kV potential is applied to the
external anode layers and the signal is read out through capacitive coupling to the central anode layer.
Anode quality assurance tests include measurements of (a) values of the protective resistors soldered on
the anodes, (b) capacitance of the electrodes and (c) leakage current obtained with an applied potential
of 3 kV [19]. The number of electrodes per module type varies in order to keep the granularity and
the liquid argon gap approximately constant. Readout cells of the required granularity are obtained by
ganging the appropriate number of electrodes in the longitudinal direction on the modules themselves.
In the ¢-direction, each anode is subdivided into two compartments with A¢ = 0.1 by etching.

The assembly procedure is the following: electrodes are first positioned in a jig of precision shims.
Glass-epoxy plates covered with epoxy pre—impregnated4) foils are then applied to the top and bottom
edges of the electrodes. During the curing cycle, pressure is applied by tightening screws mounted on the
jig.

Eight different types of motherboards, with five printed circuit layers, are placed on their respective
modules and collect signals from the readout cells. These boards are equipped with a set of accurate surface
mounted resistors (see Section 2.4) for the injection of calibration pulses.

The signal cables, the same as those described in Section 2.4, are soldered onto the mother boards
and grouped. There are eight high voltage channels per sector. The voltage in a region of (1,¢) of 0.4 x 0.2
is supplied by two lines connected to the two HV-layers of the anode, each of them connected to the odd
and even HV-layers of the anode thus ensuring a safety margin.

Each sector is checked on a test-bench at low temperature (liquid nitrogen). A high voltage test is
performed and the response of each channel is studied (noise and signal). The electrical connections are
verified by connecting the HV inputs to a low voltage and low frequency sinusoidal signal.

4 Front End Electronics

The calorimeter signals are brought from the calorimeter module’s patch panel (see Section 2) to
the cold flange of the feedthrough. In the flange, high density ceramic pin carriers (2.54 mm pitch) operate
the transition liquid argon-vacuum and vacuum-air. The ground return is brought through the bulk of
the flange via gold-plated ground springs. A 35 ) strip-line (40 cm long) cable connects the cold flange to
the warm flange in the feedthrough vacuum and an additional 35 € strip-line (also 40 cm) cable connects
the warm flange to the base-plane of the front end crate.

The crate houses (see Figure 6) the Front End Boards (FEB), which amplify, shape, store the signal
during the trigger latency and then digitize the selected signals. The FEBs provide virtually dead-time
free operation up to 75 kHz trigger rate. The crate also houses the calibration boards (CALIB), which
generate high precision calibration pulses. These two types of boards fulfill the requirements of ATLAS in
terms of dynamic range, noise, density, power, dimensions except for the radiation hardness. The boards
are connected to the power bus by combs. They are water cooled with cooling plates mounted on each
board. Underpressured water (18°C) is supplied via a manifold attached to the crate.

All the parameters necessary to operate the FEB and CALIB are downloaded through a custom
serial link (SPAC [20]) derived from 12C®), running at 10 MHz. A dedicated VME-based TTC (Trigger
Timing Control) system was developed to distribute the 40 MHz clock and trigger signals and provide
programmable delays [21] to make timing adjustments.

4 Prepreg 5512-18-08-50/120, manufactured by CTMI, Le Séré 38840, La Sone, France.
5) 12C bus specifications patented by Philips Semiconductors.



4.1 Front End Boards

The FEB treats 128 channels in 16 groups of 8 channels. Each block includes: 2 four-channel
preamplifiers, 2 four-channel shapers, 2 twelve-channel analog memories or SCA (Switched Capacitor
Arrays) and one 12-bit ADC running at 5 MHz.

The preamplifiers are of “current sensitive” type to provide fast signals over the large dynamic range
needed for operation at the LHC. The preamplifier is realized as a hybrid circuit, housing 4 channels in
an area of 10 cm? [22]. It is characterized by the input impedance and its transimpedance (R¢). Three
types of preamplifiers are used, one for the 50 ) presampler and strip sections with a transimpedance of
3 kQ for a dynamic range of 1 mA. The two others are used for the 25 2 middle and back section with
Rf = 1 kQ and R¢ = 500 Q corresponding to a dynamic range of 5 mA and 10 mA respectively.

The preamplifier architecture is an active common base configuration for high speed, with feedback
on the base to raise the input impedance to 25 or 50 Q. The input impedance exhibits very low base
resistance (Rpp ~ 4 Q). It is operated at 5 mA collector current to reach an overall noise performance
of e,=0.4 nV/v/Hz; i,=6 pA/v/Hz. A protection network is added in front of the preamplifier in order to
withstand potential HV sparks in the detector gaps. The preamplifiers have been produced, tested and
screened in order to guarantee the uniformity requirements reported in [6].

The shaper chip [23], realized in austriamicrosystems’®) 1.2um BiCMOS technology, is located
immediately after the preamplifier. The chip has a CR-RC? architecture with a time constant of 7 = 13 ns,
optimized for the total noise at high luminosity at the LHC [24]. One differentiation removes the long
trailing tail of the LAr signal and two integrations limit the useful bandwidth and reduce electronics noise.
The shaper splits the 16 bit dynamic range in three linear scales of 12 bits each, i.e. there are twelve
output channels per shaper. The noise of the high, medium and low gain scale, measured on a dedicated
test-bench, is 850 pV, 390 4V and 250 uV respectively. The integral non-linearity was measured to be
better than 0.2%.

After shaping the signal is sampled at 40 MHz and stored in the SCA chip (HP 1.2 pum technology).
The chip contains 16 analog channels with 144 storage cells each: 12 of the channels (four channels in
three gains) are used to store the signal. The other four, equally spaced in the chip, store a reference level.
During the readout operation, an off-chip amplifier subtracts the closest reference channel from each signal
channel. This pseudo-differential mode reduces the common mode noise significantly in simultaneous read
and write operation. The performance of the SCA, as measured on a dedicated test bench working in a
simultaneous 40 MHz write/read operation, is summarized in Table 2. The bookkeeping of the SCA cells
available for writing is done by two SCA controllers”, one for each 64 channels.

The analog pipelines are followed by a 12 bit 5 MHz ADC (AD9220%)) which digitizes the output of
two SCAs after a level 1 trigger. The choice of which signal (gain) is to be digitized is either done automat-
ically by the hardware (free gain) or the digitization of one, two or three gains can be programmed. For
the free gain mode, the gain selector FPGA®) compares a predefined sample (programmed as parameter)
in medium gain after digitization to two thresholds. If the signal is less than the first threshold, the high
gain is chosen. If the signal is greater than the second one, the low gain is chosen. The predefined sample
is digitized once more in the chosen gain and the other samples (programmable up to 31) are also read.
For five samples, a group of eight channels is thus read in approximately 10 us. Event output data is
formatted and sent in 32-bit words at 40 MHz (1.28 Gbit/s) to the miniROD (Read Out Device) board,
which serves as readout buffer with one FIFO per group of eight channels.

In total, 38 FEBs were produced and tested. The noise measurement is shown in Table 3. The fixed
sequence noise, i.e. the dispersion of the pedestals of the 144 cells of the SCA, was measured to be less
than 0.2 mV. The dispersion of the electronic gains on a FEB is determined to be about 2%. The ratio
of the medium to high gain is measured to be 9.2 and the ratio of low to medium gain to be 10. It was
observed that on average in high gain the time of the signal peak is 1.4 ns after the medium gain signal,
whereas the time of the peak of the low gain is about 0.6 ns after the high gain peak. This effect has been
traced to the shaper and is corrected in the final version.

4.2 Calibration Boards

The calibration board must provide fast signals resembling closely the ionisation signal, it must be
linear over a large dynamic range (at least 16 bit precision and up to the equivalent of 3 TeV of deposited
energy in one calorimeter cell), and it must be uniform (< 0.25 % including signal distribution). As the
readout is current sensitive, the traditional charge calibration through a capacitor cannot be used. Since

6) austriamicrosystems AG, A-8141 Schlof8 Premstdtten, Austria.
) Xilinx XC4036XL.

8) Analog Devices, 1 Technology Way, Norwood, MA 02062, USA.
9) ALTERA FLEX EPF6016TC144-2.



the parallel noise decreases for fast shaping, a current calibration with 0.1% precision calibration resistors
has been chosen.

As shown in Figure 6, a precise DC current I, is generated and flows into an inductor. When a
pulse command is applied on the transistor Qs, the transistor Q; is cut off and the current is diverted
to ground. The magnetic energy stored in the inductor produces a fast voltage pulse with an exponential
decay across the cable impedance and a 50 €2 termination resistor in parallel. This pulse is propagated
inside the cryostat through a 7 m long 50 2 cable and is applied across a precise injection resistor Ry
(0.1%) in the cold on the motherboards, close to the electrodes. One calibration channel is distributed
to 8 readout channels in the middle or back sections and 32 in the strip section. Care has been taken so
that adjacent readout channels are not connected to the same calibration channel in order to allow for
crosstalk studies.

Ten boards were produced [25], each containing 64 channels aligned in a single row on each side of
the board. The current is generated from a 18 bit DAC voltage through a voltage to current converter
built around a low offset (<16 4V = 1 LSB) opamp and a JFET output transistor. The switch is made
of a parallel fast transistor to obtain sub-nanosecond rise time. Surface mounted components have been
used, leading to a high density of 9000 components per board. Only five precision resistors (0.1 %) per
channel determine the pulse accuracy. The digital part is integrated in 13 FPGAs, including a delay chip
with a step size of 1 ns. At the beginning of a run all sequences (number of DAC settings and their values,
delay, the calibration channels enabled and the number of triggers) are loaded through the SPAC link.

The boards have been characterized on a test-bench. The output signal shows an exponential
decay with a rise time of about 1 ns. At small amplitude the waveform starts to deviate from the pure
exponential pulse. A small fast impulse is observed on top of the signal, usually referred to as “parasitic
injected charge”. After shaping (on the FEB), the parasitic injected charge is almost a derivative of
the normal signal with an amplitude corresponding to 1.2 GeV. However, at the peak of the signal, the
amplitude corresponds to 100 MeV but the effect is non linear. The integral non linearity is measured to
be within + 0.1% for the low and medium gains of the shaper, slightly worse for the high gain, due to
the parasitic injected charge.

The pulse uniformity has been measured after shaping and shows a raw dispersion of 0.2 %. Apart
from the contribution of the precision resistors, the main contribution comes from the different strip-line
lengths from the output of each channel and the output connector. After correcting for this effect, the
pulse uniformity has a rms of 0.11 %. To preserve the pulse uniformity of the board, the cable which brings
the signal on the mother board has 50 (2 termination at both ends, thus guaranteeing a small sensitivity
of the amplitude to the exact value of the cable characteristic impedance. The uniformity response of 64
channels has been measured at warm including a 50 2 64 channel harness. The characteristic impedance
within the harness varied by £5 %. No degradation is observed and a rms of 0.13 % is measured, which
includes the board and the cable distribution non-uniformity (impedance and skin effect).

5 Experimental Setup
The beam tests of the barrel module-0 were carried out on CERN’s H8 beam line. Electron or
positron beams, as secondary and tertiary beams, with energies ranging from 10 to 245 GeV were used.

5.1 Cryostat, Cryogenics and Feedthroughs

To perform the beam test of the barrel modules, a dedicated cryostat has been built with two 4 cm
thick aluminum walls separated by a 5 cm vacuum gap. The geometry of the front face of the cryostat
insures that the material traversed by particles entering the cryostat is independent of the ¢ position.
An argon excluder (Rohacell) located between the cold wall and the calorimeter front face reduces the
amount of dead material in front of the calorimeter.

The cryostat is connected to a cryogenic system [6] common to the three ATLAS liquid argon beam
test setups. It is controlled by three cooling loops: one in the expansion vessel, situated on top of the cold
vessel, a large one in the cryostat, above the module, and one in the back of the module to be used also
in ATLAS. The main exchanger for cool-down is the larger one above the module.

After filling, the top cooling loop (in the expansion vessel) is used to reach the required temperature-
pressure point on the vapor curve. The expansion vessel is separated from the main tank by a long funnel
that acts as a pressure buffer. The liquid temperature can therefore be regulated independently in the
cryostat (subcooling). Liquid nitrogen is injected into the module exchanger under overpressure. The input
flow is adjusted depending on the desired temperature of the liquid, while the output valve regulates the
nitrogen pressure.

The temperature is stable to better than 10 mK as shown in Figure 7. The set point can be modified
down to 88 K. Temperature stability is reached after about 12 hours due to the liquid and module thermal



inertia. Varying the temperature over a range of 2 K, the effect on the calorimeter response was determined
to be —2%/K as shown in Figure 7.

Two feedthroughs are necessary to read the module and the two presampler sectors. FT-1 covers
0 < ¢ < 0.2 and FTO covers 0.2 < ¢ < 0.4. Only FTO has gold-plated pin carriers. The HV warm
feedthrough is mounted above the cryostat, on the expansion vessel.

5.2 Beam Line Setup

The beam line is equipped with three scintillators in front of the calorimeter for triggering purposes
(see Figure 8). The size of the last two (4x4 cm?) defines the beam acceptance. The analog signal of S3
is read out, allowing an offline rejection of events having more than one charged track. As the trigger is
asynchronous with respect to the 40 MHz clock, the time between a trigger and the next clock cycle is
measured with a TDC (1 count ~50 ps). Behind the cryostat, two other scintillators are used for pion
and muon rejection. They can be used as veto in the trigger or in the offline analysis. The beam line is
also instrumented with four multi-wire proportional chambers [26]. The first two are read via threshold
discriminators, whereas the others are read via constant fraction discriminators.

The cryostat is mounted on a remote controlled table, that allows movements in n and ¢ while
ensuring nominal incident angles as in ATLAS in all positions.

The air and counters in front of the cryostat correspond to 0.13 Xj. Additional material in the
beam line equipment was discovered after the beam tests [27], corresponding to 0.3-0.4 X, distributed
non-uniformly. The two aluminum walls of the cryostat, the argon excluder and the liquid argon in front
of the presampler amount to 1.3 Xg (at 7 = 0). The material between the presampler and the calorimeter
module (cold cables and mother boards) is, non-uniform in ¢, varying between 0.05 and 0.2 X, [28].

5.3 Data Acquisition and Online Monitoring

The Data Acquisition System used in the beam test setup is based on the system developed by
RD13 [29]. The miniROD’s FIFOs (see Section 4) are read by a RIO8061(2)'?) processor. Event building
is performed by a RAID!?). The data are compressed, written to disk and transfered automatically to
the CERN central storage system (HPSS).

In all runs 7 samples of the signal (see Section 4) are recorded. Pedestal runs are taken every 8 hours
with typically 2000 events. In ramp runs the DAC setting of the calibration board is increased linearly.
For each pattern and DAC value, 100 events are recorded. One run is recorded in high gain and one in
medium gain with DAC values covering the dynamic range of each gain. In delay runs, the DAC value is
fixed, but the delay of the calibration board is increased in steps of 1 ns, thus enabling the reconstruction
of the signal forms with interleaved events. For pedestal and calibration runs, 500 events are recorded,
between particle bursts, for each burst.

In physics runs, about 700 events per burst are written to disk. Typically 20,000 events are recorded
in each run, of which about 10% are triggered randomly. The physics runs for uniformity studies were
taken in free and in fixed gain modes. The runs for the energy scan were taken only in fixed gain mode.

The data quality is assured with a monitoring program. The reconstruction is performed with
the same program packages as the offline analysis. In pedestal runs the noise and pedestal values are
calculated and written to the offline database. In ramp runs, the gains are calculated and written directly
to the database and available for immediate use. In physics events the energy is reconstructed with a
parabola, using three samples centered on the highest one, to correct for the amplitude variation due to
the asynchronous trigger. The precision is sufficient to observe effects down to the percent level.

6 Electrical Modeling of the Detector

In order to calibrate and reconstruct with high precision the signal in the calorimeter, it is necessary
to model the detector response and verify the accuracy of the description. Theoretical calculations have
been performed and a mockup has been built.

The ionisation signal is a triangular-shaped current with a negligible rise time, decaying to zero at
the end of the electron drift time (~450 ns). Electrically, the detector is traditionally modeled as a pure
capacitance (Cg4) of the signal electrode facing the grounded absorber with the liquid argon gap acting as
dielectric (e, = 1.53). This approximation is valid below 100 MHz. The conductor for the middle section
is brought past the conductor for the back section via a thin line, whose characteristic impedance can
be well approximated by a series inductance (Lg). As can be seen from Figure 9, the inductance lies
between the injection point for the calibration pulse and the capacitor representing the electrode. Thus
when calculating the transformation between the calibration and ionization waveforms, a correction for
the different injection point is necessary.

10) CES, 38 avenue Eugéne-Lance, PO Box 584, CH-1212 Grand-Lancy 1.



The capacitance of one cell is made of a capacitance C4 to the grounded absorber, proportional to
the cell area, Cq = £,1(17.7 4+ 8.39W/d) pF/m (1 cell length, W cell width and d gap thickness in m) and
the capacitance C, to the neighboring cells, proportional to the length 1 and the distance to the neighbors
for the middle cell : C, = 10.86le,, pF/m. The capacitance of the connecting line must also be added to
Cg4- The inductance L for the middle cell is calculated by using the capacitance formulae C; = C4 + 2C,
and from the propagation velocity from L= (Ic)?/(e,Cy).

In addition to the detector inductance, sizeable only for the middle section, the summing boards
and motherboards described above add a significant contribution of 12 nH and a capacitance of 77 pF.

In Figure 10 the capacitances and inductances calculated are shown, as well as several measurements
for the middle section. The results were obtained from a fit of the impedance response as function of the
frequency from an RLC-meter. The capacitance behavior as a function of 7 is in fair agreement with
expectations while the inductance measurements show a large increase every 8 channels. This problem
has been traced back to an improper grounding : every two electrode connectors (which bring out 4
middle and 2 back channels), one ground spring was omitted in the design on one side of the connector
which induces additional inductance and mutual coupling to neighbours.

In order to investigate the potential bias introduced by the inductance in the calibration of the
calorimeter, a detector mock-up consisting of a sandwich of 5 absorbers and 4 electrodes has been
built [30], using in the gap perforated polypropylene, whose dielectric constant is close to the one of
liquid argon. The input signal is injected either on the summing board for the calibration pulse or di-
rectly on the electrode to mimic the physics pulse coming from an electromagnetic shower. Figure 11
shows the calibration and physics signal for a same input : not only the amplitude differs but the calibra-
tion pulse is distorted. The calibration amplitude corrects to first order the detector capacitance variation
but not the inductance, which results in a few %po/nH bias as illustrated in Figure 11. The missing ground
increases the non-uniformity by about 1.5 %.

7 Signal Reconstruction

In order to compute the amplitude and time of the physics pulses taken in an asynchronous mode,
a linear weighted sum of the sample ADC counts S;, after pedestal subtraction, is used (digital filtering
method):

Amos = iazsz Amac At = i b;S; (1)
i=1 i=1

where A,.. and At are the pulse amplitude and the pulse peak time deviation from the assumed time.
Only the five central samples are used.

To compute the optimal filtering coefficients a; and b;, the noise autocorrelation, the pulse shape
and its derivative are required [31]. The main difficulty lies in the prediction of the physics pulse shape,
taking into account the bias from the inductance described in Section 6. A full analytical description
of the electrical chain has shown to have too many parameters, especially for the cable modelling (skin
effect, reflections). The approach chosen takes into account that most parts of the signal readout are
common to the calibration and physics pulse [32].

The energy in one cell is obtained by applying the electronic gain to the reconstructed amplitude
in ADC counts, including a non-linear behavior.

7.1 Physics Signal Reconstruction

Ag illustrated in Figure 9 the difference between the physics and calibration pulses is due to the
different input signal and the different injection point of the signals. In this approach the calibration
cable is assumed to have a constant attenuation factor and the reflections are neglected. Expressing the
response to a physics pulse in Fourier space, it can be shown that :

Fllpnyl(w)  wg
Fllea)(w) wi —w?

where the first term takes into account the different input current, the second the different injection
point, and the last one is the Fourier transform of the calibration signal which can be extracted from the
calibration data. In this model the physics signal depends only on three parameters: wq = 1/4/C4Lg4, the
starting times of the calibration and physics pulses.

Using delay runs, and subtracting the parasitic injected charge, the calibration pulse is reconstructed
with a 1 ns step-size and the Fourier transform of the calibration pulse determined. The starting time
of the calibration and physics signals can be deduced from the trigger system timing, cable lengths and
time of flight of the particles. The detector capacitance can be calculated, but, as shown in Figure 10,

FlUphyl(w) = FUeat](w) 2)



the inductance cannot be predicted. Therefore an empirical method is used. By using the phase of each
event (TDC) the physics pulses in a cell can be averaged within a 1 ns bin. From a fit to this shape,
the three parameters (tS%, t5HY, wy) are extracted. In the regions where the inductance measurements
were available, the agreement with the fit results is about a few nH. A typical result of this fit is shown
in Figure 12 with residuals of about +2 %. A residual dependence of the reconstructed energy on the
phase (TDC) is therefore inevitable.

For each cell, the coefficients a; and b; are then computed, incorporating the correction of the bias
introduced by the inductance. As an example Figure 13 shows the ratio of the physics amplitude to the
calibration amplitude (for a same given input) as a function of 1 for ¢cey = 10 : It reflects the increase
of the electrode inductance versus n and the 8 fold-pattern from the missing ground return.

7.2 Calibration of Electronics: Gain and Noise

During data taking, every 24 hours, calibration data with an increasing DAC input (typically
20 values) are recorded in each gain of the shaper. After subtraction of the parasitic injected charge,
measured with DAC=0, the amplitude is reconstructed using the cell pulse shape derived from the delay
run. The DAC dependence (converted to GeV) is fitted as a function of the amplitude with a second
order polynomial to take into account small non linearities. The linear term is about 10 MeV/adc count
in the high gain in the rapidity region n <0.8 for the middle section. The second order term accounts to
less than 1 % over the dynamic range. Over the run period the stability of the gain is better than a few
parts per mil.

The noise has been studied using pedestal runs over the whole calorimeter module. The incoherent
noise per channel is computed as the rms of the pedestal distribution after applying the optimal coefficients
a;. Such a reconstruction takes into account the noise autocorrelation and yields a noise reduction between
1.4 and 1.8 depending on the detector capacitance. The behavior of the noise as a function of n in each
compartment is shown in Figure 14 for high gain. Except for the back layer, where the noise behavior
reflects the variation of the electronics gain (detector capacitance), the noise is almost flat and well within
the requirements. The coherent noise has been measured on each FEB (128 channels) and amounts to
about 5 % of the incoherent contribution for each channel. For an electron cluster (see Section 9) at
n = 0.26, the total noise is 143 MeV (261 MeV) in high (medium) gain, of which 95% (80%) is incoherent

noise.

7.3 Free Gain Mode Performance

Since the electron energy is limited to about 245 GeV, only the lower threshold of the free gain mode
can be tested with physics data. The determination of the threshold value relies on the fact that as the
high gain begins to saturate, the rms (for calibration events) as a function of the DAC setting decreases
for the peak sample. The average ADC value for the DAC setting where saturation starts defines the
threshold. One global threshold value is determined for all FEBs.

In Figure 15 the observed ADC values of the programmed (peak) sample (see Section 4) in high and
medium gain are shown. The implemented threshold is respected up to the 10~* level and the threshold
is sharp as expected.

No significant differences are found in the energy resolution of the fixed gain, software free gain
and hardware free gain, showing that the free gain mode works well. At 245 GeV (n = 0.26) typically
two (two) cells of the front (middle) layer are read in the medium gain resulting in a noise contribution
to the electron reconstruction of 161 MeV.

7.4 Crosstalk

A very detailed study of the crosstalk has been performed using the delay runs taken during
the various beam test periods resulting in improvements of the cold electronics. The major sources of
crosstalk occuring on the electrodes themselves or through the electronic chain have been identified and
quantified [33, 34, 35], providing a complete map of the crosstalk in the module 0 summarized in Figure 16.

The silk screened resistors which connect the middle and the front section on the electrodes induce
a resistive crosstalk, which has the same form as the signal, between these two layers. Figure 17 (top
left) shows the strong correlation between this crosstalk and the value of the resistor measured before
stacking. During the two years of beam tests of the module 0 (4 cryostat cool down cycles), a follow up
of the resistive crosstalk has been performed (Figure 17 (top right)) showing good stability.

The capacitive crosstalk, which has the form of a derivative of the signal, between strips cells
is presented in Figure 17 (bottom left) and is in very good agreement with the calculation shown in
Figure 10. Only a few channels show a larger crosstalk (10 %), identified as a short between strips in HV
layers.



The crosstalk in the middle and back layer, or between these two layers shows mainly inductive
contributions. The origin was traced to the summing and mother boards (which were redesigned for the
last test beam period providing a reduction by a factor 1.5) and the missing spring on the electrodes.
As an example Figure 17 (bottom right) shows the crosstalk of middle to back cells as a function of n:
the large increase of the crosstalk every two connectors is clearly visible. The level of crosstalk, although
small (less than 0.5% at signal peak, around 1-2% peak to peak), is a limitation to the reconstruction of
the physics pulse shape in the back section where the crosstalk contribution from the middle layer, where
most of the energy is deposited, induces a strong change of the pulse shape.

8 Response to Muons

Muons in the high energy electron beam have been used to study the EM barrel module 0 response
to “minimum ionising” particles (mip). As they deposit their energy in a smaller cluster than the electrons,
they can provide cleaner or complementary information on the calorimeter [36].

Since the accordion geometry induces a sharing of the energy deposition between two contiguous
cells in ¢ even in the case of minimum ionising particles, the muon signal is reconstructed by using a
1 x 2 cluster in 1 X ¢ in the middle sampling. The cell selection is made event by event, using the particle
impact point extrapolated from the beam chambers.

The distribution of the cluster energy is shown in Figure 18 for muons and for "random” events.
The resulting signal to noise ratio, defined as the ratio between the muon most probable energy and
the rms of the noise distribution, is 7.11+0.07. A (ﬁ) ratio of 0.75 £ 0.03 can be deduced from the
determination of the absolute muon energy deposition, the energy scale being calibrated with electrons.
For this measurement the sampling fraction was calculated to be about 0.25 and (dE/dx), - Largon, i-€.
the energy loss of muons times effective length traversed in the liquid argon, was taken from simulation.
Unlike electrons, muons provide also a means to test the crosstalk measurements done with calibration
runs. A qualitative agreement is observed.

The energy deposited by muons in a cell of the middle layer is shown as a function of ¢ in Figure 19,
folded onto one physical gap to increase the statistic sensitivity. Two clear modulations are observed with
peaks located at the absorber fold position or the electrode fold position. The peak to peak amplitude
of the modulation is about 6%, which is 4 times larger than with electrons. The Monte Carlo (Geant3)
simulation shows that the contribution of the variable sampling fraction due to the accordion geometry
crossed as a function of ¢ by the muons predicts a much smaller effect. A simulation of the charge
collection with a detailed map of the electrical field is in reasonable agreement with the data. A parallel
beam was simulated (as in the data) and a smearing of the muon position corresponding to the beam
chamber resolution (~ 0.4 mm) was applied. For the drift velocity, vp ~ E%, a = 0.35 was used.

Muons have also been used to study the uniformity of the module in 5. Since a muon veto was
applied at the trigger level during most of the data taking period, the statistics was quite poor and
combinations of runs are mandatory to increase statistics. As the main possible contribution to the non-
uniformity shows a eight fold effect, a folding has been applied in order to further increase the statistics.
The results obtained with optimal filtering coefficients or using only the energy reconstructed with the
highest sample are shown in Figure 19. With the optimal filtering coefficients the module response is
uniform within the error bars of 0.4%.

9 Response to Electrons

Electron samples are selected by demanding a minimum amount of reconstructed energy in the
calorimeter. In order to remove particles which have interacted upstream of the calorimeter, pions or
off-momentum particles in the beam, a series of quality cuts based on the information from the beam
chambers and the scintillator counters is applied. For instance, electrons producing a signal incompatible
with that of a mip in the upstream scintillator S3 are rejected.

9.1 Electron Energy Reconstruction

The electron energy is reconstructed by summing the calibrated energies deposited in the presampler
and in the three calorimeter compartments. In the middle compartment, the energies of 3x 3 cells, centered
around the cell with the largest energy deposit, are summed. The cluster size is expressed in number of
cells in 7 x ¢. In the back compartment 2 x 3, in the front section 24 x 1 cells and in the presampler
3 x 1 cells are summed to cover at least the same area as in the middle section. In the front section
and the presampler the cluster size in ¢ is doubled if the ¢-boundary of the central cell of the middle
coincides with a boundary of a front (or presampler) cell. The cluster is similar to the one foreseen for
ATLAS [37]. The electron energy contained in the cluster is about 90% of the total electron energy. In
each compartment, the cluster position is calculated as the energy weighted barycentre.
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The typical energy sharing among different compartments, as a function of 7, is shown in Figure 20,
for two incident energies Fpeam = 245 GeV and 20 GeV. The energy fraction deposited in each layer
depends on the beam energy and reflects the energy dependence of the longitudinal shower profile and
the variation of the longitudinal segmentation as function of 7.

To correct for the energy loss upstream of the calorimeter, mainly due to the cryostat walls, the
energy deposited in the presampler is weighted by a factor a > 1. Longitudinal energy leakage induces
a deterioration of the energy resolution, therefore a weight () is also applied to the energy deposited in
the back compartment:

E = aEps + Efront + Emiddle + ﬂEback (3)

a and (3 are obtained by minimizing the energy resolution for each n position [38]. A typical example
of the weight optimization at 245 GeV is presented in Figure 21. The weight on the back compartment
as function of 7 varies from 1.5 to 2.5. Additionally, for incident electron energies less than 40 GeV, the
energy of the back compartment is not added to the cluster, because it is dominated by electronic noise
and crosstalk from the middle compartment.

As mentioned in Section 5, the temperature dependence of the reconstructed energy has been
measured and is corrected. Due to the limited energy containment of the cluster, the energy depends on
the impact point within a cell as shown in Figure 22. In 5, this dependence is corrected with a second
order polynomial. In ¢, the effect is convoluted with the non-uniformity of the local sampling fraction
and electrical field due to the accordion geometry. The correction consists of two sinusoidal functions
multiplied by a second order polynomial. The peak to peak amplitude before correction is less than
2%. This is about four times less than for muons because of the lateral spread of the shower energy for
electrons. After correction the residual rms is about 0.2%.

After signal reconstruction a residual dependence of the amplitude with respect to the phase between
the trigger and the 40 MHz clock is observed and corrected.

9.2 Energy Resolution

The energy is reconstructed in fixed-gain mode: high (medium) gain for energies less (greater) than
60 GeV. Figure 23 shows the energy spectra reconstructed in the calorimeter for electrons of energies 10
and 245 GeV. The absolute energy scale computed from first principles (energy deposited in the liquid,
sampling fraction, response of the electronics chain) is correct at the level of 5%. In spite of the quality
cuts applied, low energy tails are observed. These events are attributed to interactions in the upstream
material, which is distributed non-uniformly in the beam line, and a residual pion contamination [27].
In order to reduce the sensitivity of the calorimeter resolution to these tails, the spectrum is fit with a
Gaussian starting at -20 off the mean value.

The energy resolution measured at three rapidity points is presented in Figure 24 in the A electrodes
(n < 0.8) only, as a complete energy scan is not available in the B electrodes. The noise term extracted
from random triggers, in agreement with the noise obtained from Pedestal runs, and the beam energy
spread [39] have been subtracted at each energy. The resulting experimental points have been fit with

the expression :
(o 2 a

E - VB @b (4)
where a is the stochastic term, b the constant term reflecting local non-uniformities in the calorimeter
response, and E the energy expressed in GeV. Sampling and constant terms are summarized in Table 4,
where the errors are statistical only. A variation of the energy range included in the fit would result in
variations on the sampling and constant terms by at most 0.5% and 0.1% respectively. The stochastic
terms as well as the sampling terms are within expectation with the exception of the local constant term
at necey = 3 (yp = 0.0875). There the larger constant term is attributed to the reduced depth of the
calorimeter and the difficulty to correct the energy leakage.

The behavior of the sampling term of the energy resolution as a function of the pseudorapidity has
been studied with the position scans of the module, recorded with incident electrons at 20 GeV, for which
the sampling term contribution is dominant. The result, beam energy spread subtracted, and the Monte
Carlo expectation are shown in Figure 25. The variation of the sampling term from n = 0 to n = 0.8
follows 1/sinf law, as expected from the decrease of the sampling frequency as a function of the angle of
incidence. For n > 0.8, the degradation of the sampling term in data and Monte Carlo is stronger than
the pure geometrical expectation due to the impact of the material upstream of the calorimeter.

The linearity of the detector response is measured to be +1% from 20 to 245 GeV. No fine study
of the linearity was performed due to the amount of material in the beam-line. The calorimeter response
has been also studied with increasing beam intensity to simulate pile-up conditions at LHC. A drop of
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the high voltage and/or ion build up could appear. Up to intensities comparable to the energy flux from
pile-up at LHC in the barrel, no shift of the mean energy larger than 4 9/pp has been observed.

The stability of the calorimeter’s response as function of time was measured by using the runs
(EBeam = 245 GeV) periodically recorded at the same (reference) position. The rms of the response over
a period 9 days was measured to be 240 MeV.

9.3 Response Uniformity

The uniformity of the calorimeter response as a function of the electron impact point has been
studied by using position scan data collected over a large part of the detector volume (corresponding to
144 cells of the middle compartment) with a high energy (245 GeV) electron beam. A non uniform energy
response, arising for instance from mechanical, geometrical, calibration, material effects, translates into
a large constant term of the energy resolution. The ATLAS goal [37] is to achieve a constant term of
0.7% or smaller over the full calorimeter acceptance. The strategy to reach this goal is described in detail
in [37], and requires in particular that a constant term of < 0.5% can be obtained over a calorimeter
region of size An x A¢ = 0.2 x 0.4 (corresponding to 128 middle cells).

In the analysis of the scan data, the electron energy was obtained as described in the previous
sections. The same correction functions were applied to all cells, whereas the values of the parameters
were varied by blocks of cells typically of size Anp = 0.4.

Figure 26 shows the reconstructed energy as a function of 7 as obtained in three ¢ rows (left plot). At
each ¢, 48 middle cells have been scanned, which corresponds to a rapidity region 0 < n < 1.2, i.e. almost
the full coverage of a half barrel calorimeter. From this sample, only three cells have been discarded at
the analysis level, one because it is adjacent to a dead cell and two because they have unstable calibration
gains. This gives a total of 141 cells. The various ¢ rows show a similar behavior. A small response drop
is observed at position ncen = 31 (np = 0.7875)), i.e. at the transition between electrodes A and B. This
region requires a dedicated calibration of the detector response, which is beyond the scope of this paper.
Another drop at noey = 11 (np = 0.2875) was attributed to the beam test setup (damaged cable) and not
to the calorimeter behavior.

The response dispersion (Figure 26) is about 0.6% in each ¢ row. A similar result was obtained
from a smaller size scan collected with 20 GeV electrons. This indicates that possible non-uniformities
related to the particle energy (arising for instance from leakage at high energy, or the impact of material
at low energy) are well cured by the applied corrections.

The constant term of the energy resolution over a large area can be obtained from the overall energy
spectrum of all electrons collected in the above-mentioned 141 spots. This is shown in Figure 27. About
1 million events enter this plot. The low-energy tail is due mainly to material effects and residual pion
contamination. The constant term of the energy resolution can be obtained from a Gaussian fit to this
spectrum over the region not affected by the tail, after unfolding the beam momentum spread and the
measured sampling and noise terms. The result is 0.78%. It should be noticed that this result can not be
directly compared with the 0.5% quoted above, which is the goal over an area of Anp x A¢ = 0.2 x 0.4,
since it is obtained over an area of An x A¢ = 1.2 x 0.075, i.e. much larger in 7. Indeed most of the
non-uniformities (e.g. due to the upstream material) are expected to show up in this projection.

10 Conclusions and Prospects

The pre-series module 0 for the future barrel electromagnetic calorimeter of ATLAS has been built
and successfully tested. It has been shown that the absorbers can be built with a sufficiently small
thickness spread, so that their expected contribution to the constant term is only 0.15%, i.e. well within
requirements. The transition to electrodes of larger size proved to be difficult, but feasible. The absorbers,
electrodes and spacers were assembled with an over-thickness of less than 0.3 mm. Two presampler sectors
were built and tested successfully.

Calibration boards and front end ATLAS-like boards have been built and tested. The calorimeter
module and the presampler sectors were exposed to muon and electron beams with energies of up to
245 GeV on CERN’s H8 beam line, read out and calibrated with these boards, validating the module and
presampler and the design of the electronics. In these beam tests the signal to noise ratio for muons has
been measured to be 7.11+0.07. Additionally the muon uniformity measurement as function of n showed
that the signal reconstruction with optimal filtering, where the difficulty lies in the empirical correction
of the inductance, is well under control. The energy resolution of calorimeter and presampler has been
determined with electron beams of up to 245 GeV on the same beam line. A sampling term of less than
9.5%-GeV'/2/v/E and a local constant term better than 0.3% have been obtained. The uniformity of the
response to electrons in an area of Anp x A¢ = 1.2 x 0.075 was measured to be better than 0.8%. The
test beam results are in agreement with Monte Carlo simulation expectations.
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The experience gained from the production of the pre-series module 0 resulted in several improve-
ments in the production and quality control of the series modules. In the design of the electrodes, the
resistors have been displaced from the bend as far as possible to decrease the number of damaged resistors.
New sets of films were produced to include the missing ground connector. The typical yield in electrode
production was markedly improved, being routinely above 80%. Additionally, in order to improve the
geometry (folding angle) of the electrodes after bending, a new bending technique is used.

In parallel to the use of the current front end electronics in the beam tests, a crate with radiation
tolerant electronics will be built and tested by the end of 2002. In 2001 and 2002 four series modules of the
barrel electromagnetic calorimeter will be studied in the H8 beam line. The improvements with respect
to the pre-series module 0 and their performance in terms of energy resolution, linearity and uniformity
will be assessed.
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Table 1: Readout segmentation of a barrel module for n < 1.3.

Compartment An A¢ Xo
Front 0.025/8 2mw/64 2.5to4.5
Middle 0.025 27/256 16.5to 19
Back 0.050 27/256 14to7
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Table 2: Performance of the SCA on a test-bench.

Noise

Dynamic range

Cell to cell gain variation
Voltage droop rate
Integral non linearity
Cell sampling jitter

300 uV
13.3 bits
<0.02%

< 3mV/ms
< 0.1%

< 9 ps rms




Table 3: Average noise measured on the test-bench (C' = 0.3 nF for 50 @ and C = 1 nF for 25 Q boards).
The high gain noise is dominated by the preamplifier and the low gain noise by the ADC.

Preamplifier | High Gain Medium Gain Low Gain
50 2 1 mA 7.0 mV 1.0 mV 0.6 mV
25 Q2 5 mA 5.5 mV 0.9 mV 0.6 mV
25 Q2 10 mA 3.6 mV 0.8 mV 0.6 mV
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Table 4: Sampling and constant terms obtained from fits to the data at different .

Neell | Peell n ¢ a b
rad %-GeV'/? %
3 10 0.0875 | 0.2625 | 9.11+0.12 | 0.47 +£0.02
14 10 0.3625 | 0.2625 | 9.24 +0.10 | 0.23 +0.04
21 10 0.5375 | 0.2625 | 9.23 £0.09 | 0.21 +0.02




J

Figure 1: View of the partially stacked module 0. The position ¢ = 0 corresponds to the 64th absorber
stacked.
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Figure 5: Perspective view of a presampler sector. Top right: calorimeter bars with two presampler sectors
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Figure 24: Energy resolution as a function of the electron beam energy at ncey = 3, 14, 21 and ¢coey =

10. The full line is the result of the fit to the data. The noise contribution has been subtracted from the

resolution.
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Figure 25: Energy resolution as a function of rapidity, as obtained with an electron beam of 20 GeV. The
curve shows the geometrical expectation, normalized at 7 = 0 and rescaled at n = 0.8 with the square
root, of the ratio of the two lead thicknesses.
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Figure 26: Left: Peak energy response, as a function of the hit cell position in 7, as obtained with 245 GeV
electrons at three different ¢. Right: dispersion of the normalized calorimeter response for the 48 n-cells
scanned at ¢=10.
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Figure 27: Overall energy spectrum reconstructed in the calorimeter for 245 GeV electrons hitting an
area corresponding to 141 middle cells. The result of a Gaussian fit is shown.
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