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Abstract

Long time tail in the velocity and force autocorrelation function has been found
recently in the molecular dynamics simulations of the peripheral collisions of ions.
Simulation of those slowly decaying correlations in the stochastic transport theory,
requires the development of new methods of generating stochastic force of arbitrarily
long correlation times. In this paper we propose the Markovian process, the multidi-

mensional Kangaroo process, which permits describing various algebraic correlated

stochastic processes.
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I. INTRODUCTION

Dynamics of a classical many body system can be investigated using either the molecular
dynamics approach or the kinetic rate equations. Both approaches can be generalized to
incorporate also the Pauli exclusion principle for fermions. In the latter case, one considers
for example different variants of the Boltzmann or Boltzmann-Langevin equations , whereas
in the former case the quantal’ version of the molecular dynamics, the so called antisym-
metrized molecular dynamics [1] has been proposed. Chaotic properties of atomic nuclei
have been discussed in the framework of the classical molecular dynamics (CMD). For cen-
tral collisions where fusion process dominates , it has been demonstrated [2,3] that both the
velocity autocorrelation function : C(t) =< v(to)v(to +t) > and the force autocorrelation
function : C(t) =< F(to)F(t) > , decay exponentially in time. The equilibration time is
short, allowing the statistical properties of the compound nucleus to show up at the early
stage of the reaction. On the contrary, in the peripheral collisions of ions, the algebraic, long
time tail ~ ¢ (y=1) was found in both the velocity and force autocorrelation functions
[2,3] . Moreover, the survival probability is given by the powerlaw [4] .

The Fourier transform of C(t) gives the power spectrum S(w). For the peripheral colli-
sions [2] , C(t) ~ ¢~ and, hence, S(w) ~ |Inw| . The mean square displacement in config-
urational space is in this case [2] : o%(t) = ((r(t) — r())?) « tln + —t+1to . The diffusion
is anomalously enhanced (superdiffusion) and the diffusion rate : D = lim;_.., o?(t)/t di-
verges logarithmically, i.e. the dissipation rate does not stabilize, as it would be the case
for a normal diffusion (D = const). The same dependence holds also for the mean-square
displacement in the velocity space.

The logarithmic power spectrum and the enhanced diffusion has been found for the pe-
riodic Lorentz gas (PLG) of hard discs (the extended Sinai billiard) [5]. From the point of
view of transport phenomena, many physical systems can be reduced to a simple lattice of
periodic potentials. Besides the CMD in the orbiting regime, the dynamics of electrons in

crystals moving in a magnetic field or the ballistic-electron dynamics in lateral superlattices



, are other examples which can be modelled in terms of periodic 2D lattices [6,7]. The sim-
ilarity of the diffusive behaviour for systems as different as the CMD and the PLG, follows
from the fact that the powerlaw tail of the velocity autocorrelation function is due to the
existence of long free paths. This behaviour is universal and insensitive to the details of the
potential, in particular to its short distance features. Such universality allows to describe
phenomena involving long free paths in a framework of the Langevin equation with alge-
braically correlated noise [3]. Inclusion of effects connected with the antisymmetrization of
the wave function for fermions does not modify this picture qualitatively. The nonlocality
of the Pauli potential destroys cantori in the phase space and the diffusion process, for suffi-
ciently large lattice spacing, is dominated by long free paths and hence its power spectrum is
logarithmic at small frequency limit [8] . This finding makes the purely classical description
more reliable.

The relevance of the Langevin approach for the description of an induced fission process
has been realized long time ago [9] . The slow collective motion with its high mass parameter
is treated as a Brownian particle, whereas the fast nucleonic degrees of freedom form the heat
bath. In generalized Brownian motion theory [10] , the Hamilton equations can be rewritten
in the form of the Langevin equation by making use of the projection operator technique.
The total force acting on a Brownian particle is divided into a systematic part and a random
part. The slowly varying part describes the evolution of macroscopic variables. The fast
varying part leads to the fluctuations around the most probable path. In the conventional
Langevin approach, it is usually assumed that the time-evolution of the fast varying random
part is stochastic and the time rate of changes is much faster than that of the systematic
part. Consequently, it is assumed that the correlation function of the random part is 6
- correlated or decays exponentially. (For a recent review of stochastic theories with the
colored noise see ref [11] .)

A hypothesis of the rapid decay of the force correlations holds for central collisions and the
CMD yields in this case fast decaying correlations in both velocity and acceleration (force)

[2] . However, for peripheral reactions and/or strongly elongated shapes, the correlations
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decay algebraically [2] . Such slowly decaying correlations are known in various phenomena,
including the chemical reactions in solutions [12] , ligands migration in biomolecules [13] ,
atomic diffusion through a periodic lattice [14] , Stark broadening [15] and many others.
This regime is certainly beyond the standard Langevin approach and requires the consider-
ation of the colored noise of arbitrarily long correlation time. The first important step in
this direction was the theory of line shapes and relaxation in magnetic resonance systems
through the study of the so called Kubo oscillator [16] . More recently, the Kubo-Anderson
process [17] with the slowly decaying noise correlation function, the so called ’Kangaroo
process’ (KP) [18] , was used to explain the noise-induced Stark broadening [15] .
Recently, we have proposed a new method which extends the Langevin approach for
phenomena with either exponentially or algebraically decaying force correlations [2] . In

these studies, we have investigated a two-dimensional Langevin equation :

dr "
3
mr ) = —pv() - T 5y 1)

where the potential V' generates a conservative force, 8 is the friction constant, and the

external noise (stochastic force) F(t) has algebraically decaying correlations:

<FO)F®) > ~1/t 2)

<F@)> =0.

These conditions do not determine the noise uniquely. In our earlier studies, we have pro-
posed to simulate F(¢) by deterministic time series of the particle velocity in the PLG. In
the present work, we investigate possibility to simulate algebraic correlated noise F(t) by a
Markov process, and for this purpose we shall study the generalized KP. In spite of funda-
mental differences, there are some similarities between these two realizations of the algebraic
noise. For both processess, algebraic correlations involved are due to the existence of "long

free paths’, i.e. value of the stochastic process ( velocity of the particle in the case of the

PLG) remains constant for long time intervals.
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The main goal of this work is to investigate and compare the Langevin processes for these
two different ways of generating of the stochastic force. For that purpose we shall compare
the most relevant physical quantities like the energy spectrum of the particles and their
escape time distribution obtained with different generators of the external noise F(t). In
chapter IT we shall remind the most essential features of the PLG process which can be used
to generate both algebraic and exponential correlated deterministic noise (3] . Chapter III
is devoted to the discussion of the KP. In sect. IIL.B we shall discuss the multidimensional
, Dorm-conserving generalization of this stochastic process which can be directly compared
with the norm-conserving PLG process. We perform this comparison in chapter IV, solving
the Langevin equation (1) for particles escaping from the spherically symmetric potential
well. Finally, the most important results of this work are summarized and concluded in

chapter V.

II. PERIODIC LORENTZ GAS AND THE CORRELATIONS FOR OPEN AND
CLOSE HORIZONS

Before discussing the KP and its generalization, we want to remind the most essentjal
properties of the PLG (or the extended Sinai billiard). As said before, the PLG was used
to generate event by event the erratic chaotic force acting on Brownian particles [3] . The
PLG consists of a single point particle moving in a two-dimensional periodic array of fixed
circular scatterers of radius R [19] . The lattice spacing is assumed to be equal to two. The
point mass is scattered elastically from scatterers and the particle velocity has a unit length.
The particle is reflected upon hitting arc of hard discs or meets the periodic boundary
condition when it crosses the straight-line segment between hard discs. The orbit consists
of the succession of pairs {s,(so), pn(Po)} corresponding to the nth bounce when the initial
condition was {so,po} . This dynamics is a mapping M of the phase space {s,p} into itself
[20] :




Sn+1 Sn
=M ’ (3)
Prnt1 Dn

The sequence of iterates (3) is uniquely determined as a function of the initial value. The
separation between disks completely determines the behaviour of the system. If R > 1 (’the
high-density regime’ of the PLG) then the disks overlap and the particle is trapped in a
region bounded by four arcs of circles. This situation corresponds to the closed horizon as
the particle trajectory is bound. f R < 1 (’the low-density regime’ of the PLG) the particle
sees an infinite horizon and may move to an arbitrarily long distance between subsequent
collisions, i.e. the length of free paths is unbounded.

The PLG, both for R <1 and R > 1, belongs to the category of so called K-systems
[19] , for which the nearby trajectories diverge exponentially and the metric entropy is
positive. This system is known to be ergodic in two dimensions and numerical experiments
in higher dimensions also indicate its ergodicity [21] . Despite this, the PLG exhibits long-
time correlations which are typically associated with the existence of tori in the phase space.
For R <1 , there exist families of trajectories which do not collide with hard scatterers
and correspond to a regular motion. Existence of these families is a reason of long-time tails
in the correlation functions: the velocity autocorrelation function changes from a stretched
exponential decay [21] for a closed horizon situation to an algebraic decay [22] (C(t)~1t1)
for an infinite horizon situation. Consequently, the self-generated diffusion process changes
from an ordinary diffusion process (D(t) = const ) to a superdiffusive process ( D(t) ~ logt
) when the horizon for a wandering particle is opened. In this latter case, the distribution
of free path lengths is algebraic : N(s) ~ s=3 for large s [21] , independently of the
dimensionality of the billiard.

At around R = 1, many quantities, including the probability density of free path length
N(s) and the velocity autocorrelation function C(t) , exhibit a critical behaviour which
resembles a second-order phase transition. In particular, the correlation length diverges and

the length scale disappears. One can also define the order parameter :




<r(t) >
i tlogt (4)

which is zero for R > 1 and changes to a finite value Dy for R< 1.

IIl. THE KANGAROO PROCESS

The step-wise constant random function m(t) is called a Kubo-Anderson process if the
jumping times t; (¢ = —o0,...,+00) are uniformly and independently distributed with
density v in the interval (—00,+00) , and m(t) is a constant m(t) = m; in the interval
ti <t <tiy1 . m(t) is the stationary Markov process with the probability density P(m) .

Assuming < m >= 0, one obtains for the covariance of this process :
T(lt-t ) =<m@)mt) >=<m? >exp(—v |t —1t']) . (5)

Both the probability density P(m) and the correlation time T, = v~! for the Kubo-
Anderson process, may be chosen arbitrarily, however the functional form of the covariance
is always exponential.

The study of the problem of stochastic Stark broadening [23] , where the covariance is
proportional to 1/¢ and is not integrable, has led to modify the Kubo-Anderson process by
requiring that the frequency of jumping times »(m) is a function of the value of the process
itself. This new process has been called the ’Kangaroo process’ (KP). The KP is a step-wise

constant Markov process with the stationary transition probability given for infinitesimal
time intervals by :

Pxp(m,At|m',0)={1 — v(m')At} §(m—m') + Q(mv(m)At (6)

where Q(m) is a given probability density to be specified below. Pxpdm is the probability
that the KP at time At is between m and m + dm , knowing that it was equal m' at
time ¢ = 0 . The first term on the ths of eq. (6) is the probability that no jump occured

in the time interval (0, At) . The term »(m')At is the probability that one jump occured.



Immediately after such a jump, the probability density of m becomes @(m) . The Focker-
Planck equation for the KP reads [24,18]

%P(m, )= Lm { / Pp(m, At | m',0)P(m, t)dm’ — P(m,t)}(At)™ (7)
A=0
A>0

= —v(m)P(m, ) + Q(m) / v(m')P(m',t)dm’ . 8)

The stationary probability density P(m) of m(t) is related to Q(m) by :

___v(m)P(m)  v(m)P(m)
Q(m) = Jv(m")P(mYdm' = <uv> ) ©)

The calculation of the covariance I'(t) of the KP requires the summation of a series to
take into account the possible occurence of an arbitrary number of jumps between 0 and

t . For that let us calculate the Laplace transform of I'(@):

f(z) = /0 ” exp(izt)E(t)dt (10)
which becomes :
Plz) =< —™ o _ vy (1) - L :
He) =< omy—s > ( S Tlm) =i s) (< m) — iz >3) . (1)

If P(m) and v(m) are even functions, then :

m
Svm—n 50 12
or, equivalently,
<mexp(—v(m)t) >s=0 (13)
and (11) simplifies to :
P o
(Z) =L m >s . (14)

The covariance of the KP is then :



P@)= [ mP(m)exp(—u(m) |t ) dm (15)

ie. the ordinary variance of P(m) conditioned by the probability exp(—v(m) | t|) that
no jump occurs between 0 and ¢ . Given P(m) and the covariance I'(t) , the jumping
frequency »(m) can be obtained as follows. Let us assume that »(m) is a monotonic

increasing function of | m | such that »(co0) = oo . Then , taking v as a new integration

variable, one obtains :

= +co dm
(1) =2 / o TPy exn(—v |ty (16)

Calculation of v(m) requires then the inversion of the Laplace transformation and the
solution of a simple differential equation.
It is always possible to construct the KP with an arbitrary probability distribution

P(m) and a quite arbitrary covariance I’ . For the exponential correlations :

P(jt - £]) =< mO)m(t) >=exp(=molt —£]) (17
we have :
v(m) = const(m) = v , (18)
For the most interesting, algebraic correlations :
Pt -1') =< m@)m(t) >= % (n>0) : (19)
we have [18] :
v(m) = (2 0""' mzP(m)dm)n . (20)

' in (19) is the gamma function and P(m) is an even function.



A.. One dimensional Kangaroo process

In the following, we shall assume that both P(m) and v(m) are even functions. For
T(t) =1/t , the frequency v(m) is:

Im|
v(m) =2 /0 m*P(m)dm . (21)
The *free path’ length can be defined as s = 1/» . Since P(m)dm = P(v)dv , therefore :

P) = P(m) (52 K

From (21) we have :

7 =2m*P(m)
and therefore :
P(r)= — . (22)
2m?
The free paths distribution is then :
P(s) = P(v)? = _1% : (23)

In order to see whether and how details of the chosen probability density P(m) influence
the properties of the KP, let us now consider few simple examples. First, let us take :

2

Pm)== . (24)

In this case, the jump frequency is : ¥(m) = 2|m|® and the frequency distribution : P(v) =
v~ . Consequently, the free path distribution becomes :
P(s)=s"1 : (25)
Next, let us consider :

1/2 for |ml<1
P(m) = (26)

0 for |m|>1
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The jump frequency in this case is : »(m) = 1| mf® and the frequency distribution is :
P(v) ~ v=2/3, Consequently, the free paths distribution becomes :

P(s) ~s™43 | (27)
Finally, let us consider also the following distribution :

2|m|™  for |m|>1
P(m) = (28)

0 for |mi|<1

The jump frequency in this case is : v(m) =2(1—-m~2) and the frequency distribution is :
P(v) = (1-v/2) . Consequently, the free paths distribution becomes :

1 1

P~ =55 (29)

Therefore, in the limit of long paths : P(s) ~ 572, This is the fastest decaying free paths
distribution which can be obtained with the one-dimensional KP. In N dimensions with
independent Kangaroo processes in all N directions, the path length distribution becomes :
Pp(s) = (Pi(s))N ~ s™*N . One should stress however that the norm for such a process :
| m |= (; mi?)!/? is not conserved during the evolution. Moreover, |m| has not any specific

and physically motivated distribution what is a serious drawback of the (N x 1)-dimensional

Kangaroo processes.

B. Multidimensional generalization of the Kangaroo process

In this section we will present the multidimensional generalization of the KP and
discuss in details the two-dimensional case. The value of the process is now a vector
m = [m;,m,] with coordinates m; , m, and a constant norm : | m |=1. Hence, the KP
takes random values on a unit circle and the coordinates - m; =cos® and my; =sin® are

expressed in terms of a single random angle ® . The covariance of the KP in this case

becomes :
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() = 1/t =2/,(0)

PO exp(crt)dy (30)
dv
Since P(v)dv = P(©)d® and P(v) =1 independently of the form of P(@), therefore :
dv\™?
2P(0) (E@) =1 |,
and :

e ! [
»(0) = 2 /0 P(©)de . (31)

Obviously, the free path distribution becomes in this case :

P(s)=s72 . (32)

The function P(©) should satisfy the condition P(@) = P(© + 7) . Generally, it is
expedient to sample © only in the interval [0,7/2] and then to extrapolate symmetrically
with respect to both axes. The long paths correspond then to © ~ 0 and ©, =~ 7 . More
isotropic distribution P(©) can be obtained by dividing the full angle on sectors of size
A® = m/n , where the integer n may be arbitrarily large. One defines P(©) only in the
interval [0,7/n] and then chooses the sector with the uniform probability. In this case the
long paths will be found at around ©; = 7k/n (k=0,1,...,2n — 1). Ifn =4 then the
free path distribution is similar as in the PLG with the infinite horizon for which long paths
are found at @ 0 (~ 7 ) and © m 7/2 (~3/27 ). The precise value of n depends on
the physical problem considered and in particular on the geometry involved in this problem.
For example, in the fission-fusion dynamics with the elongation parameter as a collective
variable, one expects that the long path distribution should be strongly asymmetric and
hencen =2.

The above stochastic process can be easily generalized to still higher dimensions. For

example in three dimensions, one has two angles : ©,¢ , as independent variables. If

v =v(0) , independently of the angle ¢ , then the covariance of the KP becomes :
F(t) =1/t =2 / :) P(©)P(¢) exp|~»(0)t] sinOdOd$ | (33)

12



where P(0)sin©(d®/dv) =1 and
© ! ! !
¥(0) = jo P(0')sin ©'dO (34)

is a uniformly distributed random number. Obviously, as in the above two-dimensional
KP, the free path distribution is P(s) = s~2 . The same holds for an arbitrary number
of dimensions providing the frequency v of the KP depends only on one angle. With this
assumption we impose ’spherical symmetry’ into the multidimensional KP which in this
way simulates closely the multidimensional extended Sinai billiard (the PLG) problem with
spherically symmetric scatterers.

The multidimensional generalized KP can be also easily applied to generate stochastic
processes with any algebraic covariance I'(t) ~| t|¥/* (n > 0) . In two dimensions, the

frequency » of the stochastic process becomes :

v=2 ( /0 5 P(@')d@')n , (35)

and

% — 2 ( / ° P(G')d@') " pe)

Since P(v)dv = P(©)d®© , therefore :
1 e ' ' e 1 1l—n
P() = — (/O P(® )d@) == (36)
The free paths distribution can now be easily found :
P(s) = g-4d) | (37)
2n

For the exponential covariance (17) , the multidimensional norm-conserving generalization
of the KP is trivial. Hence, we have succeeded to formulate the Markovian multidimensional
process which can approximate multidimensional extended Sinai billiard (the PLG) both in
the situation of the closed horizon when the correlations are exponential as well as in the

situation of the open horizon when correlations are algebraic.
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IV. LANGEVIN PROBLEM FOR THE MARKOVIAN STOCHASTIC FORCE

Let us now consider a dissipative system which consists of many particles. Each particle
in the system obeys an intrinsic damping which is independent of the fluctuation term. The
stochastic force F(t) acting on a particle in the dissipative system is F(t) = em , where
m = [my,my] is the value of the KP and ¢ is a constant force amplitude [25] .

We shall consider the motion of Brownian particle in the circular attractive potential

defined as :

VO =%y o <

V(r)=0 for Ir|j>rp (38)

where Vy and rp are the depth and the radius of the potential, respectively. Inside the
potential, the motion of particle is given by the Langevin equation (1) with the correlated
stochastic force F(t) . Otherwise the particle is free. Initially (t = 0), the particle rests at the
bottom of the well (|r| = 0). At later times, the stochastic force F(t) accelerates the particle
which may eventually escape from the well. At each jump in the two-dimensional KP, the
direction of the vector m changes what corresponds to the update of F(t) . Otherwise the
value of the force remains constant. The length of the vector m is | m|=1 and remains
constant.

The quantities of interest are the energy distribution of escaping particles P(E) and the
survival-time distribution N(t) . The energy distribution of the Langevin particles escaping
from the potential well is shown in Fig. 1 both in the case when the stochastic force is
generated by the adjoint PLG (the short-dashed line) and in the case when the generalized
KP is applied for this purpose. In the latter case, we consider the two-dimensional gener-
alization of the KP (sect. IILB) for two kinds of the probability distribution functions :
P(©)=P(O@+kn/n) (k=1,...,n—1) with (i) n =2 (the long-dashed line) for which
the long paths are close to 0,7 and with (ii) n = 4 (the solid line) for which the long paths
are near 0, 7 and 7/2, 3/2x directions, like in the PLG.

14



In spite of important differences in the definition of the stochastic force generator, the
three curves exhibit similar features such as for example the appearance of the peak for
’pre-randomized’ particles [3] , which is a characteristic feature of the Langevin approach
with long-time correlated noise and corresponds to the ’long free path’ , i.e. the long
time-interval (small v(m) ) between the subsequent changes of m in the stochastic force
generator. The Brownian particle escapes as soon as the long free path ends. The second
very important qualitative similarity between Markovian (the generalized KP) and non-
Markovian (the PLG) generators corresponds to the Gaussian shape of the energy tail for
randomized particles which is a benchmark of the algebraic (~ 1/ ) velocity and force
autocorrelation functions. The details of this Gaussian bump P(E) ~ exp(—E?/20?) as
quantified by the width parameter o are obviously different for those different generators
and equal 0 = 30.25 for the non-Markovian generator, and o = 47.6, 434 forn = 2,
n =4 for the Markovian generators, respectively. We have checked that the width of the
Gaussian bump remains almost unchanged when increasing n above n =4 .

As said above, the existence of the peak for pre-randomized particles is related to the
existence of long free paths. Its sharpness is due to the assumed norm conservation in the
generalized KP. The qualitative features would remain the same if we would allow for an
independent variations of the norm |m| from a given distribution, say Gaussian.

The escape from the potential requires acceleration by the stochastic force to climb the
well. Frequent changes of the applied force reduce the mean acceleration. In the absence
of an external potential V(r) or in the case of a small amplitude stochastic force, all
trajectories generated either by the PLG for the deterministic random force generator or by
the KP for the stochastic generator, both long and short ones, provide a sufficient change of
the momentum of the Brownian particle to allow its escape. All those particles which appear
sufficiently close to the absorbing barrier at r = rp , may escape. The survival probability
of the system is thus proportional to the number of particles N (t) , still inside the potential
well at time ¢ . The time-variation of this number depends only on the phase-space density

of particles which is just proportional to the number of particles : N (t) ~ N(@) , ie.
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N(t) ~ exp(—at) where a is a constant.

Situation is quite different for a large amplitude random force. Here the relative number
of long free paths increases rapidly in time. The constant random force and the conservative
force from the potential act like the gravitation and elastic forces in the problem of the oscil-
latory motion of a string. The friction force slows down the Brownian particle which finally
stops at the point where the constant random force compensates ezactly the conservative
force [26] . Since the Brownian particle on such trajectories cannot escape, therefore their
weight in the ensemble increases in time. The Brownian particle is at standstill or moves on
a quasi-periodic orbit as long as the particle stays on a free path. In this case, the balance
of forces ensures that the Brownian particle remains inside the absorbing barrier. When the
long path finishes, the balance of forces changes and the Brownian particle escapes imme-
diately. Therefore, the particle remains inside the potential well until time ¢ if the long
path in the adjoined generator is longer than ¢ . Hence, for the Markovian generator (the
generalized KP) for which the path length is independent of the length of the previous path,
the decay probability for the Brownian particle is for large times proportional to the path
length distribution P(s) . Therefore, the survival probability until time ¢ is :

P(t) ~ /t " P(s)ds (39)

and the path length distribution is directly related with the survival time distribution inside
the potential well.

For the one-dimensional KP with P(m) given by (24), (26) or (28), survival probability
distribution N(t) is const(t) ,t~1/3 or ¢-? respectively. Independent KP’sin N directions,
yield P(t) ~ =N where o is the exponent of the algebraic path distribution in the
corresponding one-dimensional KP. It is interesting to notice that the process (24) yields in
two dimensions P(s) ~ s~ and hence P(t) ~ t~1 .

Multidimensional, norm-conserving generalization of the KP, as discussed in sect. III.B,
yields P(s) ~ s~2 | independently of the dimensionality of the problem and independently
of the degree of isotropy in the long path distribution. Hence, in this case : P(t) ~ -1, like

16



for the non-Markovian generator based on the PLG with the open horizon. Fig. 2 shows
the number of surviving Brownian particles inside the spherically symmetric potential both
in the case when the stochastic force is generated by the adjoint PLG (the short-dashed
line) and in the case when it is generated by the generalized KP in two-dimensions with
n =4 (the solid line). The line 1/¢ is shown with the long-dashed line for comparison.

V. CONCLUSIONS

The Langevin approach provides a useful framework in which complicated multidimen-
sional Hamiltonian problems can be changed into the low-dimensional dissipative problems,
providing one can separate slow, ’collective’ degress of freedom from remaining, fast vari-
ables. In this case, the collective motion is treated as a Brownian particle embedded in the
heat bath introducing fluctuations around the most probable 'macroscopic’ collective path.
Influence of this ’environment’ of fast variables on the slow variables is then taken into
account by introducing the noise or the stochastic force. Properties of such a force, in par-
ticular its autocorrelation function, must be properly adjusted to fit the phenomenological’
data (e.g. the CMD data) for a given choice of macroscopic or collective degrees of freedom.
Recent CMD studies for the peripheral collisions of ions showed that the local force acting
on the ’elementary’ particle in the CMD is correlated algebraically : C(t) ~ t~! and is
associated with the presence of long free paths. This universal behaviour can be described
in the Langevin framework including algebraic correlated stochastic force. In the earlier
exploratory studies [3] , we have designed the generator of such a stochastic force applying
the velocity series of a point particle in the two-dimensional PLQ as a generating process
of the deterministic, chaotic random process. In case of the open horizon, the velocity
autocorrelation function of the particle in the PLG is proportional to 1/t and identify-
ing the time series {u(¢p),u(t;)...} with the time-series {F(t0),F(t1)...} of the stochastic
force (F(t) ~ u(t)) , one obtains the non-Markovian generator of the stochastic force acting

on the Brownian particle. This generator has desired correlation properties but its practi-

17




cal implementation may be cumbersome. Hence, in this work we have studied Markovian
generators of the stochastic force which are based on the KP. In particular, we have pro-
posed a special, multidimensional generalization of the KP, conserving the norm and having
the covariance I'(t) ~ t~! as the PLG process for the open horizon case. We have found
also that the path length distribution, which is P(s) ~ s~3 for the non-Markovian PLG
case independently of the dimensionality, equals P(s) ~ s~ in the generalized KP, also
independently of the dimensionality of the problem. This difference is however not essential
for the properties of the Brownian particles. In particular, both the survival probability for
the Brownian particle to remain inside of the potential as well as the asymptotic energy
distribution of particles are qualitatively the same and can be made almost identical by an
appropriate change of the geometry of the PLG, i.e. by changing the radii R of the circular
scatterers. These result remain unchanged if one allows variations of jm| (or |u| in the
case of the PLG) of the stochastic process. Hence, we have constructed a reliable and simple
generator of the long-time correlated stochastic process which in the particular case of the
1/t-covariance, is equivalent to the deterministic 1 [t-correlated process in the PLG. The
advantage of the Markovian generator lies in its flexibility to describe physical situations
with a different degree of isotropy in the distribution of the long free path. One should also
stress that both for the Markovian and non-Markovian generators, the long free paths are
responsible for the appearance of the algebraic covariance of the process. An interesting spe-
cial case of the Markovian generator corresponds to P(m) of (28) in one dimension. In this
case, the KP has long free paths and the 1/¢ correlations, like for the PLG (the extended
Sinai billiard). In application to the Langevin problem, it yields the survival probability
distribution : N(t) ~ 1/t . However, contrary to the PLG, this one-dimensional Markovian

analogue of the billiard has a variable size m of the stochastic process.
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Figure captions

Fig. 1
The asymptotic energy distribution of the particles escaping from the circular attractive po-
tential of depth V5 = —40 and radius rg = 80 for the stochastic force with the covariance
proportional to 1/¢ . The constant of intrinsic friction is v = 0.02 . The short-dashed line
shows the results for the stochastic force generated by the deterministic, chaotic rule of the
PLG. The long-dashed and solid lines exhibit results for the generalized KP in two dimen-
sions with n =2 and n =4 respectively (see sect. IIL.B). In this case, the probability dis-
tribution functions are periodic functions : P(0) = P(©+kn/n) with (k=1,...,n—1) on

a circle of radius [m| =1 and the long free paths are concentrated at around Or=kr/n.

Fig. 2
The variation of the particle number inside the circular attractive potential of depth
Vo = —50 and radius rg = 50 . The absorbing barrier is at » = rg . The intrinsic
friction constant is 4 = 0.02 . The short-dashed line has been obtained for the deterministic
chaotic force generated by the PLG with the open horizon. The solid line corresponds to
the calculations performed with the two-dimensional generalized KP with n =4 (see sect.

IIL.B). In both case, the stochastic force has the covariance proportional to 1/t . For more
details see the description in the text.
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