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Abstract

In this paper we treat some nonlinear beam dynamics problems in storage rings,
such as beam dynamic apertures of multipoles and wiggles, beam-beam effects,
nonlinear space charge effect, and nonlinear electron cloud effect, analytically. The
corresponding analytical expressions developed in this paper are useful both in un-
derstanding the physics behind these problems and also in making practical quick
hand estimations.

1 Introduction

In storage rings many physical phenomena connected with particles’ motions are caused
by the nonlinear forces, either static or dynamic, acting on the moving particles. Among
them, one finds dynamic apertures limited by static multipoles and wigglers, beam-beam
effects due to dynamic nonlinear beam-beam interaction forces, nonlinear space charge
and electron cloud effects, which are separately treated in the following sections.

2 Dynamic apertures of multipoles

We start with the simplest case, which is the physical and mathematical bases for the
analytical treating of other different subjects in the other sections, i.e., the dynamic
aperture limited by a single nonlinear multipole located somewhere inside a storage ring.
The Hamiltonian of this problem is expressed as follows

2 m—1 00
p  K(s) , 1 0™ 'B,
H=—+— L (s — kL 1
2 - 2 " * m!Byp Ozt g k:X—:oo (s ) (1)
with
Bz = Bol'm_lbm_l (2)



where p is the bending radius corresponding to By, and L is the circumference of the ring.
The general formula for the dynamic aperture limited by this multipole reads [1]

: oy )\ V)
Adyna,Qm,m = QBI(S) (W) % <|bm—1|L> (3)

where s(2m) is the location of this multipole. The dynamic aperture in vertical plane
could be estimated as
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where (,(s(2m)) is the vertical beta function where the multipole is located. If there are
many independent multipoles, one can estimate their combined effects through following

equation
1
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The validity of egs. 3, 4, and 5 has been checked with numerical simulation results [1].

3 Dynamic aperture limited by wigglers

Considering a wiggler of sinusoidal magnetic field variation, one can express the wiggler’s
magnetic fields, which satisfies Maxwell equations, as follows
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where By is the peak sinusoidal wiggler magnetic field, A, is the period length of the wig-
gler, and x, y, s represent horizontal, vertical, and beam moving directions, respectively.
The Hamiltonian describing particle’s motion can be written as
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and p,, is the radius of curvature of the wiggler peak magnetic field By, and p, = Ey/ecBy
with Ej being the electron energy. After making a canonical transformation to betatron
variables, averaging the Hamiltonian over one period of wiggler, and expanding the hy-
perbolic functions to the fourth order in x and y, one gets
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Now we insert a “wiggler” of only one period (or one cell) into a storage ring located at
Sw- The total Hamiltonian of the ring in the vertical plane can be expressed as follows
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where Hj is the Hamiltonian without the inserted wiggler, L is the circumference of
the ring, and k, = k. It is obvious that the perturbation is a delta function octupole.
Comparing eq. 1 with eq. 14, by analogy, one finds easily that
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and the dynamic aperture limited by this one period “wiggler” as
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where f3,(s) is the unperturbed beta function. In fact, a wiggler is an insertion device
which is composed of a large number of cells, say, N,,, and the wiggler length L, = N,A\,.
Now, the first question which follows is what the combined effect of these N, cells will
be. According to ref. [1], one has
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where the index ¢ indicates different cel. When N, is a large number, Eq. 17 can be
simplified as:
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where s,,, correspond to the center of the wiggler. To be practical, one could replace 55(3)

inside the integral by B?im which is the beta function value in the middle of the wiggler,
and one gets
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If there are more than one wiggler in a storage ring, the total dynamic aperture limited
by these wigglers can be estimated by applying eq. 5.
Eq. 19 has been checked with numerical simulation results [2].

4 Beam-beam effects and limitations

For two head-on colliding bunches, the incoherent kick felt by each particle can be calcu-

lated as
Nere

oy’ + 102’ = — f(x,y,04,0y) (21)
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where 2’ and y' are the horizontal and vertical slopes, N, is the particle population in
the bunch, r, is the electron classical radius (2.818x10'* m), o, and o, are the standard
deviations of the transverse charge density distribution of the counter-rotating bunch at
IP, v, is the normalized particle’s energy, and * denotes the test particle and the bunch
to which the test particle belongs. When the bunch is Gaussian f(z,y,o0,,0,) can be
expressed by Basseti-Erskine formula
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where w is the complex error function expressed as
w(z) = exp(—2%)(1 — erf(—iz)) (23)

For the round beam (RB) and the flat beam (FB) cases one has the incoherent beam-beam
kicks expressed as [3]
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where r = /2?2 + y?. Now we want to calculate the average kick felt by the test particle
since the probability to find the transverse displacement of the test particle is not constant
(in fact, the probability function is the same as the charge distribution of the bunch to
which the test particle belongs in lepton machines due to synchrotron radiations). In



the following we assume that the transverse sizes for the two colliding bunches at IP are
exactly the same. For the round beam case after averaging one gets

5F[RB] = — 2ere (1 — exp (—4%)) (27)

VT

Although this expression is the same as that of the coherent beam-beam kick for round
beams, one should keep in mind that we are not finding coherent beam-beam kick orig-
inally, and the difference will be obvious when we treat the vertical motion in the case
of flat beams. For the flat beam case, we will treat the horizontal and vertical planes
separately. As far as the horizontal kick is concerned, the horizontal kick depends only
on one displacement variable just similar to the round beam case, we will use its coherent
form expressed as follows
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As for the vertical kick, however, one has to make an average over eq. 26 with the
horizontal probability distribution function of the test particle, and one has
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where <>, means the average over the horizontal probability distribution function of the
test particle, and for two identical colliding Gaussian beams <>,= 1/ V2. Tt is obvious
that eq. 29 is not the expression for the coherent beam-beam kick. The average over
eqs. 24 and 26 is only a technical operation to simplify (or to make equivalence) a two
dimensional problem to a one dimensional one. To study both round and flat beam cases,
we expand 07 at x = 0 (for round beam we study only vertical plane since the formalism in
the horizontal plane is the same), dz" and 0y expressed in eqs. 27, 28 and 29, respectively,
into Taylor series
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The differential equations of the motion of the test particle in the transverse planes can
be expressed as
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where K,(s) and K,(s) describe the linear focusing of the lattice in the horizontal and
vertical planes. The corresponding Hamiltonians are expressed as
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where p, = dz/ds and p, = dy/ds.
Using the general knowledge obtained in section II and comparing the eq. 1 with

the Hamiltonians for beam-beam interactions, we have derived beam-beam effect limited

beam lifetimes for a rigid flat beam [3]
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From eqgs. 39 and 40 one finds that for the same 7, 4, fiat/ 7y, Tw b, fiat/Tws A0 Ty pb round/ Ty,
one has gm,flat - \/§€y,flat7 and gy,round - 4:),ﬁgy,flat - 1-89€y,flat-

In reality, the colliding bunch is not rigid, the transverse emittance will increase due to
the additional heating. In the following we will show how emittance blow-up is included
into the beam-beam lifetime expressions.

In ete™ storage ring colliders, due to strong quantum excitation and synchrotron
damping effects, the particles are confined inside a bunch. The state of the particles can
be regarded as a gas, where the positions of the particles follow statistic laws. When two
bunches undergo collision at an interaction point (IP, denoted by “*”) the particles in
each bunch will suffer from additional heating. Taking the vertical plane for example, one
has beam-beam induced kicks in y and y' = dy/ds expressed as

and a rigid round beam

g
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where o4 is the bunch length, N, is the particle number inside the bunch, r. is the
electron classical radius, 0, ., and o0,, are bunch transverse dimensions just before
the two colliding bunches overlapping each other, and o,, and o, ., are defined as the
transverse dimensions when the two bunches are fully overlapped at IP. The invariant of
vertical betatron motion can be expressed as [6]

1 1 2
it = = (2 + (Bt — 58,.0:) (45)
By 2

From eqs. 42 and 43 one finds that
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where y, is the vertical displacement of the test particle with respect to the center of the
colliding bunch. Due to the gaseous nature of the particles, one has to take an average of
all possible values of y, according to its statistical distribution function, and from eq. 46

one obtains
9 1 Os0y 2 By« 2
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The resultant particles’ vertical dimension combining the synchrotron radiation and beam-
beam effects can be expressed as follows

1 1 (0,0,.\° By )
A (i (772) (- (%)) 15

where Tj is the revolution time, 7, is the radiation damping time, and @), is defined ac-
cording to ref. [6] as o7, ; = 17,8,.Qy With 0, o being bunch natural vertical dimension
at IP. Solving eq. 48, one finds
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Since o, (s) = /€,3,(s), from eq. 49 one gets
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where €, is the natural transverse emittance. For a flat bunch (0, .+ << 04 ), from
eq. 51 one knows that
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where H is a measure of the plasma pinch effect, assuming that H can be expressed as
follows

H
=2 (54)
VA
and recalling the beam-beam parameter definition
Ne’reﬁ K
&y ’ (55)
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where [ is the beta function value at the interaction point, o and o; are the bunch
transverse dimensions after the plasma pinch effect, respectively, and finally, by combining
eqs. 52, 54 and 55 one gets in general case

Hy, | T,
< max,em,flat — 56




or for isomagnetic case

HO/Y Te
< mazx,em,flat = \/ 57

where Hy ~ 2845, R is the local dipole bending radius, and F' is expressed as follows
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The subscript em in egs. 56 and 57 denotes the emittance blow-up limited beam-beam
parameter. When o, = 3, . one has F' = 1.

Now taking into account of the emittance blow-up effect due to beam-beam interac-
tions, in a heuristic way, one gets

. Ty ( 3&y maz,em, flat )1 % exp ( 3&y, maz,em, flat ) (59)
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with
Ey,maz,em,round = 1.89y maz,em, flat (61)

where &, maz0 1s rigid beam case limiting value. Taking &, ;naz,0 = 0.0447 means that we
quantify the term ”beam-beam limit” for the beam-beam limited beam lifetime being one
hour at 7, = 30 ms with N;p = 1.

Eqgs. 56 and 59 have been checked with some machine operation results [4].

5 Beam-beam effects with crossing angle

To get a higher luminosity one could run a circular collider in the multibunch operation
mode with a definite collision crossing angle. Different from the head-on collision discussed
above, the transverse kick received by a test particle due to the space charge field of the
counter rotating bunch will depend on its longitudinal position with respect to the center
of the bunch which the test particle belongs to. In this section we consider first a flat beam
colliding with another flat beam with a half crossing angle of ¢ in the horizontal plane.
Due to the crossing angle the two curvilinear coordinates of the two colliding beams at
the interaction point will be no longer coincide. When the crossing angle is not too large
one has

=+ 2¢ (62)

where z* is the horizontal displacement of the test particle to the center of the colliding
bunch, z and x are the longitudinal and horizontal displacements of the test particle from
the center of the bunch to which it belongs. Now we recall eq. 37 which describes the
Hamiltonian of the horizontal motion of a test particle in the head-on collision mode, and
by inserting eq. 62 into eq. 37 we get
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Since the test particle can occupy a definite z within the bunch according to a certain
probability distribution, say Gaussian, it is reasonable to replace z in eq. 63 by o, and
in this way we reduce a two dimensional Hamiltonian expressed in eq. 63 into a one
dimensional one. What should be noted is that eq. 63 takes only the test particle’s
longitudinal position into consideration which is regarded as a small perturbation to the
head-on collision case, and the geometrical effect will be included later. To simplify our
analysis we consider only the lowest synchro-betatron nonlinear resonance, i.e., 3Q,+Q, =
p (where @)y is the synchrotron oscillation tune, and p is an integer) which turns out to be
the most dangerous one. Following the same procedure in section 4 one gets the dynamic

aperture due to the lowest synchro-betatron nonlinear resonance as follows

2[:(s) & 27,0,
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where ® = 7=¢ is Piwinski angle. Now we are face with a problem of how to combine
the two effects: the principal vertical beam-beam effect and the horizontal crossing angle
induced perturbation. To solve this problem we assume that the total beam lifetime due
to the vertical and the horizontal crossing angle beam-beam effects can be expressed as

-1
. T+ T 1 1
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v,8,FB Rsyn—beta,z y,8,F'B Rsyn—beta,z

where Ry s rp = ﬁ%gy for rigid beam case. To include emittance blow-up effects one
should follow the same procedure shown at the end of section IV.

Eq. 66 has been applied to KEK-B low energy ring to estimate the luminosity reduc-
tion due to crossing angle effect [5].

6 Parasitic crossing effects

Parasitic crossings in ete storage ring colliders such as PEP-II working in by-2 mode
will introduce additional beam lifetime limitation together with beam-beam effects at IP
with or without crossing angle. If the transverse separation of the two parasitic crossing
bunches is Ypo = (/d2 + d;, with d, and d, are separations in horizontal and vertical
plane, respectively. According to ref. [7] the beam lifetime limited by one parasitic

crossing
Ty
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where Bpc, is the vertical beta function value at the parasitic crossing point, and d, has
been set to zero as a special case of a horizontal separation. What we should do now is
to combine the effects from the beam-beam interactions at [P and PC to obtained the
corresponding resultant beam lifetime as follows

T, _
Tob,total — gy (Rtotal) ! exp (Rtotal) (69)
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Y

If there are Np¢ parasitic crossings per turn, eq. 71 should be replaced by

Rt = — (73)
Ry,1P,FB =1 Ry pc.rB,i
where 1
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where d, is set to zero. To include emittance blow-up effects one should follow the same
procedure shown at the end of section IV.
Eq. 69 has been applied to the PEP-II low energy ring working in by-2 mode [7].

7 Combined beam-beam and electron cloud effects

Electron clouds produced and trapped by the positron beam in the vacuum chamber can
perturb the motion of positrons in return. In this section we focus ourselves to the special
case where significant amount of electrons are trapped near the positron beam axis with
almost the same dimensions as those of trapping positron beam, and the electron-clouds
far from the positron beam are not the subject of interests of this section. We define
the local electron-cloud and positron beam interaction force as f..(sy), this differential
force (where ' denotes d/ds), can be made equivalent to a virtual local beam-beam force
Fin(so). The relation between f! (s9) and Fpy(sp) can be expressed as

fee(s0) = i}—bb(so) (76)
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and the f! (s¢) induced differential positron linear tune shift is expressed as

! . reNecﬁ—l—,y(SO) i
Eulon) = 5yt s (51) (77)

where o , and o, , are the transverse rms dimensions of the electron-clouds and positron
beam, L is the circumference of the storage ring, (5, , is the vertical beta function for
positrons, v, is the normalized positrons’ energy, and finally N,. is total electron-cloud
charge numbers around the ring within a transverse cross section of 2wo, 4o, ,. Now one
could make use of the analytical results for the beam-beam interactions in an e*e™ storage
ring collider developed in ref. [3] to estimate the vertical dynamic aperture limited by the
differential electron-cloud nonlinear forces

( o4.4(50) )2 Neerel3y(s0) (78)

Al y(50) - 6727404 4(50)04 y(50) L

The total contribution of the electron-cloud around the ring to the vertical dynamic
aperture can be estimated according to ref. [1] as

< Oiy )2 _ /so+L NeereBy(0) ds, (79)
Accy o 6V27,04 4(s0)04y(s0) L

One finds that

B (Aec,y>2 3V (30)

ec,y — ~
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where f3,,, is the average vertical beta function around the ring, and p.. is the average
electron-cloud density inside the vacuum chamber which is defined as follows:

Oty

_ Nec
27T0-a’v7+7x O-afu,_i_’yL

(81)

Pec

where 04y 4, and o0g, 4, are the average beam transverse dimensions around the ring.
The total normalized vertical dynamic aperture limited together by the beam-beam and
the electron-cloud effects can be obtained as

1
2 —
Rtotal,—l—,y - 1 + 1 (82)
Rib,—%,y RgC,y
with Rf, |, expressed as
2
bty \ o -2
+7y7IP ﬂ-gbb,-l-,y

where &y, 1, is the linear beam-beam tune shift of the positron beam in the vertical plane,
and the subscript TP denotes the interaction point. The positron’s lifetime due to the
combined beam-beam and electron-cloud effects can be estimated as:

_ T4y (2 -1 2
Ttotal ,+,y = 9 (Rtotal,-i-,y) exp (Rtotal,-i-,y) (84)

where 7, , is the damping time of positron in the vertical plane.
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8 Nonlinear space charge effect

Considering an electron storage ring, particles inside a bunch will subject to collective
space charge force from the bunch. As we will show later, in some special situations, the
effect coming from this force could not be neglected. We start with the linear incoherent
space charge tune shift of the machine at the center of the bunch

reNeﬁav y L
— : 85
Soca 20y (04 + 0y) <\/27r5272az> (85)

where N, is the particle population inside the bunch, o, is the bunch length, and 3, , is
the average over the ring. In fact, as in the previous section, one can define the differential
space charge tune shift from which the space charge tune shift of the ring can be obtained

S rNBs) I
@w%*‘zm%@m%@w+%wm<wﬁww@> (86)

where " denotes d/ds, sy denotes an arbitrary position in the ring. Recalling the expression
of the beam-beam tune shift of a storage ring collider, one has

TeNeBy,IP

2myoy(sip)(0x(sip) + oy (s1p))

Eovy (S1P) = (87)

where s;p denotes the interaction point. Comparing eq. 86 with eq. 87, one finds that
the transverse deflecting forces from the differential space charge and the beam-beam
interactions have the following relation

fae(8) = fu(s1p)G (88)

with

o=y (59)

where fi. and fy, are the total transverse forces including, of course, nonlinear parts. We
conclude that the differential space charge effect can be made equivalent to the problem
of beam-beam interaction in an storage ring collider.

By analogy one knows the dynamic aperture determined by the nonlinear (octupole
is the lowest nonlinear multipole) differential space charge force

2 By(s) 3V/2704(s0) 03 (s0)
(Auea()%) = 55053 ( NG ) (FB) (90)

The total dynamic aperture limited by the space charge force can be calculated as

1
V0 Gy

Atotal,sc,y(s) (91)
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total,sc,y
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where the differential space charge forces are assumed to be independent. After some
mathematical simplification and using eq. 85, one gets

2 Atotal,sc,y(s) ) ? 3
Ry=\—7" ") = 5 03
! ( ay(s) V2mse (93)

The particle’s lifetime due to nonlinear space charge forces can be estimated as:

Tsey(Esey) = % (Rz)il exp (R;)

T 3 - 3
Y (_- -

Knowing the particle’s lifetime limited by the nonlinear space charge force expressed
in eq. 94, one can calculate the relative particle’s survival population, R({s.,), at the
moment of ejection (t = 74;) by the following formula

R(&,) = exp (—L> (95)

TSC,y (gsc,y)

Now we apply eq. 95 to TESLA damping ring [8] with 7, = 28 ms, and storage time
T = 200 ms, and calculate the relative particle’s survival population with respect to the
the linear space charge tune shift . ,. From eq. 95 one finds that to avoid the particle
loss due to nonlinear space charge forces, one has to choose ., below 0.07 (less than 1%
particles are lost), which coincides with the conclusion from the numerical simulations
in ref. [8] which states clearly that the condition ., < 0.1 should be fulfilled. Taking
the TESLA parameters, By, = 5 GeV, L = 17 km, N, = 2 x 10*°, 0, = 6 mm, and
the normalized transverse emittances, €,, = 9 x 107% mrad and €,,, = 2 x 107® mrad,
one finds &, = 0.248 and R(,.,) = 7.7%, which are intolerable. In order to solve this
problem, instead of increasing the damping ring’s energy, a method has been proposed in
ref. [8] to increase the beam dimensions in the long straight sections of the “Dog-Bone”
type damping ring by using screw quadrupoles, which have reduced the space charge tune
shift well below the threshold, &;., = 0.1.

9 Conclusion

Many complex phenomena in storage rings are connected with nonlinear beam dynamics,
such as the subjects treated in this paper. Together with experiments and numerical
simulations, analytical treatment plays an important role in understanding the relevant
physical processes and is very helpful in designing and operating machines.
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