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The NEMO collaboration is looking to measure neutrinoless double beta decay. The

search for the effective neutrino mass will approach a lower limit of 0.1 eV. The NEMO 3

detector is now operating in the Frejus Underground Laboratory. The fundamental design

of the detector is reviewed and the performances detailed. Finally, a summary of the data

collected in the first runs which involve energy and time calibration and study of the

background are presented.

1. Introduction

The recent discovery of neutrino oscillations is proof that the neutrino is a

massive particle. However, the oscillation experiments are only sensitive to the

difference in the square of the masses of two eigenstates of the neutrino. One

method for directly measuring the absolute mass scale of neutrinos is through the
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careful investigation of the end-point energy of single beta decay. Another method

could be through neutrinoless double beta decay (ββ(0ν)) which is the mission of

the NEMO 3 detector. The ββ(0ν) process is the decay of an (A, Z) nucleus to an

(A, Z+2) nucleus by the simultaneous emission of two electrons but without the

emission of neutrinos. The non-conservation of lepton number is a signature of

physics beyond the Standard Model. An observation of ββ(0ν) would be one

method of seeing this new physics and the measured half-life yields information

on the effective neutrino mass.

In 1989, the NEMO (Neutrinoless Experiments with Molybdenum)

collaboration started a research and development program to build a detector

which would be able to study the effective neutrino mass down to about 0.1 eV by

looking for the ββ(0ν) decay process. The NEMO 3 detector [1] is now operating

in the Frejus Underground Laboratory at a depth of 4800 m.w.e..

2. The NEMO 3 detector

2.1. Description

The detector is cylindrical in design and divided into 20 equal sectors
(Fig. 1). A thin (40-60 mg/cm2) cylindrical source foil of ββ emitters has
been constructed from either a metal film or powder bound by an organic
glue to mylar strips. The detector houses up to 10 kg of these isotopes.

Figure 1: Schematic of the NEMO 3 detector:  1) Source foil (up to 10 kg), 2) tracking
volume with 6180 drift Geiger cells 3) Calorimeter of 1940 plastic scintillators coupled to
low activity  photomultipliers.

The double beta decay source hangs between two concentric cylindrical

tracking volumes consisting of 6180 of open octagonal drift cells operating in



3

geiger mode. These cells run vertically and are staged in a 4, 2, and 3 row pattern

to optimize track reconstruction. The design of the drift cells calls for 50 µm

anode and cathode wires to prevent rapid aging. The tracking volume is filled with

a mixture of 96% helium and 4% ethanol which operates at a pressure of 7mbar

above the local atmospheric conditions. The typical length of a track is 1 m with

the radial and longitudinal resolution in each geiger cell being 0.2 mm (1σ) and

0.8 cm (1σ), respectively. Consequently, the precision of the position of the

emission vertex of the two electrons is 0.6 and 1 cm after track reconstruction in

the transverse and longitudinal directions, respectively.

The external walls of these tracking volumes form a calorimeter made of

blocks of plastic scintillator coupled to low radioactivity 3" and 5" Hammamatsu

PMTs. The energy resolution depends on the scintillator shape and the associated

PMT which range from 11% to 14.5% (FWHM) for 1 MeV electrons. The time

resolution is 250 ps (1σ) at 1 MeV. A laser calibration system permits daily

checks on the stability of the energy and time calibration parameters. The detector

contains 6180 drift cells and 1940 scintillators.

For charge recognition a solenoid surrounds the detector and produces a

field of 30 Gauss to identify and reject pair production events. Finally, external

shielding in the form of 20 cm of low activity iron reduces the gamma ray flux

and then 30 cm of borated water suppresses the flux of neutrons.

The NEMO 3 detector’s total mass is approximately 36 tons. All the

materials used in the detector have been selected for their high radiopurity by γ-
ray spectroscopy via Germanium detectors.

2.2. NEMO 3’s Self Study of Backgrounds

The combination of a tracking volume, calorimeter, and magnetic field

allow NEMO 3 to identify electrons, positrons, γ-rays and delayed-α particles.

Thus, the detector can measure the internal contamination of the source by the eγ,
eγγ or eγα channels as well as reject the external background via additional cuts

discussed later [4, 5].

An electron (or position) track in the detector corresponds to a curved trail

of activitated drift cells with at least one end of the track ending in a scintillator

which has registered energy. A γ-ray corresponds to a scintillator being triggered

without an associated track. Finally, an alpha particle is a short track without

curvature and possibly delayed by up to 1 ms.

In Figures 2, 3, 4 and 5 one can see events characteristic of some backgrounds.

Figure 2 shows pair production in the source foil. In Figure 3 one can see the

decay of some “internal contamination” which yields an electron followed by a

delayed alpha. Figure 4 shows an event which is known to come from an

“external” source. Finally, Figure 5 shows an event with one single e- and 3 γ
rays. The most sensitive channel [2] to see the external background caused
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Figure 2: e-e+ pair production           Figure 3: single e- and delayed α

Figure 4: one crossing electron           Figure 5: single e- and 3γ rays

by neutrons interacting with the detector is the one-crossing-electron channel

corresponding to Compton electrons created in a scintillator and then crossing the

detector. This kind of event is distinguished from the two electron events emitted

from the source by time-of-flight measurements.

2.3. The Double Beta Sources in NEMO 3

2.3.1. Isotopes and Radiopurity

Several sources were placed in the detector to study ββ(0ν) decay but also
to measure other processes such as ββ(2ν) decay, the Majoron decay mode and

the external backgrounds. Table 1 summarizes the isotopes currently housed in

NEMO 3 with their total mass and decay mode of interest.
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Isotope Enrichment Decay of Interest Mass Ge Spectrometer Measurements

of Isotope (g)
214

 Bi(mBq/kg)
208

 Tl(mBq/kg)
100

Mo 97% ββ(0ν) 6914 < 0.3 < 0.17
82

Se 97% ββ(0ν) 932 1.2 ± 0.5 0.4 ± 0.1
130

Te 89% ββ(2ν) 454 < 0.7 < 0.5
116

Cd 93% ββ(2ν) 405 < 2 < 0.8
150

Nd 91% ββ(2ν) 36.6 < 3.3 10 ± 2
96

Zr 57% ββ(2ν) 9.4 < 17 < 10
48

Ca 73% ββ(2ν) 7.0 < 4 < 2
nat

Te External γ bkg 207 < 0.17 < 0.17

Cu External γ bkg 621 < 0.12 < 0.03

Table 1: List of enriched isotopes placed in the NEMO 3 detector with limits on their
activity.

However, note that with the 
100

Mo, 
82

Se and 
116

Cd isotopes one can not only

search for ββ(0ν) decay, but also ββ(2ν) decay to the ground and excited states,

and the Majoron emission decay ββ(χ) modes.

For 
100

Mo, 0.1 million ββ(2ν) events per year will be recorded giving high

statistics for the angular distribution between the two emitted electrons and the

single electron energy spectrum.

The other enriched isotopes (
130

Te, 
150

Nd, 
96

Zr and 
48

Ca) were installed to

measure the ββ(2ν) half-life for comparison with the predictions of their

respective nuclear matrix element calculations. The natural tellurium and copper

are very pure, so that the events associated with these sources, in the 3 MeV

region, are induced by the external γ-ray flux and as such provide limits on this

flux.

Another interest in the varied sources is that for long range planning it is

useful to measure the contamination after enrichment and study purification and

source foil production for future improvements in NEMO 3.

2.3.2. Purification

The enrichment process failed to yield the desired levels of purity for the 
100

Mo so purification techniques were developed. These techniques started with the

enriched material which was a fine grey powder. In the end two techniques were

developed for purification and foil production.

The first technique is a physical process that was developed at ITEP. The

powder is melted by an electron beam and a crystal of pure material is drawn into

a long narrow cylinder. The crystal cylinders are then cut to a fiducial length and

foils are obtained by rolling the crystal in a vacuum between very pure steel

rollers. This process had a total yield of 2.479 kg of 
100

Mo for the experiment.

The second process was chemical in nature [3]. A flow chart of the

chemical purification technique is shown below. The chemistry proceeds as
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follows. The majority of the process was carried out in a class 100 clean room at

INEEL. The laboratory ware is comprised of cleaned quartz, Teflon and one piece

plastic disposible filter units. Quartz distilled nitric acid and ultra-purified

(18 MΩ) water were used to dissolve the Mo. Research grade He and H2 gases

were used during the Mo reduction cycle.

The expected purification factor is more than 100 as indicated by a study

made with a sample of natural molybdenum. This sample originally had an

activity of 28 mBq/kg before purification and less than 0.3 mBq/kg after the

process. If one applies this factor to the 
100

Mo used in NEMO 3, which had a

typical activity of 1.3 mBq/kg you expect the final product to be at a level of

0.013 mBq/kg or better. This process was applied to the 4.260 kg of chemically

purified 
100

Mo used in NEMO 3. This level of contamination will be measured

easily with the NEMO 3 detector through the eγγ and eγγγ channels. NEMO 3 is

sensitive to 0.002mBq/kg after one year of exposure.

3. Performances of the tracking detector

3.1. Generation of high-energy electrons crossing

An Am/Be neutron source, situated on the bottom of the detector, emits fast

neutrons, thermalised in the plastic of the scintillators ; then, a radiative capture of

these thermalised neutrons, in the copper present inside the detector produces a γ
whose energy can go up to 8 MeV. The Compton electron created by this γ can

cross all the detector, from one wll of scintillators the opposited one. Using

crossing electron with an energy higher than 4.5 MeV, we can study properly the

tracking reconstruction, since the effects of multiple scattering become negligible.

From these crossing electrons, we could determine the law between the drift

time and the drift distance, inside a Geiger cell, necessary for the transversal

reconstruction of the tracks : the drift time is, excepted for very short (≤ 200 ns) or

very long (≥ 1500 ns) drift times, roughly proportional to the racine square of the

drift distance, which is logical since the electrostatique field inside a Geiger cell is

inversement porportionnal to the drift distance.

Looking at the distribution of the residue, defined as the difference between

the drift distance and the transversal reconstructed distance, inside a Geiger cell,

we could détermine the average transversal and longitudinal resolutions for a drift

cell, equal to 0.4 mm and 0.8 cm, respectivement.

The charge recognition, ensured by the existence of the magnetic field, had

to be checked ; therefore, we used the same sample of electron crossing events,

and constrained the first part of the track – from the first wall of PM to the source

foil – to be reconstructed as an electron. Therefore, the study of the second part of

the track – from the source foil to the opposite wall – gives us the probability to

confuse an electron and a positron, equal to 3% at 1 MeV.
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3.1.2. Spatial resolution on the vertex

In each sector of the detector, there is a copper tube at the radius of the foil,

which runs vertically for the height of the detector ; during energy calibration

runs, each tube has inserted into it three 207Bi sources of 5 nCi, for a total of sixty

sources. As the position of these sources are very well-known, the study of the

two conversion electrons (0.5 and 1 MeV) emitted by these sources drives us to

the determination of the spatial resolution on the vertex of the tracks. In the 1-

electron channel, the transversal and longitudinal resolutions are equal to 0.2 cm

and 0.8 cm, respectively, at 1 MeV. In the 2-electron channel, useful compte tenu

of the signal searched by NEMO 3, they are equal to 0.6 cm and 1.0 cm,

respectively.

4. Radiopurity in 208Tl of the sources of 100Mo

4.1. Principle

Since a 208Tl nucleus emits, in 100% of its desintegration, a γ-ray with the

highest energy of the natural radioactivity (2.6 MeV), close to the endpoint of the

ββ process, situated around 3 MeV for the nuclei studied in NEMO 3, this nucleus

is the most dangerous background for ββ0ν study. Therefore, the pollution in
208Tl of the foils has to be very well known. The principle of the study lies on the

exploitation of the e-nγ (1 ≤ n ≤ 3) channels, with appropriated cuts on the energy

of the different particles, but also on the time of flight of them (through a χ2

analysis), in order to select events emitted in the source foil.

The cuts applied on the total energy of the photon(s), on the energy of the

electron, on the χ
2
internal  that characterizes temporally events emitted in the foil

sources, the efficiencies related to the three channels, are shown in Table 2. We

can consider that the possible background contribution to this analysis, which

consists in external or internal 214Bi and external 208Tl, is negligible with these

cuts.

Channel       Total energy

            of the photons (MeV)

Energy of

The electron

χ2
internal

Efficiency (%)

e-γ                           ≥ 2.3 0.5 ≤ Ee– ≤ 1.3 6.7 0.294 ± 0.005

e-2γ                         ≥ 2.3 0.5 ≤ Ee– ≤ 1.3 13.8 0.369 ± 0.006

e-3γ                         ≥ 2.6 0.5 ≤ Ee– ≤ 1.3 16.3 0.114 ± 0.003

Table 2: Characteristics of the differents channels studied for the determination of the
208Tl pollution inside the 100Mo source: cuts applied and efficiency (with statistical error),

determined through simulated events.
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4.2. Preliminary results

Using 900 hours of data, taken in unstable conditions, we get the upper

limits on the 208Tl pollution of the 100Mo sources shown in Table 3 ; if we

combine the three channels (eγ, eγγ and eγγγ) considering that the contribution of

the other backgrounds (external or internal 214Bi and external 208Tl) to the search

for an internal 208Tl signal is negligible, the upper limit on the 208Tl activity of

the 100Mo source foils is equal to 68 µBq/kh, at 90% C.L.. This limit, already

better than the one measured by γ-ray spectroscopy using HP Ge detectors (≤

110 µBq/kg) is not so far from the limit required by the NEMO 3 radiopurety

criteria (≤ 20 µBq/kg). We expect to reach this last limit within four months of

data.

Channel                 Activities (90% C.L.)

e–γ                               ≤ 85 µBq/kg

e–2γ                             ≤ 78 µBq/kg

e–3γ                             ≤ 86 µBq/kg

Table 3: Upper limits (90% C.L.) on the reconstructed activities in 208Tl of the 100Mo

source foils, using a sample of events representing 900 hours of acquisition.

5. Double beta analysis

Using the same sample of events, representing 900 hours of first test data,

we could perform preliminary analysis of ββ2ν and ββ0ν signals. In this paper,

this analysis is presented for 100Mo only. Therefore, the events selected have to be

emitted on the same point of a 100Mo foil: geometrical cuts on the vertex of the

electrons emitted and temporal cuts (based on a χ2 analysis) devoted to the

selection of electrons emitted inside the source foils, are applied. Figure 6 shows a

typical e-e- event.

Figure 6: an e-e-event back to back
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Using the sample of events described below, representing 15107 events, we

performed a preliminary analysis of ββ2ν decay. The spectrum of the sum of the

kinetic energies of both electrons is shown in Fig. 7, and the angular distribution

is shown in Fig. 8, there is a good agreement between data and Monte-Carlo. The

half-life deduced from these data is equal to 9. ± 0.08 (stat.) ± 1.3 (syst.) 1018y : it

is already of the same order of magnitude than the results give by NEMO2. The

radio signal over background is greater then 100.

Figure 7: e-e- energy distribution         Figure 8: e-e- angular distribution

Conclusion

With the first test runs taken by the NEMO 3 experiment, we have

measured the main characteristics of the detector, in good agreement with what

we expected: the energy and time calibration have been performed and the

performances of the tracking detector have been determined. Moreover, the

preliminary analysis of the 208Tl pollution of the 100Mo source foils gave an upper

limit on this pollution, equal to 68 µBq/kg, at 90% C.L., the limit required by

NEMO 3 should be reached within four months of data. Finally, the ββ2ν
ananlysis show a good agreement between Monte Carlo and data, and will be

applied to the data taken by the full detector, in stable conditions.
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