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Abstract 

In this paper we study the impact of executing a medical image database query application on 
the grid. For lowering the total computation time, the image database is partitioned in subsets to 
be processed on different grid nodes. A theoretical model of the application computation cost and 
estimates of the grid execution overhead are used to efficiently partition the database. We show 
results demonstrating that smart partitioning of the database can lead to significant improvements 
in terms of total computation time. 

1 Introduction 

Medical imaging is data intensive due to the size of medical images. Digital medical images 

represent tremendous amounts of data for which automated indexing and search tools are 

increasingly needed [12]. With the arising of medical record databases in hospitals, physicians 

have access to precious datasets containing an history of sample data, diagnoses, medical 

interventions, and results, that could help in indexing and analyzing new data. However, tools are 

needed to manipulate and search for relevant data in these databases. Due to the amount of data 

(each medical image represents MB to GB of data) and the complexity of image analysis 

algorithms, these tools are both data and computationally intensive [6]. 

Computer grids are promising to handle such applications. Grids provide massive processing 

power and a potential for a high level of coarse grain parallelism well suited to tackle queries on 

full medical image databases in a reasonably short time compatible with clinical practice. However, 

grid technologies are still in their youth and many problems have to be solved before they can be 

used in clinical environment. Beside the security issues that are fundamental for this field [2][11], 

the potential parallelism of grids may be difficult to exploit. In particular, the overhead introduced 

by the grid middleware and the need to deal with resources distribution may badly impair the 

performances of some applications. 

 
1 This work is partly funded by the French ministry for research ACI-GRID program [4]. 



In this paper we focus on a medical image similarity measurement application. Image similarity 

measures are used in various medical image registration and recognition algorithms [9][10]. They 

estimate quantitatively the similarity between the content of two images. The typical usecase for 

this application is a physician searching for known medical cases close to a case he has to 

diagnosis: he wants to find in the database all images with a close correlation to a sample image 

he is studying to be able to confirm his diagnosis by looking at other similar records.  To perform 

efficient queries on a grid, the system need to partition the database in subsets that will be 

independently processed on different processors. We study the trade-off between distributing a 

small number of large jobs dealing with large datasets and a large number of small and short jobs. 

2 Application description 

We assume that this application is running on a grid of standard PC machines connected to a 

local area network. The medical images are available from a medical data server recording both 

images and metadata associated to these images. Figure 1 illustrates this application. The user 

first select a sample image. A dataset of candidate images (i.e. images of the same region body, 

acquired with the same imager, etc.) is determined by selecting images on their metadata in the 

database. The candidate images are then transported to the grid for analysis. For each candidate 

image, a similarity measurement is computed between the candidate and the user sample. This 

measure results in a score attributed to the candidate. Once all candidates have been processed, 

the scores are ranked and the user can retrieve the highest score images corresponding to the 

most similar cases stored in the database. 
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Figure 1. Content-based query on medical images 

Figure 2 shows an example of the algorithm execution. The upper left image is the user sample 

image (a Magnetic Resonance Image of the thorax). The other images are candidates (all 

classified as thorax MRI in the system) ranked by their similarity score (2 high scores, 2 low 

scores). 



         

                                                

Figure 2. From up to down and left to right: a sample image and ranked candidate images with 

high and low similarity scores 

Several similarity measures may be used to measure the differences between images. 

Although each measurement is not very computer intensive, the comparison of a sample image 

against a complete database is intractable, in a reasonable time, on a single computer due to the 

size of medical databases. The actual cost of such a computation depends on several parameters 

such as the input image size and the computation precision desired as detailed in section 5. 

Moreover, a job may be started for each candidate image but one might want to execute one job 

computing several scores for a subset of the input candidates, thus loading the system with a 

reduced amount of jobs. This application is therefore very scalable and the optimization of the 

computation cost on a distributed system is not obvious. 

Executing the application using a grid middleware introduces a significant overhead on the 

computation cost. The grid reduces the computation cost by introducing parallelism but the counter 

part is an increase in data manipulation and job scheduling cost. This overhead may be negligible 

for very long processing jobs but it is not the case when each job computation time is below a 

given threshold. A trade-off has therefore to be found: either to submit a small number of large 

jobs, each dealing with a large subset of the input data, or a large number of small jobs, each 

dealing with a small subset or even a single image. Reducing the number of jobs reduces the 

system overhead while lowering the potential application parallelism. There are also implications in 

terms of data replication as described in the next section. Figure 3 shows the typical execution 

time for a same query executed at different granularities (the X axis representing the granularity 

level). An optimal value significantly improves the computation time. 



 

Figure 3. Time (in seconds) needed to answer a query depending on the application granularity 

3 Middleware 

The middleware is the software layer offering basic services to access a grid infrastructure and 

hiding the system complexity to the user. The middleware and its capabilities have a significant 

impact on the application computation time. Although grid technologies are still in their youth, the 

growing activity around grids lead to many middleware or specialized middleware components 

development. Early hour middlewares focused on embarrassingly parallel applications [3] but more 

sophisticated approaches are being proposed to deal with different problems [1]. An important 

component for medical applications is the data manager. Our application manipulates both data 

and associated metadata. All medical data are sensitive and their access should be strictly 

controlled on a grid, which is something difficult to achieve on a distributed environment. 

Our application has been developed on our own middleware layer, after earlier testing on the 

European DataGrid project middleware [5]. Our middleware is designed to be very light weighted 

in order to remain easy to use and maintain. It was designed to access cluster of PCs available in 

laboratories or hospitals. Therefore, it does not make any assumption on the network and the 

system installation except that independent hosts with their private CPU, memory, and disk 

resources are connected through an IP network and communication is possible on one port with 

each machine. This middleware is currently in an early development phase although it provides 

the basic functionalities needed for such an application. It is written in C++, C doubtlessly being 

the ideal language for system programming. It is built on a few standard components such as the 

OpenSSL library [8] for authenticated and secured communications, and the MySQL C interface to 

access the MySQL database server [7]. 

Our middleware includes a data manager and a job controller. A daemon is running on each 

host (later on referred to as grid node) to receive data and job related requests. A farm manager is 



the entry point in the system. The user can connect to the farm manager from any host through a 

programmable user interface or command line tools. If she is properly authenticated, her request is 

transmitted to a grid node for processing. The client then make direct connection to the grid node 

for data or job information exchange to release the farm manager. As can be seen, this solution is 

not a real grid implementation: it is not scalable yet as it is centralizing access on a single farm 

manager. This is meant to evolve in future developments. However, the farm manager is 

developed to remain as light weighted as possible, delegating every possible actions to the grid 

nodes. The middleware is working on an active policy. Each time a worker node is started or 

finishes a job, it declares itself to the farm manager. The farm manager keep track of the busy and 

ready nodes. Once a node becomes ready, it can receive requests from the farm manager. 

3.1 Authentication 

Each user is authenticated through an X509 certificate. The certificate is signed by a 

certification authority. A farm manager or a grid node will only accept valid and signed certificates. 

All communication between the user and the nodes are encrypted using the OpenSSL public key 

interface. Each grid node also authenticates itself with a certificate. The client interface or the farm 

manager will not accept communication with unauthenticated hosts for security reasons. 

3.2 Data management 

Since we do not make any assumption on each host file system, each host is supposed to 

dispose of its own storage resources, not necessarily visible from the other hosts. At creation time, 

a grid node declares its available space to the farm manager and will send frequent updates of this 

value. The farm manager holds a catalog of all files known to the middleware. Each file is 

described by a unique grid wide identifier. Thus the user can refer to a file without needing to know 

its physical location. A file becomes known to the grid once it has been registered: the user 

transfers the file from its local machine or any external storage through the middleware interface. 

The file is registered (its identifier is written in the farm manager files table) and a physical copy is 

stored on a grid node. The farm manager holds a table giving associations between the file 

identifier and its physical replicates. Several replicates may exist on several nodes for a file. 

Indeed, when an host is responsible for executing a job, it needs to access a set of files 

manipulated by this job. Since all job files are not necessarily located on a single node, they are 

first copied onto the target node before the job is started. These multiple instances of a file are 

then kept on the nodes, unless disk space is lacking, for caching in case of subsequent use. This 

replication of files causes an obvious problem of coherence that is not handled in the current 

implementation: the user is responsible for creating a new file in case of modification. Our 

middleware controls the access to file authorization through the user certificate subject. The 



subject string is stored in the farm manager table on file registration allowing the system to control 

file access at each user level. 

3.3 Job control 

The farm daemon is also responsible for assigning jobs to grid nodes. When the user submit a 

job, he can specify some system requirements and the files needed for this job to execute. The 

farm manager will search for possible target nodes matching the system requirements.  It sorts the 

possible candidates list on (1) their readiness, (2) the amount of data that has to be transferred 

before starting the job, and (3) their processing power. After this basic scheduling, the job is 

assigned to the first host that becomes ready in the list. The farm manager thus orders automatic 

replication of files on need. Replication is actually done directly between the grid nodes owning 

and receiving a replica. 

4 Setting the problem 

Given the middleware registration procedure, the execution time for a job includes: (1) the file 

registration time if the job requires file from outside the grid, (2) the job scheduling and queuing 

time tsch, (3) the time for files replication when needed trep, and (4) the job execution time tjob.  In this 

paper we will ignore the job registration time that depends on external components and we will 

consider that all needed files have been pre-registered. 

Let us now consider the image similarity measurement application where N candidate images 

should be tested against the user sample image. For optimizing the computation time, we might 

want to process data by subset of k images, resulting in N/k jobs to be processed. Each job is the 

sequential execution of k similarity measures and its total execution time is therefore ktjob. 

Assuming that a sufficient amount of resources is available to process all jobs in parallel, the total 

parallel computation time will be ktjob while the sequential computation time would be Ntjob. 

The grid overhead is the time needed to schedule the jobs and replicate the files for each of 

them: N/K(tsch + trep). Our purpose is to find the optimal value for k such that: 

k

kttt
k
N

k jobrepsch ++= )(min '  (1) 

In order to estimate the optimal value for k we need to estimate tsch, trep, and tjob. tjob can be 

derived from the insight of the algorithm as shown in section 6. tsch and trep are dependent on many 

parameters and we have been measuring suitable values from testing runs. 

5 Similarity measurements cost 

5.1 Similarity measures 



The complexity of all similarity measures depends on the size and the dynamic range of the 

medical images processed. Furthermore, the complexity of computations varies from one measure 

to another. We give here a brief overview of the similarity measures implemented for this test and 

we estimate the computational complexity. All similarity measures proposed first need the 

computation of the joint histograms of the images to compare. Then the similarity measure itself is 

estimated. 

Let I and J denote the two images to compare. Both images are supposed to have the same 

size with length l, height h, and number of slices s. Thus the total number of voxels per image is n= 

l x h x s.  Medical images are gray level images usually coded using 8 or 16 bits. Let r ∈ [28,216] be 

the dynamic range of the image gray level values. 

We denote nij the number of voxels with intensity i ∈ [0,r[ in the first image and j ∈ [0,r[ in the 

second image (i.e. the cell (i,j) of the joint histogram). Let us define: n = ∑ij nij the total number of 

voxels, and ∑=
ij

ij
ij n

n
p  the normalized number of voxels in cell (i,j) of the joint histogram. We 

further define: 

• pi = ∑i pij the lines normalized sum 

• pj = ∑j pij the columns normalized sum 
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Using the above notations, we have implemented 6 common similarity measures: 

• The sum of differences SD: ∑∑ −=
i j
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• The sum of squared differences SSD: ∑∑ −=
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• The mutual information MI: ∑∑−=
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For cost estimation, we will consider a time unit c roughly corresponding to the time needed for 

a executing floating point operation on the microprocessor (i.e. c is in the order of few 

nanoseconds on a 1GHz processor). 

5.2 Joint histogram computation cost 

The joint histogram is a r x r sparse matrix. Its construction means the computation and storage 

of all pij values. The joint histogram can be stored in a 2 dimensions array if r is small enough. 

However, r = 216 would imply a 232 cells histogram which is too large to fit in most machines 

memory. Therefore, we store the large sparse histograms as an array of r lines, each made of a 

linked list of non null column cells. In practice, we set the switch threshold to r = 212: for r ≤ 212, the 

joint histogram is a 2 dimensions matrix while for r > 212, the joint histogram is a vector of lists. 

Therefore, the joint histogram computation cost and access time depends on r. 

The joint histogram construction involve the initialization of the  cells, the images parsing to 

compute the nij and the normalization to compute the pij.  

Joint histogram for r ≤ 212 

The joint histogram computation using an r x r array involves: 

• The initialization (allocation and affectation) of the r2 matrix cells. The unitary cost for 

allocating and initializing a cell is estimated to 5c from empirical measurements. 

• The parsing of all image voxels (n retrieval and additions). The unitary cost is estimated 

to 12c. 

• The normalization of all coefficients (r2 retrieval and divisions). The unitary cost is 

estimated identical as above: 12c. 

This sums to: 

H(n, r ≤ 212) = 5 r2c + 12 nc + 12 r2c = (17 r2 + 12n)c (2) 

Joint histogram for r > 212 

The joint histogram computation using a sparse matrix involves: 

• The initialization (creation of r empty lists). 

• The parsing of all n image voxels and the histogram update.  

• The normalization.  

The unitary costs for all these operations are to some extent implementation dependent and 

difficult to determine theoretically due to the compiler optimizations while generating code. 

Therefore, we have made measurements of the average costs in our code, leading to the following 

estimates: 

• Each list creation costs 20c. 



• The cost of each update in the histogram depends on the pixel value (all lists are not 

evenly balanced) averages to 5000c.  

• The normalization of each histogram row averages to 4000c. 

This sums to: 

H(n, r > 212) = 20rc+5000nc+4000rc = (4020r+5000n)c (3) 

Assembling equations 2 and 3, the construction cost is therefore: 
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5.3 Similarity computation cost 

The similarity measures computation cost is highly dependent on the cost for accessing the pij 

histogram value. Based on the above mentioned assumptions, this cost is estimated to be 12c for 

r<212. In this case, the computation cost of each similarity measure may be estimated. 

Let us first estimate the computation cost for the statistical values pi, mI, σI, mI|j, and σI|j. Let C() 

designate the cost function: 

• set of pi, ∀i:  C(pi) = r C(∑i pij) = r (r x 12c) = 12r2c 

• mI or mJ:  C(mI) = C(mJ) = C(∑i ipi) = r C(ipi) = r(c + 12rc) = 12r2c + rc ≃ 12r2c 

• σI or σJ, given that mI or mJ, and the set of pi ∀i have been precomputed: C(σI) = C(σJ) = 

C(∑i (i - mI )2 pi) = rC((i - mI)2 pi) = 3rc 

• subsequently, the computation time for mI, mJ, σI, and σJ sums up to: C(mI, mJ, σI, σJ) = 

24 r2c + 6rc ≃ 24 r2c 

• the conditional means computation cost is: C(mJ|i) = C(mI|j) = 
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• therefore, the total cost for conditional means and standard deviations is: C(mJ|i, σJ|i) = 

28 r2c 

Given the above statistics computation cost, it is now possible to estimate the similarity 

measures cost: 

• Sum of differences: crcpCrjipCrSDC ij
i j

ij
22 15)3)((),( =+=
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• Sum of squared differences: Following the same computation as above: 



C(SSD, r) = C(SD, r) = 15 r2c (5) 

• Coefficient of correlation:  
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• Ratio of correlation: 
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• Mutual information:  
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• The total computation cost for a similarity measure M applied over two images with n 

voxels and dynamic range r ≤ 212 is therefore: 

C(M, n, r) = H(n, r) + C(M, r) (10) 

where H(n, r) is defined in equation 4 and C(M, r) is one of equation 5 to 9. 

For r > 212, the theoretical cost for similarity measures is made difficult due to the use of the 

sparse matrix. Indeed, the sparse matrix fullness depends on the actual images gray level 

dispersion. This matrix fullness has a direct effect on the pij retrieval time and therefore on the 

overall computation time. On one hand, the sparse matrix structure increases the time for the 

retrieval of a pij, but on the other hand, as we only consider non zero values of the histogram, the 

number of operations involved in similarity measures is often far less than n or n2 in practice.  

In our experiments on 16 bits voxel images (see Table 2), it appears that the similarity 

computation time is much smaller than the joint histogram computation time and that it is in the 

order of magnitude of the computation time for 12 bits voxel images. We will therefore make the 

approximation: 

C(M, r = 216) ≃ C(M, r = 212) (11) 

5.4 Experimental validation 

We have used 3 sets of images for validating the computation cost model as summarized in 

Table 1. Each images gray level range may be undersampled prior to processing. This loss of 

precision brings an improved computation time. Following experiments are therefore using 

undersampled version of the original images to 8 and 12 bits when possible. 



 Set 1 Set 2 Set 3 

Number of images 124 238 456 

Dimensions 256x256 181x217x181 181x217x181 

Size (n) 65536 7109137 7109137 

Precision (r) 29 216 212 

Table 1. Test images size and gray level ranges. 

Table 2 shows the measured computation time (in seconds) for the similarity measures 

(excluding image I/O and undersampling) on pairs of the 3 above mentioned image datasets, the 6 

similarity measures proposed, and every possible undersampling to 8, 12, and 16 bits. The times 

where measured on a 800MHz Intel Pentium III processor. 

n r Joint histogram SD SSD CC RC Woods MI 

Set 1 28 0.030 0.016 0.020 0.033 0.030 0.031 0.040

65536 29 0.063 0.041 0.047 0.076 0.070 0.071 0.087

Set 2 28 0.778 0.017 0.020 0.032 0.030 0.032 0.035

7109137 212 7.897 5.895 6.562 8.277 8.150 7.972 8.029

 216 693.0 4.308 4.405 7.321 9.644 9.709 11.27

Set 3 28 1.021 0.017 0.025 0.041 0.036 0.037 0.071

7109137 212 8.943 5.031 5.600 9.058 8.677 8.670 9.946

Table 2. Computation times (in seconds) for joint histogram and similarity measure computation. 

Table 2 may be compared to the theoretical values computed using equations 4 to 11 with c = 

20ns. Results shown in Table 3 are consistent with Table 2 and the model may be used for 

predicting computation time in an optimized partitioner. 

n r Join histogram SD SSD CC RC Woods MI 

Set 1 28 0.038 0.020 0.020 0.041 0.037 0.037 0.050

65536 29 0.073 0.051 0.051 0.105 0.095 0.095 0.129

Set 2 28 1.728 0.020 0.020 0.041 0.037 0.037 0.050

7109137 212 7.410 5.033 5.033 10.40 9.395 9.395 12.75

 216 716.0 5.033 5.033 10.40 9.395 9.395 12.75

Set 3 28 1.728 0.020 0.020 0.041 0.037 0.037 0.050

7109137 212 7.410 5.033 5.033 10.40 9.395 9.395 12.75



Table 3. Theoretical computations times (in seconds) computed from 4 to 11 with c = 20ns. 

6 Submission cost 

The job submission cost is more difficult to model as it depends on a large number of 

parameters and inter-system interactions. Figure 4 shows two curves measured at run time that 

we are using to estimate the submission parameters. On the left is shown the time needed for files 

replication. On the right is shown the scheduling time curve. 
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Figure 4. Left: replication time, right: scheduling time. 

The file replication cost linearly depends on the image size n. The larger the job granularity is, 

the higher the number of files to transfer. Therefore, we make the assumption that the replication 

cost linearly depends on k and we estimate the scheduling time such that: 

trep = n(p1k + p2)  (12) 

where p1 and p2 are estimated by linear regression on the data shown in Figure 4. We found 

p1=5.19 10-7 and p2=1.572 10-6 in this case. 

The scheduler time cost is clearly non-linear. It depends on the number N/k of jobs the 

scheduler has to deal with. Given the shape of the scheduling time curve, we match it with a 

quadratic function: 
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A non-linear regression iterative procedure lead to: p3=1.02, p4=0.08, and p5=-54.6. 

7 Experiments 

Figure 5 shows the measured computation time (plain line) and the estimated time (dashed 

line) in function of the granularity k for two experiments. The former involves 144 tridimensional 

images of size n = 181x217x181 and the later 100 tridimensional images of size n = 150x160x65.  

The 16 bits images where undersampled to 12 bits (r = 212) and the coefficient of correlation 



similarity measure was used: tjob = 48r2c+12nc. Inserting this value into equation 1 lead to the 

dashed-line estimates shown in Figure 5. 
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Figure 5. Estimated computation time versus measured computation time 

All experiments have been lead on a farm of 8 Pentium III 1GHz PCs with 1GB of RAM and 

10GB of free disk space. The estimated curves are rather approximate but sufficient to choose a 

reasonable value of k. However, the model failed to predict good values of k in the case of much 

smaller images. The estimates of trep, and tsch that were done on large images are probably not 

valid in this case. The model requires further refinements to adapt to different situations. 

8 Conclusions 

Application granularity control is important to optimize the performance of parallel applications 

with relatively short jobs in grids. However, the control at application level requires an in-depth 

study of the algorithm complexity that might prove to be difficult for some algorithms. Further work 

is needed to determine whether this could be done at the middleware level by monitoring the 

running applications and estimating the computation cost from measured data. 
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