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Two electron cyclotron resonance ion sources, ECR 4 and ECR 4M, provide high charge 

state beams to the compact cyclotrons, C01 and C02, which are alternative injectors for the 

GANIL cyclotrons CSS1 and CSS2. When an injector runs for a long period, the off-line 

source can be used for beam developments or, together with the off-line injector, deliver a 

beam to a new beam line, called IRRSUD, for atomic physics experiments. Various ions are 

requested for beam time for periods of 8 to 11 weeks.  Although the majority of the required 

beams comes from gaseous elements, work on the production of beams of metallic ions is 

always a main activity.  New ovens are being developed to improve the capacity and the 

performances of the standard micro-oven. The latest results with 238U beam , using 

sputtering method and  76Ge beam using recycling method  are reported here.   
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INTRODUCTION 

The SPIRAL facility for radioactive ions beams started operation in November 2001, and 

was at first used only with various beams from gaseous compounds. The SPIRAL  complex 

was run for two-week periods with intense primary beams of  13C, 20Ne, 36S, 36Ar, and 78Kr  

delivered to the target/ion-source system [1]. For gaseous elements up to argon, ECR ion 

sources deliver enough intensity to reach the final goal of 6 kW beam power at the 

target/ion-source system. With sulphur and krypton beams we can reach up to 1.4 kW, and 

800 W with calcium, nickel and iron beams [2]. The source and the off-line injector can be 

connected to the new low-energy beam line, called IRRSUD. This facility is used for 

irradiation studies, and covers a range of energy from 0.5 MeV/u up to 1 MeV/u. The 

number and the duration of each primary beam accelerated over a two-year period is shown 

in figure1. Compared to previous years, the beam time for metallic ion production and 

development has decreased. However, the upgrading of the metallic ion beam intensities 

remains a major objective. Beam developments have been successful with 76Ge, and 

improvements of  238U  intensity is under way. 

 
STANDARD OVEN DEVELOPMENTS 

The standard micro-oven for metallic ion production used at GANIL since 1985 has allowed 

us to provide various ion beam with a good reliability. However the operational temperature 

is limited to below 1500°C. First designed for the 10 GHz Caprice source, its dimensions 

(external diameter 5mm) were matched to the coaxial tube of that source. So the alumina 

crucible with an inner diameter of 1.5 mm and a length of 30 mm allows a maximum useful 

volume of only 45 mm3. This is a drawback for the load capacity and the lifetime of the 

crucible. Recent off-line observations with germanium oxide and lead have shown the 

formation of “air” pocket in the crucible leading to the expulsion of the material even after 

careful filling and outgassing of the container. The filling with metallic 48Ca, using the 
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special technique from JINR Dubna [3], is a delicate operation. In addition, owing to the 

limited evaporation surface, the tuning of the source at high evaporation rates becomes more 

difficult, particularly when using liquid compounds. 

These facts have led us to study a new oven, better adapted to the 14 GHz ECR 4 ion source 

and which should avoid the earlier drawbacks. It would have a bigger capacity, an aperture 

able to conduct a high flux rate of vapours, the possibility of safe working with molten 

material, an operating temperature close to 1600°C and an improvement in the mechanical 

reliability. First, we had to test the increase in size of the copper coaxial tube,  from 12 to 18 

mm  external diameter. The 40Ar9+ intensity did not decrease by more than 25% compared to 

the standard performance of 160 eµA. Secondly, a large-capacity oven, based on the same 

principle as the micro-oven has been built (Fig. 2). The external diameter is 10 mm. A pure 

tungsten cylindrical wire of 0.3 mm diameter is used as heating filament. The alumina 

crucible has an internal diameter of 4 mm, a length of 30mm and the possibility of adding a 

half cap over the  opening. This reduces the output surface  to about 9 mm2, and this could 

be a protection against hot electrons when running at low temperature. The bigger useful 

volume of the crucible, 200 mm3, will increase the working time, will facilitate the 

introduction of samples inside the container, and will allow safe use of liquid phases. 

Another objective is to decrease the operating temperature used for some elements, by using 

a bigger evaporation surface. Increased tin and magnesium beam intensities are expected 

with this new oven.  

A heating power of 170 W, with a heating current of 6.2 A, is required to reach 1600°C, and 

a temperature higher than 1500°C has been maintained for 5 days. Off-line evaporation with 

calcium, lead and tin has been made to measure the evaporation flux rate as a function of the 

heating power and of the surface of the sample. The consumption rates for a stable operation 

heating power, i.e. a given temperature, are shown in a vapour pressure table (Fig. 3).  For a 
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given element, the initial weights were the same. In the range of 0.1 to 4 mg/h, the crucible 

geometry did not disturb the evaporation flux according to the vapour pressure tables. A 

measurement at the same temperature with an initial weight of lead of 90 mg instead of 

30mg increased the rate of consumption by a factor of about 2, which correlates with the 

increase of the surface area of the spherical molten lead droplet in the crucible. This surface 

effect, also roughly verified with a calcium sample, should allow us to work at a lower 

temperature than with the standard micro-oven.  First tests on-line with ECR 4M  ion source 

will be done during the fall of 2003. 

 

HIGH TEMPERATURE OVEN DEVELOPMENTS 

In 1996, after preliminary experiments for RIBs with a target/ion-source system called 

SHyPIE [4], a high-temperature oven able to reach 1900°C was designed and built, but never 

tested. Last year a new demand arose for the production of an intense uranium beam (10 to 

20 eµA of U 25+). We therefore began off-line tests with this prototype in order to validate 

the technical concept. The crucible, made of a refractory material suitable for the required 

compound, should be movable and could be changed without breaking the vacuum in the 

source. Clearly it must not affect the performance of the source and its life must be longer 

than 15 days. To reach this high operating temperature, the use of any ceramic was 

prohibited, which is a limitation for the actual micro-oven. The high-temperature oven has  a 

coaxial geometry (Fig.4). Two external coaxial tantalum cylinders used as reflectors and a 

filament holder are fitted together into a copper tube which is also the RF coaxial line. The 

copper tube (200 mm long on the offline prototype) is welded to a water-cooling flange. The 

inner part is made of two coaxial tantalum cylinders used as a filament holder and fitted 

together into a stainless steel tube which allows the introduction of either a movable crucible 

or gaseous compounds. The tungsten filament has a conical shape and joins the tantalum 
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cylinders. Its conical shape gives a better mechanical stability and increases the temperature 

at the mouth of the oven. The crucible diameter could be adjusted up to 5 mm and the length 

to 15 mm. A  temperature of 1800°C has been measured for an electrical power of 310 W 

(18.3 V and 17 A), in agreement with simulations with the SYSTUS code [5] used as an aid 

for our modifications. A temperature higher than 1700°C has been maintained for 50 hours. 

First off-line evaporation tests with vanadium into a tantalum crucible were successful (1 

mg/ h at 200 W for 20 hours). However, the next tests with melted metallic uranium or solid 

uranium oxide were not satisfactory. A chemical reaction with 45 mg of melted uranium 

destroyed the tantalum crucible at around 310 W. Two other ways of manufacturing the 

uranium crucible are under investigation: tungsten which should be stable with uranium 

oxide up to 3000°C [6], and yttrium oxide previously used for target tests for RIB production 

[7]. Taking into account the experiments done at GSI  we plan to use more machinable 

materials, such as tungsten with 1.5% La2O3   as crucible material, and VM tungsten as 

heating wire [8].  

A longer version, with 200 mm added to the copper tube, was built for test on-line with ECR 

4M  source. Despite increasing the DC heating  current up to 18A with the maximum 

magnetic field we do not observe any constraints on the filament. First tests with lead at low 

temperatures gave the same performance as those obtained with the standard micro-oven and 

validate the increase of the diameter of the coaxial tube up to 18 mm. However test with 

vanadium at high temperature failed. Spectrum analysis reveals copper peaks greater than 

those of vanadium. We noted a change of the appearance of the copper tube close to the 

tantalum reflectors.  Simulations show that the end of the copper tube could reach up to 

840°C, i.e. a vapour pressure of 10-6 mbar. This large and hot surface could explain the 

copper peaks seen in the spectra which disturb the tuning of the vanadium beam. 

Modifications have to be done to increase the cooling of the copper tube. Another way is to 
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replace the final part with a niobium tube which has also good thermal and RF 

conductivities. Although the mechanical concept of the heating part has been successfully 

tested, some improvements are necessary to adapt the oven working to the ion source. 

 

URANIUM BEAM BY SPUTTERING 

Meanwhile a low-intensity uranium beam with a high charge state, i.e. U31+, was requested. 

The sputtering method could be use for that purpose. Previous runs in 1996 using neon as 

support gas for  producing U25+ and U28+ gave intensities of 2 eµA and 0.8 eµA respectively, 

but with a high consumption rate, around 7 mg/h [9]. This time the source was tuned for U31+ 

with oxygen as support gas, and  could deliver a beam of 0.4 eµA for 6 days, and then 0.3 

eµA for 8 days, with excellent stability (<2%). A low consumption rate of 0.33 mg/h was 

measured. However the ionization efficiency still remained at a low value of about 1%. The 

main parameters of the source were an RF power of 210 W, an extracted current of 1.1 mA 

and 1 kV / 0.76 mA as sputtering values. During the second period the required sputtering 

voltage for operating conditions decreased drastically down to 350 V / 0.7 mA. After the run 

some short tests were done with SF6 as support gas instead of O2. The charge state 

distribution in the spectrum then shifted from U28+ (800 enA) to U24+ (3.5 eµA) but with only 

150 W of RF power, and 150 V / 0.5 mA for sputtering parameters (Fig.5). Possibly another 

process other than sputtering occurred. It could be the formation of UF6 gas by chemical 

reaction with uranium and dissociated fluorine. The next day, without a uranium sample, the 

source was tuned with an SF6 plasma. A low recycling effect, giving some hundred of enA 

of U 24+, was observed. 
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GERMANIUM RECYCLING EFFECT 

The standard method for germanium beam production uses germanium dioxide (GeO2) in the 

micro-oven and helium as support gas. We have observed Ge peaks in the spectrum when 

running with SF6 with a plasma chamber which had been used before for germanium beam 

[10]. At JAERI, tests with an SF6 plasma have been successful  for the production of metallic 

ions in the MINI-ECR ion source [11]. Therefore, after running for three weeks with a 76Ge 

beam, we investigated the recycling effect of an SF6 plasma [12]. An average 76Ge14+ beam 

intensity of 3 eµA was obtained with a GeO2 consumption rate around 0.4 mg/h, i.e. an 

overall ionization efficiency of 3% for 76Ge. At the end of the run, 120 mg of 76Ge remained 

on the walls of the plasma chamber. Then without the oven, and with SF6 gas instead of 

Helium, a germanium beam with a higher intensity is easily obtained. The 76Ge13+ beam 

remained very stable during two weeks with an intensity increasing from 25 up to 40 eµA 

(Fig.6). We note that the RF power and the magnetic field were at the same values as used 

during the run with the micro-oven. Taking into account the initial quantity of 120 mg and 

the average number of 76Ge particles extracted from the source (around 50 pµA for 340 

hours), we calculate an overall ionisation efficiency of 40%. A germanium tetrafluoride 

vapour was directly produced in the plasma chamber leading to a high ionisation efficiency. 
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CAPTIONS 
 
 
 
 
 
 
FIG. 1.  ECR 4 & ECR 4M  ion sources: Primary beams 
delivered between September 2001 and August 2003. 
 
 
 
 
 
FIG. 2.  GANIL large-capacity oven: 1) half cap ( output surface ~ 9mm2 )   2) Al203 crucible 
(I.D: 4mm)   3) W wire (φ:0.3 mm)  4) Al2O3 insulator  5) Mo connector  6) Ta tube  7) Mo 
electrical conductor  8) Al2O3 insulator  9) stainless steel oven holder  
 
 
 
 
 
FIG. 3.  Off-line evaporation with the large-capacity oven. 
 
 
 
 
FIG. 4.  High-temperature oven prototype: 1) copper coaxial tube (18mm O.D.); 2) stainless 
steel tube (6mm I.D.); 3) & 4) Ta filament holder; 5) & 6) Ta reflectors and filament holder; 
7) 0.5 mm W heating wire; 8) Ta cap (8mm diam. hole). 
 
 
 
FIG. 5.  Uranium CSD optimised for U24+ with SF6 
 
 
 
FIG. 6.  Recycling germanium CSD optimised for 76Ge13+ at 40 eµA 
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Fig.1 
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Fig.3 
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Fig.5 
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