Results from FOPI on nuclear collective flow in heavy ion collisions at SIS energies

N. Bastid

To cite this version:

HAL Id: in2p3-00022230
http://hal.in2p3.fr/in2p3-00022230
Submitted on 9 Sep 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Results from FOPI on Nuclear Collective Flow in Heavy Ion Collisions at SIS energies

1 Motivations

2 FOPI detector overview

3 Experimental systematics
 • Directed flow
 • Elliptic flow

4 Data versus IQMD
 • Sensitivity to σ_{nn}?
 • Sensitivity to EoS?

5 Anisotropic flow from Lee-Yang Zeroes

6 Conclusion

Ca + Ca, Ni + Ni, Ru + Ru, Xe + CsI, Au + Au
90A MeV - 2A GeV
Motivations & Observables

Probing hot & dense hadronic matter

→ Nuclear Equation of State

- Collision dynamics
- In-medium effects: σ_{nn}, MDI

Global flow: $p_{x}^{\text{dir}} = \sum \text{sign}(y_{\text{cm}})Zu_{x} / \sum Z, \quad u_{x} = \beta_{x}\gamma$

Flow angle: θ_F, Aspect ratios: λ_{31} & λ_{21}

Differential flow: $\frac{dN}{d\varphi'} \sim 1 + 2v_{1}\cos(\varphi') + 2v_{2}\cos(2\varphi'), \quad \varphi' = \varphi - \varphi_{R}$
Systematics of Directed Flow & Stopping

Stopping:
\[\frac{b}{b_{\text{max}}} < 0.15 \]
\[\text{vartl} = \frac{\sigma^2(y_t)}{\sigma^2(y_z)} \]

Sideflow:
\[\frac{b}{b_{\text{max}}} \approx 0.3 - 0.4 \]
\[\text{max} \left[(p_{x\text{dir}}^{(0)}) \right] \]

- Correlation between stopping & flow & pressure
- Evidence for incomplete stopping

- Stopping: maximum \(\sim 400\text{A MeV} \)
 decreasing towards higher beam energies
 rising with system size, no saturation
 below expectations from hydrodynamics
Systematics of Elliptic Flow

\begin{itemize}
 \item Transition from in-plane to out-of-plane preferred emission at low energies
 \item Maximum \(\sim 400A \text{ MeV} \) (depending on Pt)
 \item \(v_2 \) decreasing toward higher beam energies
\end{itemize}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{systematics.png}
\caption{\textbf{Au + Au, \(|y^{(0)}| < 0.1 \)}

\textbf{Z=1, all \(p_t^{(0)} \)}

\textbf{A\leq4, xA \(p_t^{(0)} > 0.8 \)}

\textbf{E_{beam}/A (GeV)}

\item Interplay between fireball expansion & spectator shadowing
\item Passing time decreasing at high beam energies
\item Influence of collision dynamics
\item Information on different stages of the collision
 \[\Rightarrow \] High \(p_t \) particles messengers of high density phase

Shape parameters: Sensitivity to in-medium σ_{nn}?

- $\theta_F \rightarrow$ Directed flow
- $\lambda_{31} = f_3^2/f_1^2 \rightarrow$ Directed flow & Stopping
- $\lambda_{21} = f_2^2/f_1^2 \rightarrow$ Elliptic flow

Ru (400 AMeV) + Ru - Proton-likes - $< b_{geo} > = 1.1$ fm

Data favour in-medium σ_{nn} close or slightly higher than σ_{nn}^{free}

\Rightarrow Consistent with results on nuclear stopping

Sensitivity to the EoS parametrization

Soft EoS (with MDI & $\sigma_{\text{nn}}^{\text{free}}$) in best agreement with directed flow data for Au + Au & Xe + CsI at 400 AMeV

Difficulties of the model to reproduce directed flow versus system size & low E_{beam} (90A MeV)

Proton elliptic flow in qualitative agreement with IQMD

Light fragments & IMF (Z>2) abundantly produced at SIS energies

Bound protons/all protons:
\[\rightarrow 67\% \ (400A \ MeV) \rightarrow 33\% \ (1500A \ MeV) \]

\[\Rightarrow \] Total baryon elliptic flow not described by any EoS
Flow from Lee-Yang Zeroes method

Genuine flow directly from correlation between many particles
⇒ Non-flow correlations due to quantum statistics, resonance decays, momentum conservation effects, ..., not neglected

□ Generating function:
\[
G(ir) = \langle \prod_j [1 + ir\omega_j \cos(n(\varphi_j - \theta))] \rangle_{\text{events}}
\]
where \(\ln G(ir) = \sum_{k=1}^{+\infty} c_k \frac{(ir)^k}{k!} \), \(c_k = \text{cumulant} \)

□ Find first zeroe (minimum), \(r_0^\theta \), of \(|G(ir)| \)
\(r_0^\theta \rightarrow \text{Asymptotic behaviour of } c_k \text{ in the expansion of } \ln G(ir) \)

□ “Integrated” flow: \(V_{\infty}^\theta \{\infty\} = \frac{j_{01}}{r_0^\theta} (\& \text{ averaged over } \theta) \)

□ Resolution parameter: \(\chi = \frac{V_{\infty} \{\infty\}}{\sigma} \)
→ \(\chi > 1 \): Lee-Yang zeroes should be used
→ \(0.5 < \chi < 1 \): Important to optimize weights
→ \(\chi < 0.5 \): Large statistical errors, better to use cumulants

□ Differential flow:
→ Deduced from \(V_{\infty}^\theta \{\infty\} \text{ in harmonics multiples of } n \)

Detailed description in:

N. Borghini et al., nucl-th/0402053 (2004)
First application of Lee-Yang theory to FOPI data: Ru + Ru @ 1.69A GeV

- $\chi = 1.45 \Rightarrow$ Lee-Yang Zeroes theory can be used
- Clear indication of collective effects

- Non-flow effects from 4-particle correlations negligible
- Evidence for (small) momentum conservation effects on v_1
- Non-flow effects negligible for higher harmonics

Ongoing development \rightarrow π^\pm flow & influence of Δ decay?

(110 Millions central Ni + Ni @ 1.93A GeV)
Conclusion

Complete set of data at SIS energies measured with FOPI:

- Variation of beam energy from 90A MeV to 2A GeV
- Variation of system size from Ca to Au
- Variation of asymmetry in isospin (Ru/Zr)
- Variation of asymmetry in system size (Au/Ca & Pb/Ni)

- Main dependences of directed & elliptic flow are available
- New procedure of Lee-Yang Zeroes (& cumulants at SIS) successfully used for first time to analyze flow
- Correlations from non-flow effects negligible for protons & composite particles
- Most features of flow data reproduced qualitatively well by IQMD model but not in detail

- EoS is influencing different observables
- EoS is linked to in-medium NN interaction
 ⇒ momentum dependence, cross sections
- Non-equilibrium effects important