
�>���G �A�/�, �B�M�k�T�j�@�y�y�y�k�8�R�e�R

�?�i�i�T�,�f�f�?���H�X�B�M�k�T�j�X�7�`�f�B�M�k�T�j�@�y�y�y�k�8�R�e�R

�a�m�#�K�B�i�i�2�/ �Q�M �R �.�2�+ �k�y�y�8

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�G�>�*�# �*�Q�K�T�m�i�B�M�; �h�2�+�?�M�B�+���H �.�2�b�B�;�M �_�2�T�Q�`�i
�_�X ���M�i�m�M�2�b �L�Q�#�`�2�;���- ���X �6�`���M�+�� �"���`�#�Q�b���- �A�X �"�2�/�B���;���- �:�X �*�2�`�M�B�+�+�?�B���`�Q�- �1�X

�*�Q�`�`�2�� �/�2 �P�H�B�p�2�B�`���- �C�X �J���;�M�B�M�- �G�X �J���M�?���2�b �/�2 ���M�/�`���/�2 �6�B�H�?�Q�- �C�X �J���`�[�m�2�b �/�2

�J�B�`���M�/���- �>�X �S�2�b�b�Q�� �G�B�K�� �C�m�M�B�Q�`�- ���X �_�2�B�b�- �2�i ���H�X

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�_�X ���M�i�m�M�2�b �L�Q�#�`�2�;���- ���X �6�`���M�+�� �"���`�#�Q�b���- �A�X �"�2�/�B���;���- �:�X �*�2�`�M�B�+�+�?�B���`�Q�- �1�X �*�Q�`�`�2�� �/�2 �P�H�B�p�2�B�`���- �2�i ���H�X�X
�G�>�*�# �*�Q�K�T�m�i�B�M�; �h�2�+�?�M�B�+���H �.�2�b�B�;�M �_�2�T�Q�`�i�X �k�y�y�8�- �T�T�X�o�A�@�R�y�9�X ���B�M�k�T�j�@�y�y�y�k�8�R�e�R��

i

Table of Contents

Chapter 1 Introduction..1

1.1 Requirements and scope...2
1.2 Overview...2

Chapter 2 LHCb Software ..5
2.1 Introduction...5
2.2 Gaudi Architecture & Framework..5

2.2.1. Generic component model with well defined interfaces.........................6
2.2.2. Separation between data and algorithms ..7
2.2.3. Transient and persistent data..7
2.2.4. Transient data stores..7
2.2.5. Algorithms ..8
2.2.6. Tools...8
2.2.7. Services...9
2.2.8. Core Services ..9

2.3 The LHCb Event Model...10
2.3.1. Objects in the Transient Event Store.. 10
2.3.2. Relationship between objects... 11
2.3.3. Gaudi Object Description .. 12
2.3.4. Buffer Tampering.. 13

2.4 Conditions Database Services ..14
2.4.1. Database access... 14
2.4.2. Update Mechanism.. 15
2.4.3. COOL Library... 16

2.5 Geometry Framework Services ..16
2.5.1. Detector Description Service ... 16
2.5.2. Misalignment in the Conditions Database.. 18

2.6 Data Processing Applications...18
2.6.1. Gauss, the simulation application .. 19
2.6.2. Boole, the digitization application ... 22
2.6.3. Brunel, the reconstruction application.. 24
2.6.4. Gaudi application executing in the on-line environment 26
2.6.5. L1/HLT, the on-line trigger applications.. 28
2.6.6. DaVinci, the analysis framework... 30

2.7 Interactive Analysis ...32
2.7.1. Bender, an interactive physics analysis tool...32
2.7.2. Panoramix, the visualization application.. 33

Chapter 3 Distributed Computing ...37
3.1 Introduction ...37
3.2 Software environment and distribution...37
3.3 DIRAC ..39

3.3.1. DIRAC architecture... 39
3.3.2. Computing Resources.. 40
3.3.3. Configuration Service.. 41
3.3.4. Monitoring and Accounting... 42
3.3.5. Workload Management System... 42
3.3.6. Data Management System ... 43
3.3.7. Services implementation.. 44
3.3.8. Interfacing DIRAC to LCG ... 45
3.3.9. LHCb Workflow Description .. 46

ii

3.4 GANGA - distributed analysis...46
3.4.1. A typical GANGA session... 47
3.4.2. Implementation ... 48
3.4.3. Required Grid services .. 50

3.5 Bookkeeping..51
3.5.1. The Data Model .. 51
3.5.2. Views to the Bookkeeping...53
3.5.3. The BKDB Application Programming Interface 53
3.5.4. Experience with the BKDB ... 54
3.5.5. Alternative Implemetation... 54

Chapter 4 Workflow and Computing Models..57
4.1 Introduction ...57
4.2 Logical Dataflow and Workflow Model...57

4.2.1. RAW data ... 58
4.2.2. Simulated data... 58
4.2.3. Reconstruction .. 59
4.2.4. Data stripping.. 59
4.2.5. Analysis .. 60

4.3 Data Processing and Storage Requirements..61
4.3.1. Online Requirements... 62
4.3.2. Reconstruction Requirements .. 63
4.3.3. Stripping Requirements... 64
4.3.4. Simulation Requirements .. 65
4.3.5. User Analysis Requirements.. 66

4.4 Computing Model..67
4.4.1. Introduction... 67
4.4.2. Requirements for 2008..69
4.4.3. Requirements for 2009..73
4.4.4. Requirements for 2010..75

4.5 Profiles ..77
4.6 Summary ...79

Chapter 5 LHCb & LCG...81
5.1 Introduction ...81
5.2 Use of the LCG Grid..81

5.2.1. Production... 81
5.2.2. Organised analysis... 84

5.3 Baseline Service Needs..87
5.3.1. Guidelines for services .. 87
5.3.2. Data management services .. 88
5.3.3. Workload Management System... 89

Chapter 6 Organisation, Planning & Responsibility..91
6.1 Organisation ..91
6.2 Tasks and Institutes..92
6.3 Milestones and Planning ..95

iii

List of Figures
Figure 1-1: The LHCb spectrometer displayed using the Panoramix visualisation

package. Some detectors are only shown partially to allow visualization
of their measurements..1

Figure 2-1: Object diagram of the Gaudi architecture...6
Figure 2-2: Part of LHCb Event structure in the TES.. 11
Figure 2-3: MC Truth Relation.. 12
Figure 2-4: The three axes for identifying uniquely each data item in the condition

database .. 14
Figure 2-5: Browsing view of the TDS showing hierarchy of Detector Description

as well as material description objects.. 17
Figure 2-6: The LHCb data processing applications and data flow. Underlying all of

the applications is the Gaudi framework and the event model describes
the data expected. The arrows represent input/output data. 19

Figure 2-7: Structure of the Gauss application ... 19
Figure 2-8: Geometry description of the Vertex Locator (VELO) 21
Figure 2-9: Detailed RICH simulation showing the charged particles and the

tracing of the emitted Cerenkov photons via the mirrors up to the photon
detectors. ... 22

Figure 2-10: The logical processing scheme for trigger applications 27
Figure 2-11: GAUCHO Screenshot .. 28
Figure 2-12: Schematic of the high level trigger for benchmark channels....................... 30
Figure 2-13: Example plot for interactive analysis with Panoramix. 34
Figure 2-14: Close look at the interaction region showing the reconstructed tracks

and their measurements in the Velo overlaid with the original Monte
Carlo true tracks. .. 35

Figure 3-1: The LHCb CMT projects and their dependencies. Also shown are the
LCG packages on which LHCb relies ... 38

Figure 3-2: General view of the DIRAC architecture. Arrows originate from the
initiator of the action (client) to the destination (server.).................................. 40

Figure 3-3: Configuration Service architecture. Arrows originate from the initiator of
the action (client) to the destination (server.) .. 41

Figure 3-4: The DIRAC Job Management Service architecture. Arrows originate
from the initiator of the action (client) to the destination (server.).................... 43

Figure 3-5: On-site data management tools. Arrows originate from the initiator of
the action (client) to the destination (server.) .. 44

Figure 3-6: Use of CLIP from the Python prompt to create and submit a DaVinci
job to the DIRAC Workload Management System. ... 47

Figure 3-7: Screenshot of a GANGA session using the GUI .. 48
Figure 3-8: The reimplemented Ganga is logically divided into 4 parts that can all

be hosted on different client/servers if required .. 49
Figure 3-9: The logical data model of the Bookkeeping application................................ 52
Figure 3-10: The browsing applications to the bookkeeping. .. 53
Figure 3-11 The implementation of the various interfaces of the bookkeeping

facility. .. 54
Figure 4-1: The LHCb computing logical dataflow model. The arrows indicate the

input/output datasets at each data processing stage. 58
Figure 4-2: Schematic of the logical dataflow for the production analysis phase.

The arrows indicate the input/output datasets at each data processing
stage. ... 60

Figure 4-3: LHCb physicist analysis cycle .. 61
Figure 4-4: Schematic of the LHCb Computing Model ... 68
Figure 4-5: CPU profiles for the 4 LHC experiments broken down by month from

2008 to 2010 at CERN and a “typical” Tier-1. ... 78
Figure 4-6: MSS i/o and CERN-Tier1 network needs for the 4 LHC experiments

broken down by month from 2008 to 2010.. 79
Figure 5-1: Workflow diagram for the staging, stripping and merging process................ 85

iv

Figure 5-2: Schematic breakdown of services as proposed by LHCb............................. 87
Figure 6-1: Schematic of the organisation of the LHCb computing project 91
Figure 6-2: Project schedule for the computing project including data challenges.

The open diamonds are external milestones .. 96

v

List of Tables
Table 2-1: Event sizes of the Boole output. .. 23
Table 2-2: Raw data sizes for L0 selected events. ... 24
Table 2-3: Event sizes of the Brunel output.. 26
Table 2-4 Execution times of the major algorithms... 26
Table 2-5: HLT CPU needs.. 30
Table 3-1: Test of multiple users creating, retrieving and deleting a given number

of jobs in a remote registry implemented using the ARDA MetaData
database. All times are in seconds per job ... 50

Table 4-1: Event parameters for real data.. 62
Table 4-2: Working numbers for HLT output rates ... 62
Table 4-3: Offline resource requirements for the reconstruction of each stream............. 63
Table 4-4: CPU requirements for the reconstruction, excluding the subsequent

stripping ... 63
Table 4-5: Reduction factors and computing requirements of the stripping stage........... 64
Table 4-6: CPU requirements for simulation .. 66
Table 4-7: Storage requirements for simulation.. 66
Table 4-8: Estimate of analysis requirements, excluding any efficiencies....................... 67
Table 4-9: Efficiency factors for CPU and storage needs ... 68
Table 4-10: Network transfer needs during experimental data taking............................. 69
Table 4-11: Network transfer needs during re-processing .. 70
Table 4-12: Network transfer needs during stripping. ... 71
Table 4-13: 2008 CPU requirements in MSI2k.years ... 72
Table 4-14: 2008 disk requirements in TB.. 73
Table 4-15: 2008 MSS requirements in TB .. 73
Table 4-16: 2009 CPU requirements in MSI2k.years ... 74
Table 4-17: 2009 MSS requirements in TB .. 74
Table 4-18: 2009 disk requirements in TB.. 75
Table 4-19: Network requirements for re-processing in 2009 ... 75
Table 4-20: 2010 CPU requirements in MSI2k.years ... 76
Table 4-21: 2010 MSS requirements in TB .. 76
Table 4-22: 2010 disk requirements in TB.. 77
Table 4-23: 2010 network requirements during data taking.. 77
Table 4-24: List of LHCb Tier-1 centres and the experiments that are supported........... 77
Table 4-25: LHCb computing resource estimates 2006-2010... 80
Table 5-1: LCG efficiency during LHCb DC’04 production phase 83
Table 5-2: Output sandbox analysis of jobs in status “Done” for LCG 83
Table 6-1: List of high level tasks within the LHCb CCS... 93
Table 6-2: List of institutes involved in the CCS activities... 94
Table 6-3: High-level milestones for the computing project .. 95

vi

LHCb Coll abor ation CERN LHCC/2005-19
Comput ing Techni cal Design Repor t

1

Chapt er 1 Intr oduc tion
The LHCb experiment [1] [2], illustrated in Figure 1-1, is designed to study CP violation in
the b-quark sector at the LHC and expand the current studies underway at the B-factories
(Babar, Belle) and at the Tevatron (CDF, D0). The LHC, being a hadron-collider, opens the
opportunity to study B-hadrons that cannot be produced at current B-factories, and the energy
of 14 TeV, much higher than that of the Tevatron, allows an abundant production of B-
particles (105 particles/s at the nominal luminosity).

The bb production cross section is 2 orders of magnitude smaller than the total cross section
visible in the detector, and the decay modes of the b hadrons that are of interest for CP
violation studies all have very low visible branching fractions, typically smaller than 10-4.
Hence a very selective and sophisticated trigger is needed. LHCb is planning to operate a 3-
level trigger system [3] to select the events of interest. The L0 trigger is a hardware custom-
designed trigger requiring high pT leptons or hadrons. Its output rate is limited to 1.1 106 Hz
out of the 40 106 crossings per second. For L0-selected events, a subset of information from
a limited number of sub-detectors is readout into a farm of CPUs that perform a further
selection using pure software (L1 trigger). L1 requires that high pT particles have a large
impact parameter with respect to the primary vertex. The rate is further reduced to 40 kHz.
For those events that are selected, the full information of all the sub-detectors is readout into
the same farm of computers where the High Level Trigger selection (HLT) is applied. As all
information is now available, more accurate selections can be applied in the HLT in order to
reduce the overall rate to 2 kHz.

.

Figure 1-1: The LHCb spectrometer displayed using the Panoramix visualisation package. Some

detectors are only shown partially to allow visualization of their measurements.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

2

1.1 Requirements and scope
The Offline Computing system must allow the LHCb physicists to perform an efficient
processing of the collected data (about 20 billion events a year), an accurate alignment and
calibration of the sub-detectors and an efficient selection of events of interest as well as
provide facilities for extracting physics results from the selected samples. The measurements
aimed at by LHCb require a very high precision; hence systematic errors must be mastered to
a very high degree. Amongst the 2 kHz of HLT-accepted events, a large fraction is dedicated
to a very precise calibration and understanding of the detector and its capabilities.

Each group of physicists working on specific decay modes of B-particles will only handle a
limited number of events; hence they rely heavily on a full central processing chain from the
raw data to very elaborated and pre-selected reconstructed data. It is expected that individual
analyses will cope with only a few million pre-selected events while manipulation of larger
datasets will be handled centrally by a production team.

The Computing project is responsible for providing the software infrastructure for all
software data processing applications (from L1 trigger to event selection and physics
analysis). It is also in charge of coordinating the computing resources (processing and
storage) as well as providing all the tools needed to manage the large amounts of data and of
processing jobs.

In order to develop efficiently the software, for example developing L1 or HLT applications
using simulated data, it is beneficial to implement a high level of standardisation in the
underlying software infrastructure provided. Algorithms must be able to be executed in very
different contexts, from the Online Event Filter Farm to a physicist’s laptop. The Core
Software sub-project is in charge of providing this software infrastructure.

The large amounts of data and of computing power needs imply that data processing must be
performed in a distributed manner, taking best advantage of all resources available
throughout the sites that allow the collaboration to use their resources. These resources (CPU
and storage) are expected to be accessible through a standard set of services provided to all
LHC experiments but also to the larger HEP community and beyond. The LHC Computing
Grid project [4] is expected to provide these resources.

The LHCb Collaboration is fully committed to participate in the LCG by utilising and
contributing to the common software projects as well as making full use of LCG computing
Grid infrastructure. It is expected that LHCb will be able to benefit from the developments
made inside LCG or available through LCG. In particular, the offline software uses the
software developed by the LCG Applications Area. The distributed computing (data
management and job handling) uses the Grid infrastructure deployed by LCG as well as
baseline services provided through the LCG.

1.2 Overview
The present TDR describes first the architecture of the LHCb Offline software in Chapter 2.
It covers the LHCb Software framework Gaudi as well as the main applications that are built
on this framework.

The high-level tools needed for managing the LHCb Distributed Computing are described in
Chapter 3. It covers the LHCb-specific services such as bookkeeping and file query, the
distributed workload management system, DIRAC, and the end-user interface to Distributed
Computing, GANGA.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

3

The software and computing infrastructure described in the preceding chapters are used for
data processing following the Computing Model described in Chapter 4.

The requirements of LHCb on the LCG software or services are described in the relevant
chapters referred to above. We describe the current experience we had with the LCG-
deployed infrastructure LCG-2 in Chapter 5.

Finally Chapter 6 presents the organisation of the project, the sharing of responsibilities and
the planning for development and deployment of the described system.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

4

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

5

Chapter 2 LHCb Software

2.1 Introduction
The LHCb software development strategy follows an architecture-centric approach as a way
of creating a resilient software framework that can withstand changes in requirements and
technology over the expected lifetime of the experiment. The software architecture, called
Gaudi [5], supports event data processing applications that run in different processing
environments ranging from the real-time L1 and high-level triggers in the on-line system to
the final physics analysis performed by more than one hundred physicists. Object oriented
technologies have been used throughout. The LHCb reconstruction (Brunel), the trigger
applications (L1/HLT), the analysis (DaVinci) package, the digitization (Boole) together with
the simulation application (Gauss) based on Geant4, and the event and detector visualization
program (Panoramix) are all based on the Gaudi framework.

LHCb will produce large amounts of data, of the order of Petabytes per year, which will need
to be reconstructed and analyzed to produce the final physics results. In addition, physicists
are continuously studying the detector and the physics performance that can be achieved
using it. Software for all data processing stages for the various needs of the experiment has
been produced and is at different levels of deployment. This software will have to be
maintained throughout the lifetime of LHCb, expected to be of the order of 10-20 years; the
impact of changes in software requirements and in the technologies used to build software
can be minimized by developing flexible and adaptable software that can withstand these
changes and can be easily maintained over the long timescale involved.

With these goals in mind we have constructed Gaudi, a general Object Oriented framework
designed to provide a common infrastructure and environment for the different software
applications of the experiment. The applications, supporting the typical phases of Particle
Physics experiments software, from simulation to reconstruction and analysis, are built within
the Gaudi framework. Experiment specific software, as for example the Event Model and
Detector Description are also provided within the framework as core software components.
The framework together with these services and the applications constitutes the complete
LHCb software system. The sub-detector software developers, or physicists performing
analysis, provide the software algorithms to these applications. Use of the framework in all
applications helps to ensure the integrity of the overall software design and results in
maximum reuse of the core software components.

Tutorials with hands-on documentation are regularly held to train members of the
collaboration. In addition, there are also specialized courses for software developers.

2.2 Gaudi Architecture & Framework
The development process for Gaudi is architecture-centric, requirements-driven, incremental
and iterative. This involves identifying components with specific functionality and well-
specified interfaces, defining how they interact with each other to provide the whole
functionality of the framework. Whereas the architecture is the blueprint of the things to
build, the framework is real code implementing the architecture and ensuring its design
features are respected. The approach to the final software system is via incremental releases,
adding to the functionality at each release according to the feedback and priorities of the

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

6

physicists developing the code for the different applications and following the evolution and
changes in their needs.

A schematic view of the Gaudi architecture can be seen in the object diagram shown in
Figure 2-1. It represents a hypothetical snapshot of the state of the system showing the
objects (in this case component instances) and their relationships in terms of ownership and
usage. Note that it does not illustrate the structure of the software in terms of class hierarchy.
In the following we will outline the major design choices taken in the Gaudi architecture.

Classical Object Oriented programming assumes objects own the required functionality
(methods) to transform themselves. Gaudi however considers the algorithmic part of data
processing also as a set of OO objects. This decoupling between the objects describing the
data and the algorithms allows programmers to concentrate separately on both. It also allows
a longer stability for the data objects (the LHCb event model) as algorithms evolve much
more rapidly. The Event Model classes only contain enough basic internal functionality for
giving algorithms access to their content and derived information. Algorithms and tools
perform the actual data transformations.

Figure 2-1: Object diagram of the Gaudi architecture

2.2.1. Generic component model with well defined interfaces

Each component of the architecture implements a number of interfaces (pure abstract classes
in C++, the main language used in the implementation) for interacting with the other
components. The basic idea of Gaudi is to define a set of services that are common to most of
the event data processing applications. LHCb defined and developed the interfaces
independent of their actual implementation. In order to ease the integration of components we
defined an interface model supporting interface versioning, dynamic interface discovery and
generic component factories. With these features we were able to implement run-time loading
of components (dynamic libraries) allowing us to use a plug-and-play mechanism in the
implementation of the data processing applications.

Since all components are essentially decoupled from each other, they can be implemented
independently and in a minimal manner, i.e. supplying sufficient functionality to do their job
but without the many refinements that can be added later. Components can be developed

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

7

using other specialized frameworks or toolkits, for example for data persistency,
visualization, simulation, etc.

A specific implementation of a component can be replaced by another one implementing the
appropriate interface and providing equivalent functionality. This makes possible a
transparent use of third-party software. This approach has allowed us to build the LHCb
applications by customizing the framework, i.e. by dynamically selecting the most suitable
components to perform the different tasks. Due to these features, the Gaudi framework is
easily adaptable for use in other experiments: although originally developed for the LHCb
experiment it has been adopted and extended by the ATLAS experiment [6] and adopted by
other experiments e.g. GLAST and HARP.

2.2.2. Separation between data and algorithms

Broadly speaking, the tasks of event simulation, reconstruction and analysis consist of the
manipulation by algorithms of mathematical or physical quantities such as points, vectors,
matrices, hits, momenta etc. This kind of task maps naturally onto a procedural language such
as Fortran, which makes a clear distinction between data and code. A priori, there is no
reason why using an object-oriented language such as C++ should change the way of doing
physics analysis. This is the reason why the Gaudi application framework makes a clear
distinction between DataObjects (essentially containers of data quantities) and Algorithms
and Tools that manipulate these data objects, i.e. that have well defined input and output data.
Of course, intelligent data objects (e.g. tracks that know how to fit themselves) are possible,
but they are discouraged in the Gaudi architecture.

While data objects essentially provide manipulation of internal data members, algorithms
will, in general, process data objects of some type and produce new data objects of a different
type.

Algorithms and Tools are themselves objects based on Gaudi base classes and they implement
an extensive set of interface functions such as simple access to data, to all main services and
run-time configuration facilities through job options.

2.2.3. Transient and persistent data

An important design choice has been to distinguish between a transient and a persistent
representation of the data objects, for all categories of data. Algorithms see only data objects
in the transient representation and as a consequence are shielded from the technology chosen
to store the persistent data objects. In fact, so far, we have changed from ZEBRA [7] (for
legacy data) to ROOT/IO [8] and more recently to POOL [9] without the physics code
encapsulated in the algorithms being affected. The two representations can be optimized
following different criteria (e.g. execution vs. I/O performance) and different technologies
can be accessed (e.g. for the different data types).

2.2.4. Transient data stores

The data flow between algorithms proceeds via the so-called Transient Store. This not only
shields them from the persistent technology but also minimizes the coupling between
independent algorithms, allowing their development in a fairly autonomous way.

We have distinguished between three categories of data: event data obtained from particle
collisions (real or simulated) and their successive processing; detector data describing the
detecting apparatus (geometry, calibration, etc.) and statistical data derived from processing
a set of events (histograms, Ntuples). They are not only conceptually different types of data,

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

8

their access pattern and their “lifetime” during a “job” is also different, hence we have
organized them in corresponding separate transient data stores.

• The Transient Event Store contains the event data that are valid only for the time it
takes to process one event.

• The Transient Detector Store contains the data that describe the various aspects of the
behaviour of the detector (e.g. alignment) during a period of data taking
corresponding to the processing of many events.

• The Transient Histogram Store contains statistical data that typically have a lifetime
corresponding to a complete job.

Although the stores behave slightly differently, i.e. the clearing of the store is handled at
different frequencies in the three cases, their implementation is based on a common transient
store component, given the many things they have in common.

We have already mentioned that the data flow between algorithms proceeds via the transient
store. In addition, the transient store acts as an intermediate buffer for any type of data that
needs to be converted to a different type of data representation, in particular the conversion to
persistent or graphical objects. Zero or more persistent or graphical representations of the
data can correspond to one transient representation.

The data within the transient store is organized in a “tree-like” structure, similar to a Unix file
system, allowing data items that are logically related (for example produced in the same
processing stage) to be grouped together into a data container. Each node in the tree is the
owner of everything below it and propagates its deletion to all items in its branches. To map
Object Oriented data models onto a tree structure, object associations have been implemented
using symbolic links in which ownership of the referenced items is left to the node holding
them in the transient store.

2.2.5. Algorithms

 Algorithms are the essence of the data processing applications and where the physics and
sub-detectors code is encapsulated. Due to the fact that algorithms implement a standard set
of generic interfaces they can be called by the framework without knowing the details of their
implementation. The application manager knows which algorithms to instantiate and when to
call them. It is configured by a set of job options.

The algorithms’ execution is scheduled explicitly by configuring the application manager or
by the execution of the Data On Demand service: one can instruct this service to run a
specific algorithm when requesting a specific object container that does not exist yet and
cannot be retrieved from the persistent store.

Complex algorithms can be implemented by using a set of simpler ones; a more elaborate
sequence can be configured in the applications in order to support filtering and branches.
These can, for example, be combined with multiple output streams to provide event filtering
and selections. The different LHCb data processing applications are customized by choosing
the appropriate set of algorithms or sequences to be executed.

2.2.6. Tools

Tools are lightweight algorithmic objects whose purpose is to help other components in
performing their algorithmic work. They are in essence very similar to algorithms, but can be
re-used by several components in order to perform a given task. They contain a piece of code
that can be executed with different frequency (only for some events or many times per event);

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

9

they are convenient for processing individual transient data objects or data objects that are
local to the component.

Different components may wish to share the same algorithmic operation as-is or configure it
slightly differently (e.g. different event selection algorithms will want to combine
reconstructed particles to make vertices). Hence tools can be either generic or owned by a
component (an algorithm or another tool).

2.2.7. Services

This category of components offers the services common to most of the applications. They
are generally sizable components set up by the framework at the beginning of a job and used
by the algorithms as often as needed. This approach avoids the algorithm developers having
to write routine software tasks that are typically needed in a physics data application. Some
examples of services can be seen in Figure 2-1.

2.2.8. Core Services

The Gaudi framework is decomposed into a number of independent sub-frameworks to
provide the basic software tasks typically needed in an application. Many of these services
use third-party components. This allows LHCb to profit from existing software and helps in
minimizing development and maintenance efforts.

The basic kernel of the framework, together with a set of utility services, constitutes the
General Framework Services amongst which:

• The Job Options Service: used to configure the applications at run-time. Components
declare at construction time a set of named Properties that are associated to data
members. The default values of these data can be overwritten by values provided in a
set of Job Options files. They are referred to by the instance name of the component
and their property name. Basic C++ types are supported for job options.

• The Message Service: allows components to produce labelled output. Each message is
associated a level that allows run-time filtering of messages.

• The Event Data Service allows containers to be retrieved from the Transient Event
Store.

• The Histogram Service provides a technology neutral handling of histograms.

• The Random Number Generator Service: allows a uniform usage of random numbers
by all algorithms.

• The Object Persistency Service: a technology-neutral service has been developed and
interfaced with the framework, given the fact that a single persistency technology may
not be optimal in all cases. The persistency mechanism has been designed such that
the best-adapted technology can be used for each category of data. The LCG POOL
framework [9] is based on a similar architecture allowing the client code to be
technology free. POOL has replaced the LHCb ROOT/IO [8] based persistency
solution previously in place. This allows LHCb to benefit from the additional
functionality provided by POOL such as file catalogues and event collections.

• The Conversion Service allows specific Converters to be invoked when accessing
specific classes. The Converter is in charge of instantiating the actual object in the
Transient Store. They can eventually perform complex conversions or calculations.

• The Detector Description Service allows detector-related information to be available
to the physics applications providing a generic description of the structure of the

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

10

geometry. The aim is to have a unique description of the detector for all applications
(e.g. simulation and reconstruction). The physical and logical description of the LHCb
detector as well as sub-detector specific data resides in a Detector Description
Database (DDDB) or in the Conditions Database (see section 2.4) that provides the
persistent storage of the detector data. Several versions of the DDDB following the
evolution of the LHCb detector design have been produced. Reconstruction
algorithms access the geometry information through an interface (DetectorElement)
that is customised to fulfil the need of a specific sub-system. This service is described
in more details in section 2.5.

• The Data Dictionary Service provides a high level modelling language to define the
event object model, independent of the language used in the current implementation
(i.e. C++) [10]. The description language chosen is XML, which provides a very strict
syntax in addition to being very flexible. A Gaudi parser package (Gaudi Object
Description) automatically produces the C++ header files. This approach ensures
adherence to coding conventions, consistent sets of member functions, standard ways
of cross-referencing objects, and documentation lines in the format required by the
code documentation tool (Doxygen [11]). The service also provides runtime
introspection information for object persistency and interactive analysis making use of
the LCG object dictionary provided by the SEAL project [12].

Definition and implementation of interactive services, graphical interfaces and scripting tools
are provided in User Interaction services.

Finally, specialized frameworks for simulation, analysis tools (not the tools themselves) and
data visualization have been put in place; they are discussed in more detail in sections 2.6 and
2.7.

2.3 The LHCb Event Model
The set of classes (and relationships between classes) that describe the LHCb event data,
together with the conventions governing their design and organization, are known as the
LHCb Event Model [13].

2.3.1. Objects in the Transient Event Store

In the Gaudi architecture, algorithms communicate with each other by exchanging data via
transient data stores. In particular, the Transient Event Store (TES) is used to exchange event
data inside the event-processing loop; algorithms retrieve their input data on the TES, and
publish their output data to the TES. They are not interested in knowing how (by which
algorithm) their input data was produced, they just need to find it in a well defined location
and in a well defined state. This, of course, imposes some discipline on the use and
organization of the TES and requires some conventions.

The Gaudi TES is organized as a tree structure (by analogy with a file system) of nodes
(directories) and leaves (files). In the LHCb Event Model, this tree is structured as a number
of sub-trees, corresponding to the output of each processing step. Typically each sub-tree has
a number of branches and sub-branches, ending with the leaves containing the event data.
This hierarchical structure is chosen to simplify and optimize navigation within the TES.
Figure 2-2 shows a part of the LHCb Event structure in the TES, highlighting the difference
between nodes and leaves.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

11

Figure 2-2: Part of LHCb Event structure in the TES.

An essential feature of the Gaudi TES is that only objects inheriting from a base-class
DataObject are directly accessible from the store. This can be either a single object (e.g. the
Event Header) or more generally a container of objects that cannot be retrieved individually
from the TES (e.g. the set of MC Particles). By convention, algorithms may not modify data
already on the TES, and may not add new objects to existing containers. This implies that a
given container can only be manipulated by the algorithm that publishes it on the TES, but
ensures that subsequent algorithms that are interested in this data can be executed in any
order, and greatly simplifies the integration of complex data analysis applications.

In the LHCb event model we use a special type of container (Keyed Container) that can only
contain Keyed Objects – i.e. objects that can be identified within their container by means of
a unique Key. Relationships between Keyed Objects can then be implemented as references
consisting of a container name (or rather, an index in a table of container names) and a Key
that is unique in the container. The container ensures the uniqueness of the Key; the default
case is that the Keyed Container assigns a unique Key when the Keyed Object is inserted. In
cases where the Key has a physical meaning (for example an electronics channel identifier), it
can be defined when creating the Keyed Object, but then the Keyed Container only allows
insertion if an object with the same Key does not already exist.

2.3.2. Relationship between objects

Explicit relationships between classes in the data model can occur as data members of the
target class (defined as the result of the processing of a source class), but only between
classes adjacent in the processing sequence, as shown in Figure 2-3. For example Tracks can
contain pointers to Clusters but neither to Digits nor Particles.

In the LHCb Event Model there is a clear separation between reconstructed data and the
corresponding Monte Carlo Truth data. There are no references in Digits that allow
transparent navigation to the corresponding MC Digits. This allows using exactly the same
classes for reconstructed real data and reconstructed simulated data. The relationship to
Monte Carlo is preserved by the fact that the MC Digits and the Digits use the unique
electronics channel identifier as a Key; any reconstructed object (such as Clusters) can refer
to one or more electronics channels via their channel identifier, which is valid for both real
and simulated data.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

12

.

Figure 2-3: MC Truth Relation.

The direction of the direct reference between classes is from the class further in the
processing sequence towards the class earlier in the sequence (this is a constraint imposed by
the TES convention that already published objects cannot be modified). These relationships,
shown as arrows in the figure, are implemented as SmartRefs (extended pointers allowing
references to objects in other containers, possibly made persistent in another file). They can
be de-referenced directly in the code, and used just like C++ pointers.

One may however want to study also the relationships between objects distant in the
processing chain (e.g. which MC Particle gave rise to a specific Cluster), or in the direction
opposite to the processing chain (e.g. what are all the MC Hits produced by a given MC
Particle). It would be very inefficient to do this by following the SmartRefs, particularly if
one has to navigate through many intermediate objects that may even reside in different
physical files. An alternative is to calculate the relationship once only, and store it in a table
that is then accessed by the association code. Two implementations of these tables are
available [14][15], one of which (Linkers) is more appropriate for tables that have to be made
persistent, whereas the second (Relations) offers additional functionality when used in a
purely transient context.

2.3.3. Gaudi Object Description

The event classes are described in XML, using the Gaudi Object Description language (see
section 2.2.8). The class header files are automatically generated from the XML, including
the inline implementation of all simple methods (e.g. set and get methods for data members,
serialization methods for printing), a mnemonic typedef for the templated Keyed Container of
this type, and a static string containing the default location in the TES of objects of this type,
which is used by algorithms to publish and retrieve data on the TES. This not only ensures a
uniform look-and-feel to the event classes, but also simplifies migration to new versions of
the underlying Gaudi and LCG software, because all the implementation-specific
dependencies are encapsulated in the code generation tool.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

13

The event model classes have been thoroughly reviewed before being implemented, and
changes have to be widely discussed and well justified before being approved. This is
particularly important for classes that are stored on persistent datasets, and will become more
so in future, to ensure that older data can continue to be read by the newer implementation of
the classes. The problem of schema evolution is being addressed both in the context of the
LCG persistency solution (POOL [9]), and via the conversion mechanism of the Gaudi data
stores, which makes it possible to have different classes in the persistent and transient worlds,
with algorithms triggered automatically to convert between the two. It is planned to take
advantage of this mechanism to minimize the dependency of persistent classes on external
packages such as CLHEP, without imposing such unnecessary restrictions on the
corresponding transient classes.

2.3.4. Buffer Tampering

The precision measurements of LHCb require a detailed understanding of systematic effects
introduced at different phases of data taking and data analysis due to the applied selection
algorithms. The motivation of Buffer Tampering is to determine these effects from real data
instead of relying on Monte Carlo simulations. The two main goals are to estimate the biases
introduced by the trigger levels and to calculate the acceptance along the flight path of a B-
meson.

The implementation is based on a conditional modification of input data at the beginning of
the raw data processing i.e. modifications of L1 and Raw Buffers that come directly from the
readout chain. In the case of the trigger bias, the raw data related to the reconstructed B-
decay chain is removed from the L1 and Raw buffers, while for the lifetime acceptance case,
data is added to mimic the same B-decay but wtih a different decay lenghth. The on-line
algorithms are emulated in the off-line phase of the data processing. This requires using the
same software and the same conditions database as has been used during the on-line trigger
execution. The key elements of the implementation are the high level manipulation of the
transient event store (TES) and an interaction with the application manager from inside an
algorithm. A set of dedicated tools has been developed which allow to:

• Move a sub-tree of the TES to a temporary location of the TES. This leaves only
references to the objects at the original location.

• Reload the data in their original form to allow independent manipulation, called
"tampering”

• Restore the tree from a temporary location back to the TES and delete temporary
space for a new event.

• Send a request to the Application Manager to execute a given sequence of
algorithms.

A first version of the Tampering algorithm is currently used successfully in the estimate of
the wrong tag fraction for signal events by using calibration channels, which are generally
triggered differently. There it is necessary to understand in detail the source of a positive
trigger, in order to equalize the phase space of calibration and signal events before estimating
the expected wrong tag fraction in signal events.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

14

2.4 Conditions Database Services
The Conditions Database (CondDB) is a database facility that permits the handling of
information regarding the running conditions of LHCb sub-systems that may vary with time.

A condition can be any kind of information that an algorithm may need, like the temperature
or the pressure inside an element of the RICH as well as the alignment constants of the
stations of the VELO. Each condition value has an interval of validity and can be superseded
by a newer version (better alignment or re-calibration of probes). A set of conditions can be
grouped together under a logical name, referred to as a tag. Figure 2-4 shows a schematic
view of the 3-dimension space in which conditions live: data item, time and version.

Figure 2-4: The three axes for identifying uniquely each data item in the condition database

The aim of the Gaudi CondDB service is to provide a framework integrated in Gaudi that
allows users to use conditions data. Two main issues can be identified: the database access,
and the update of the transient objects; they will be discussed in the following sections.

2.4.1. Database access

The access to a specific database implementation is obtained using a project developed by the
LHC Computing Grid (LCG), named COOL [16][17](section 2.4.3) The usage of the COOL
library is hidden to the general user in order to disentangle as much as possible user
algorithms from the technical details of the underlying library. The connection to the specific
Relational Database Management System (RDBMS) is encapsulated in a dedicated service,
the CondDB Access Service that can be configured in order to specify the connection
parameters (user name, database host, etc.) and the tag name identifying the set of conditions

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

15

to be used by the job. The interfacing to COOL is obtained by exploiting the “conversion
service” mechanism, which is part of the general Gaudi framework.

Conditions reside in memory in the Transient Detector Store (TDS), as they are usually
related to detector information (alignment, calibration, etc.) The TDS is aware of the
existence of a specific CondDB Conversion Service. This service passes the request to the
most appropriate converter for the requested object. The converter accesses the database
through the CondDB Access Service, which returns a pointer to the object representing the
open CondDB. Then the converter uses COOL for retrieving the condition data valid at the
current event time and converts it to its transient representation.

The GPS event time (recorded in the event raw data) is passed to the TDS for each new
processed event and is then used by the conversion service machinery enabling it to find the
condition data object with a validity range compatible with the event being processed.

The implementation of detector data description is based on XML files and converters for the
condition objects from XML are already available. In order to avoid replication of code, the
XML conversion service was adapted to handle not only files, but also strings, thus allowing
the storage of XML strings in the CondDB.

The objects retrieved from the CondDB have a validity range and for each event one must
ensure the validity of all conditions. Accessing the database for each event in order to be sure
that the conditions are still up-to-date is not advisable. Hence, at the beginning of each new
event in the event loop, one has to check if all objects are still valid for the event that is going
to be processed and, only if they are not, get the valid object from the database. The Transient
Store allows users to get normal pointers to objects in the store and guarantees that those
pointers are always valid; hence the new value has to be stored at the already existing
memory location.

Special consideration applies to the usage of the CondDB by algorithms running on-line.
During data taking, the Event Filter Farm (EFF) nodes will not be able to access a real
database; hence a special Online CondDB Access Service will provide conditions uploaded
by the control system, without the intermediate step of a physical database. Newly uploaded
conditions will invalidate existing conditions at a predefined validity time; the new value will
be cached temporarily and replace the current value when a new event enters the new validity
range. This mechanism associated with a slight post-dating of Online conditions changes is
essential to allow reproducibility of results obtained in the EFF when repeating them Offline.

2.4.2. Update Mechanism

Simple condition objects are not the only ones that need to be updated. Complex objects in
the detector data store, like the DetectorElement, will use condition objects like alignment
constants. User-defined classes deriving from such complex objects will possibly need to re-
compute cached quantities using new values of the conditions.

Other objects that are not in the data store and do not implement the validity interface may
also cache quantities that depend on conditions, for example algorithms and tools.

All these objects register their dependencies to an Update Manager service. A dependency
can only be declared on an object that has the validity interface or that has already been
declared to the Update Manager. A method is associated to each dependency that will be
called whenever the dependent object is updated. That method will in general be the same
that is used for caching information at initialisation time.

All these objects have to be considered invalid and need to be updated, if any of the
conditions or other objects they depend on becomes invalid. In order to quickly check if such

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

16

a complex object is valid or not, the Update Manager assigns to it an interval of validity
calculated as the intersection of the intervals of validity of all the objects it depends on. When
the validity of the object does not contain the current event time, it means that at least one of
the objects it depends on is not valid for that time. Thus the tree of dependencies can be
efficiently navigated from the top level to the far leaves, updating all and only those objects
that really need it without having to check the validity of all the objects in the store; when a
branch is found to be valid, the recursion stops.

2.4.3. COOL Library

The access to an actual RDBMS implementation and the database schema is achieved using
the LCG COOL library, part of the POOL project.

From the user point of view, the CondDB looks like a tree where the leaf nodes can hold
condition data objects. The leaf nodes are called Folders, while the nodes that contain other
nodes are called FolderSets. The hierarchical structure allows a logical organization of the
conditions, for example one can put all the Folders for the conditions needed by a sub-
detector in a dedicated FolderSet, or all the temperatures measured can go in Folders within
the “Temperature” FolderSet.

The COOL API provides two types of Folders: single-version and multi-version. The first
type can only store conditions values with Intervals Of Validity (IOVs) that do not overlap,
so there is no possibility of superseding them. The second type allows the storage of
conditions values with overlapping IOVs. Single-version Folders are less flexible than multi-
version ones, but have better performance for insertion speed and storage space.

In a multi-version Folder, the most recent version of all the conditions values stored is called
the HEAD version. At any time it is possible to take the HEAD version and give it a logical
name or tag, allowing users to retrieve always a defined set of versions while detector
responsible people can produce refined versions of the conditions data.

The actual RDBMS implementation can be chosen between ORACLE [18], MySQL[19] and
SQLite[20].

2.5 Geometry Framework Services
The geometry framework serves three defined purposes:
• Providing geometry information to algorithms by combining in a transparent way the

values of the nominal alignment with the measured deviations obtained from the
conditions database and valid for the current event.

• Providing a mechanism to modify deviations from the nominal alignment without
accessing the conditions database. This is required for example during the execution of an
iterative alignment procedure. The framework must ensure that the modifications are
propagated coherently to the detector geometry description.

• Providing a mechanism to update the deviations in the conditions database.

2.5.1. Detector Description Service

The Gaudi Detector Description Service provides a hierarchical description of the detector
elements defined as volumes. Volumes are supported in a hierarchical tree. In order to
simplify the description of repetitive volumes, it uses the concept of Logical and Physical
volumes. It also contains the description of the material out of which the volumes are made;
this information is needed for simulation as well as for track fitting.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

17

A logical volume represents the shape of an object and its composition without a particular
position is space. A physical volume consists of the placement in space of a physical volume
within a higher-level logical volume. The top-level volume contains the whole LHCb
apparatus and part of the cavern.

The hierarchy of volumes is defined using XML as a meta-language. XML files are
maintained by individual sub-system groups and placed in a hierarchy of files.

XML files describe an ideal detector or the best known positioning of sub-detectors obtained
as a result of a geometrical survey. Fine-tuned alignment constants obtained by running
sophisticated offline algorithms are represented as small transformations from this ideal
geometry. As they may vary with time and several versions of an alignment valid at a certain
time may arise, they are very conveniently stored in the Conditions Database.

The access to geometry information for any algorithm is done via the DetectorElement
interface. Alignment requirements imply that there exists a DetectorElement instance for
each “alignable” component of the LHCb detector or that there exist intelligent
DetectorElements capable of associating the right misalignments to their corresponding
daughter elements. DetectorElements can be organised in a hierarchical tree describing more
and more precise elements of the detector. The granularity needs to be defined by each sub-
detector.

The DetectorElements as well as the hierarchy of volumes that are attached to it are stored in
a dedicated Transient Store: the Transient Detector Store (TDS). They are accessible as in
any TS by a path similar to that of a hierarchical file system. Their lifetime is that of the
application, contrary to the Transient Event Store that is cleared after each event. Figure 2-5
shows an example of the detector description hierarchy in the TDS.

Figure 2-5: Browsing view of the TDS showing hierarchy of Detector Description as well as material
description objects.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

18

2.5.2. Misalignment in the Conditions Database

The alignment information itself is encapsulated in the AlignmentCondition class, which
contains a transformation matrix for each alignable object. The transient store path for each
set of alignment parameters is defined in an XML tree and can refer to a location in the
conditions database or to an XML file holding the parameters.

Dedicated converters have the role of instantiating each Alignment Condition object starting
from the alignment parameters. References to these addresses are stored in the XML
definition of the corresponding DetectorElements. Each Alignment Condition object contains
the transformation matrix representing the deviation from the ideal alignment between the
DetectorElement it corresponds to (or daughter physical volume in the case of an intelligent
DetectorElement) and its parent volume. The bridging between the local detector frame and
the global frame is handled by the Alignment Info class, which has access to the Alignment
Conditions of all parent DetectorElements, thereby calculating the transformation matrix in
the global LHCb frame.

Through the Alignment Info object, a DetectorElement can perform transformations to and
from that frame. These transformations can be combined with those corresponding to the
nominal geometry, as defined in the detector description database. The nominal geometry
information is available to the DetectorElement via the Geometry Info class, whose interface
allows for transformations to and from global and local reference frames, and allows access
to the corresponding transformation matrices. The deviations from the nominal geometry are
accessed via the Alignment Info class as well as the combination of the two.

2.6 Data Processing Applications
Typical phases of Particle Physics data processing have been encapsulated in the various
LHCb applications. Each application is a producer and/or consumer of data for the other
stages as shown in Figure 2-6. The applications (including those that run online) are all based
on the Gaudi framework, they share and communicate via the LHCb Event model and make
use of the LHCb unique Detector Description. This not only ensures consistency between the
applications but allows algorithms to migrate from one application to another as necessary.
The subdivision between the different applications has been driven by their different scopes
(simulation and reconstruction) and convenience (simulation of the events and detector
response) as well as CPU consumption and repetitiveness of the tasks performed
(reconstruction and analysis).

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

19

Figure 2-6: The LHCb data processing applications and data flow. Underlying all of the applications is

the Gaudi framework and the event model describes the data expected. The arrows represent
input/output data.

2.6.1. Gauss, the simulation application

Gauss[21] simulates the behaviour of the spectrometer to allow understanding of the
experimental conditions and performance. It integrates two independent phases that can be
run together or separately. Normally they are run as a single job. Both phases make use of
libraries and toolkits available in the Physics community. A schematic structure of the
application phases is shown in Figure 2-7.

Figure 2-7: Structure of the Gauss application

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

20

The first phase consists of the event generation of proton-proton collisions and the decaying
of the B-mesons in channels of interest for the LHCb physics program. It is interfaced to
Pythia [22] for the event production and to a specialized decay package, EvtGen [23]. Pythia
settings were tuned to reproduce the multiplicities at lower energies [24]. EvtGen is a
specialized package for B-decays originally designed for the BaBar collaboration to
accurately model decays of Bo and B+ hadrons. A modification was necessary for LHCb to
handle incoherent Bo and Bo

s production in contrast to the coherent production at the B-
factories. Some Bo decay models provided by EvtGen were extended for Bo

s and decays of
excited B-mesons were added to the decay tables. EvtGen with the modifications introduced
by LHCb provides the starting point to the EvtGenLHC version now distributed by the LCG
Application Area Generator Project [25].

The generator phase of Gauss also handles the simulation of the running conditions, the
smearing of the interaction region due to the transverse and longitudinal sizes of the proton
bunches and the change of luminosity during a fill due to the finite beam lifetime. Single and
multiple pp-collisions are produced according to the chosen running luminosity. Other event
generator engines can be interfaced in this phase if required. The implementation of the
machine backgrounds is in progress: they can be generated separately or added to physics
events with the appropriate weight. The particles produced in the generator phase are stored
in the HepMC [26] generic format and can be made persistent if this phase is run in stand-
alone mode as indicated in Figure 2-7.

The second phase of Gauss consists of the tracking in the LHCb detector of the particles
produced by the generator phase. The simulation of the physics processes, which the particles
undergo when travelling through the experimental setup, is delegated to the Geant4 toolkit
[27]. Geant4 interacts with Gauss using a set of interfaces and converters encapsulated in a
Gaudi specialized framework (GiGa [28]). GiGa allows the conversion of the LHCb detector
geometry into the Geant4 geometry. It also converts the output of the first phase of Gauss to
the Geant4 input format. The output of Geant4 in the form of hits produced in the sensitive
detectors as well as the Monte Carlo truth history is then converted back into the LHCb event
model. The behaviour of the Geant4 simulation engine in terms of detectors to simulate,
physics models to use, details of the Monte Carlo truth to be provided, is controlled at run
time via job options configuration.

The geometry description is taken from a specific version of the XML geometry database as
specified in the job options. For physics performance studies particular care has been taken to
describe the detectors and supports in the LHCb acceptance. Details of the infrastructure are
to be added for special studies (e.g. study of radiation in the cavern). An example of the
details with which the VELO is described is shown in Figure 2-8.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

21

Figure 2-8: Geometry description of the Vertex Locator (VELO)

Gauss replaced the previous FORTRAN-based simulation application at the end of 2003. The
Geant4 simulation was adapted to take care of LHCb specialities. For example, the energy
deposition in individual Electromagnetic calorimeter cells is corrected for saturation effects
according to Birk’s law with parameters taken from [29] and the full Electromagnetic
calorimeter simulation is tuned with test beam data [30]. Another feature of the LHCb
spectrometer is the identification of particles with RICH detectors and the use of an Aerogel
radiator for the low energy range. Physics processes specific to the RICHes, e.g. Cerenkov
emission and Rayleigh scattering, were studied and validated in the simulation with
comparison with test beam data [31]. The simulation of photoelectron productions in the
HPDs was implemented in Gauss as a Geant4 user physics process to handle directly
Quantum Efficiency values. The details of the response of the tracking detectors are handled
in Boole (section 2.6.2).

For MC Particles and MC Vertices, only the necessary information is stored which is needed
to find out the truth for the main spectrometer. For the calorimeters, we do not store the full
shower history, though it is possible to do it for special studies. In addition it is possible to
store more detailed information for example the full Cerenkov and photoelectron history if
necessary so as to produce debugging information for the RICH reconstruction (Figure 2-9).

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

22

Figure 2-9: Detailed RICH simulation showing the charged particles and the tracing of the emitted

Cerenkov photons via the mirrors up to the photon detectors.

After validating Gauss both with test beam data and by comparison with its predecessor, it is
now used for massive production of data (DC04 data challenge). The Gauss CPU
performance for the version of the code used in DC04 varies depending on the complexity of
the events and ranges from ~20 kSI2k sec/event for minimum bias to ~50 kSI2k sec/events
for signal events (using gcc 3.2 -O2). Improvements to the simulation both in terms of the
application itself, additional details in the descriptions of the detector, new features (e.g. new
physics or background generators) are foreseen and are being continuously implemented.

2.6.2. Boole, the digitization application

The Boole digitization program is the final stage of the LHCb detector simulation. Boole
applies the detector response to “hits” previously generated in sensitive detectors by the
Gauss simulation program. The digitization step includes simulation of the detector response
and of the read-out electronics, as well as of the L0 trigger hardware. The output has the same
format as the real data coming from the detector.

The program is normally configured to read events from two distinct Gauss files: an in-time
file containing simulated events for the channel under study (typically these are specific
decay channels, or a generic mixture of B events, or a minimum bias mixture of events), and
a spillover file containing an independent mix of minimum bias events. When initializing the
processing of an event, Boole uses the instantaneous luminosity with which the in-time event
was generated to determine the probability of one or more interactions occurring in the two
preceding (-25ns, -50ns) and one following (+25ns) beam crossings. A random number is
used to populate these additional beam crossings with events from the spillover file according
to this probability; these events are then used by the digitization algorithms to simulate
spillover into the electronics from the out of time signals of other beam crossings.

The program then executes a sequence of algorithms from each of the sub-detectors, to
simulate the sub-detector and electronics response including simulation of imperfections such
as noise, cross-talk and dead channels. These simulations are continuously improved with the
evolving knowledge acquired from test beam data [32][33][34][35]. The output of this phase
is a series of digits corresponding to the output of the front end electronics which are then fed

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

23

into a simulation of the readout partitioning and of the on-line zero suppression and
clustering software. This results in a series of banks whose format and partitioning is
identical to that of the banks injected into the Data Acquisition System (DAQ) by the readout
electronics [36]. Both the L1 (readout after L0YES) and Raw (readout after L1YES) bank
formats are simulated. The event building stage of the DAQ is simulated by concatenating
these banks. The resultant L1 Buffer and Raw Buffer objects have the same format as the
event buffers that will be seen respectively by the Level 1 Trigger (L1) and High Level
Trigger (HLT) applications running in the on-line event filter farm [37] .

The L0 trigger simulation is then executed, taking the Raw Buffer as input. It is important to
prove that the L0 trigger can be simulated in this way, as this will ensure that the Raw Buffer
contains sufficient information to reproduce the L0 trigger decision off-line in the real
experiment. The result of the simulation is appended to the L1 Buffer and Raw Buffer, in the
format expected in the real data.

The L1 Buffer and Raw Buffer are the main output of the Boole application. It is important
however to preserve also information about the Monte Carlo truth, e.g. which set of Gauss
hits gave rise to a given digit, or whether a digit came from a noise hit or a spillover event.
Since the L1 Buffer and Raw Buffer mimic the real data, they cannot contain explicit
references to the MC Hits. Instead, an association is made between a given channelID (the
identifier of an electronics channel encoded in the L1 and Raw buffers) and the
corresponding Monte Carlo truth, as described in section 2.3. Sufficient information is stored
on the Boole output to allow navigation to the MC hits of the in-time event. Any digits that
cannot be associated in this way are then due to noise hits or to spillover.

A monitoring phase is available in Boole. In normal production most histograms and printout
are turned off. They can be selectively turned on to study the performance of the digitization
in specific sub-detectors, in particular to verify new versions of the program against reference
output produced with large statistics by a well-tested version.

The event output of Boole can be customized according to the requirements of the analysis.
Two types of output are currently possible: full digitization (“Digi” output: L1 Buffer and
Raw Buffer plus full MC truth history) and raw data simulation (“L1” and/or “Raw” output:
L1 Buffer and/or Raw Buffer only). For both types it is possible to output all events, or just
events selected by the L0-trigger. The average event sizes (on disk, after Root compression)
are shown in Table 2-1.

Table 2-1: Event sizes of the Boole output.

Event size (kB)
Digi L1 Buffer Raw Buffer

Minimum bias events 340 2.2 15.4
L0 selected 3.6 26.3
L0 and L1 selected 4.4 31.7

Note that the numbers given for the Digi format are for unpacked data – a reduction factor of
2-3 should be achievable using the techniques described for the rDST in section 2.6.3. The
L1Buffer and RawBuffer include all overheads due to the formatting and partitioning of the
data, and conservative estimates of the overheads due to electronics noise. The zero
suppression thresholds and the encoding of the subdetectors is still in the phase of being
optimized. The aim is to reach 25kbytes per triggered event [38]. The breakdown of the
RawBuffer size in memory per sub-detector is shown in Table 2-2. The data compression of
ROOT saves about 30% of disk space for raw data.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

24

Table 2-2: Raw data sizes for L0 selected events.

Sub-detector Raw data size (kB)
Velo 10.4
TT 4.6
Rich 5.3
IT 3.8
OT 7.6
CALO 8.2
Muon 0.9
L0PU 0.3
L0Calo 0.5
Total 41.6

Boole has been used in production in the DC04 data challenge. It processed over 200 million
events, with less than 1000 crashes, the vast majority of which were due to a single well
identified problem that has since been fixed. The processing time for a signal (minimum bias)
event is 0.6 kSI2k.s (0.36 kSI2k.s) using gcc 3.2.3 compiler with –O2 optimization. Memory
usage is stable, approximately 300 MB.

2.6.3. Brunel, the reconstruction application

Brunel is the LHCb reconstruction application. It takes as input the Raw Buffer object
described in the previous section, from which it produces an rDST (for use in the application
for production analysis, stripping see section 4.2.4) or a complete DST (for use in analysis
with the DaVinci application).

Because it starts from Raw Buffer, Brunel can process identically real data coming from the
DAQ or the simulated data resulting from the Boole digitization and as such is independent
from simulation. It is intended to run the same application in the on-line event filter farm, for
the rDST production, and for full reconstruction of both real and simulated data.

Brunel is organized as a series of independent processing phases. In particular, all access to
Monte Carlo truth is confined to a dedicated phase that can be switched off when processing
real data. This guarantees that exactly the same algorithms will be run on both real and
simulated data, and that the reconstruction will not break in the absence of Monte Carlo truth.
In normal running mode, the program reads in the same detailed detector geometry and
material description as used in the simulation, thus ensuring consistency between the
simulated geometry and the geometry used for reconstruction. In addition, a misaligned
geometry different from the simulation can be read in for the reconstruction step for use in
alignment studies. In both cases, alignment corrections, as measured by the alignment
procedure or the detector survey, will be read from the conditions database and applied to the
basic geometry description.

The reconstruction phase is completely independent of Monte Carlo truth information. The
detailed description of the reconstruction algorithms that was given in [2] is still relevant,
although many algorithms have evolved since then, and will continue to do so in the coming
years. Here we give only a very brief overview of the program flow. It begins with clustering
in the tracking detectors. The Raw Buffer information is decoded and off-line clustering
algorithms applied to produce the clusters used as input to the tracking pattern recognition.
The tracking pattern recognition proceeds in several steps, each step benefiting from the
result of the previous steps, the goal being to provide as complete and precise a set of tracks

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

25

as possible, while minimizing the number of ghosts. The last stage of the tracking is a full
Kalman filter track fit taking into account the detailed material description, followed by a
clone-killing step that removes tracks that share too many clusters. The resulting unique
tracks are passed to the Calorimeter, Rich, and Muon detectors for Particle ID reconstruction.
The clusters, unique tracks and Particle ID objects are currently all stored on the DST.

The reconstruction phase is followed by a (Monte Carlo specific) Relations phase in which
algorithms navigate the event model relationships to associate reconstructed clusters to the
MC Particles that gave rise to the hits from which the clusters were built. If all (or more than
a predefined fraction of) the clusters that make up a track come from the same MC Particle,
the track is said to be associated to that MC Particle, and otherwise it is considered a ghost. If
more than one track is associated to the same MC Particle, the tracks are classified as clones.
The association tables between clusters and MC Particles and between tracks and MC
Particles are stored on the DST. All other intermediate truth information is dropped, it can
only be retrieved by re-accessing the Boole output file – this can be done transparently by the
Gaudi framework following the smart references present in the data, but has the additional
overhead of a file catalogue lookup and staging of a separate file. This functionality is only
needed for detailed debugging of the simulation and reconstruction algorithms and therefore,
Boole output files are only kept for a small subset of the data produced.

The event loop finishes with a monitoring phase. Currently much of the monitoring relies on
the existence of MC truth information; it is foreseen to split this phase into two, one of which
would be independent of the MC truth and which could be executed also on real data. As
with Boole, histograms and printout can be selectively switched on to study the performance
of the reconstruction in specific sub-systems, and to verify new versions of the program
against reference output produced with large statistics by a well tested version.

It is foreseen that, in the on-line environment, Brunel will run in the same application as the
HLT. The HLT will be executed as the first phase of the application, with the reconstruction
following only for events selected by the HLT exclusive selection. In the current
implementation the HLT and reconstruction phases are completely independent of each other,
both starting afresh from the Raw Buffer. A more integrated approach, currently under
investigation, may be beneficial (for example sharing the decoding of the Raw Buffer
information, or using the results of the HLT pattern recognition as a starting point for the full
reconstruction).

Most of the currently implemented reconstruction algorithms assume a perfectly aligned
detector. In future it will be necessary to tune the algorithms to deal with a detector whose
alignment is not perfectly known. In addition, alignment and calibration data will be time-
dependent and may differ from event to event. Work is in progress to understand how such
conditions data will be made available to the algorithms in a consistent way, both in the on-
line and off-line (including grid) environments. The development and deployment of a
conditions database framework is being carried out in close collaboration with the LCG (see
section 2.4.)

The event output of Brunel can be customized according to the production environment. Two
types of output are currently foreseen: complete DST for end-user analysis and reduced DST
(rDST) for input to the event stripping production step. For both types it will possible to
output all events, or just events selected by a selection decision such at the HLT exclusive
selection. The average event sizes (on disk, after ROOT compression) are shown in Table
2-3.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

26

Table 2-3: Event sizes of the Brunel output.

DST Event size (kB) rDST
Raw+L1 Buffer Reco data MC Truth

L0+L1 selected events 36.1 198.8 305.5
B signal 7.7 29.1 163.3 255.6

The number given for the rDST format is for packed data, in which all data are packed into
32-bit fields, and where the persistent classes have been optimized to take full advantage of
the ROOT serialization and compression mechanisms. This procedure reduces the size of the
data required for the stripping step from 22 kB to 7.7 kB. It has been shown that similar
reduction factors can be achieved also for the full DST data (and in particular the MC Truth)
by applying similar techniques.

The processing time per signal (minimum bias) event is 2.8 kSI2k.s (0.8 kSI2k.s) using gcc
3.2.3 compiler with –O2 optimization, plus 0.6 kSI2k.s (0.3 kSI2k.s) for the MC truth
monitoring. The design goal is 2.4 kSI2k.s per event for real data. Table 2-4 shows the time
for the different phases and the major contributions to the reconstruction time for signal
events.

Table 2-4 Execution times of the major algorithms.

 Time per event (ms)
on 1Ghz PIII

Initialization 5
Reconstruction (total) 6981
 Tracking (total) 4372
 Pattern Recognition 2316
 Track Fit 1954
 Rich 2431
Relations 595
Monitoring 893

The tracking pattern recognition code is an old implementation dating from 2003. A complete
re-implementation is foreseen, integrating many newer, faster, algorithms that have been
developed recently. The time taken for the track fit can be reduced by optimizing the use of
the detector geometry to determine the material distribution for the Kalman filter (transport
service). Ideas for reducing the Rich processing time are under investigation in the context of
developments for the HLT.

Brunel has been used in production in the DC03 and DC04 data challenges. In DC04 it
processed over 200 million events, with less than 200 crashes, the vast majority of which
were due to a single well identified problem that has since been fixed. Memory usage is
stable, approximately 350 MB.

2.6.4. Gaudi application executing in the on-line environment

The structure of the Gaudi architecture, with algorithms never communicating directly with
permanent data storage, makes it also well suited for on-line applications where data comes
from the DAQ. Only the Input Service to the Transient Store, the job control and the
monitoring components need to be specialized to interface with the DAQ and with the
Experiment Control System, while other components can be used identically as in off-line
applications. On-line applications differ slightly from off-line and batch oriented
applications:

• On-line applications receive the event data from the subfarm controller node (SFC)

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

27

• The application must provide run-time monitoring information and
• They must allow for external control.

The use of Gaudi online will be fully tested in the 2006 real time trigger challenge.

Access to event data

The applications executed on-line are trigger applications, L1 and high level triggers, or
calibration applications. The typical processing scheme of the trigger applications is shown in
Figure 2-10. The difference to off-line like data processing is the interaction with the subfarm
controller node (SFC) to which the resulting trigger decision must be reported.

Figure 2-10: The logical processing scheme for trigger applications

Whereas the physics code executed in on-line applications does not need to be aware of the
processing environment, the service responsible to bootstrap the access to the event data
collected in the experiment requires a customized implementation.

The processing scheme implemented in the Gaudi event loop service to analyse events in the
on-line environment includes the following actions:

• The event loop service requests a new event from the EventSelector. This
EventSelector requires a custom implementation to interact with the SFC.

• The EventSelector issues a request to the SFC to receive event data and waits until
the data have arrived. It encapsulates the received data and passes the data buffer to
the event loop service.

• The event loop service bootstraps the transient event data store by passing the data
buffer.

• The physics algorithms then pick-up the digitized data from the event store using the
standard access mechanism and compute the trigger decision, which itself is stored
in the transient data store.

• A specialized algorithm executed last inspects the trigger decision and forwards the
result to the SFC.

For a small fraction of the events it is foreseen to optionally monitor the trigger decisions.
Hence, before a new event is requested, a sequence of monitoring algorithms may be
executed after sending the trigger decision.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

28

Gaucho monitoring and application control

Gaucho (GAUdi Component Helping Online) allows the control and monitoring by the
Experiments’ Control System (ECS) of the L1 and HLT algorithms written in the Gaudi
framework running on the event filter farm.

Gaucho provides a lightweight C++ DIM[39] (Distributed Information Manager, a
communication system for mixed environments) library to be used by the algorithms and a
library of PVSS [40] (the Process Visualization and Control System used by the ECS) scripts
and panels to enable integration into the ECS. Algorithms can use a Monitoring Service that
is part of the Gaudi Online project to publish variables, counters and histograms. The
published information is passed to PVSS via DIM where they are displayed in real time.

Gaucho steers the Gaudi Application Manager through a Gaudi DIM Controller that calls the
Application Manager and takes control of the event loop. Commands can be sent from PVSS
via DIM to the Gaudi DIM Controller to configure, start, pause and stop algorithms. Once an
algorithm has been configured and started, commands can be sent to it (from PVSS) to
explore, publish and visualize histograms on the transient store. Properties of the algorithm
can be read and reset. Some real time analysis can be done in PVSS such as adding
histograms, calculation of mean quantities and displaying their evolution in real time.

The communication via DIM presents a low CPU load and interferes as little as possible with
the event data processing by the algorithms. It generates low network traffic, is scalable with
the number of nodes and is compatible with farm partitioning.

Figure 2-11: GAUCHO Screenshot

2.6.5. L1/HLT, the on-line trigger applications

The L1 and HLT [3][41] applications are running in parallel on every CPU of the event filter
farm [42], with the L1 applications having priority. The L1 application receives only the
input from the VELO, TT and the L0 subsystems with a rate of about 0.7 kHz/CPU. After a
positive L1 decision, the data of all sub-detectors are sent to the event filter farm for
processing by the HLT with a rate of about 30 Hz/CPU.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

29

The L1 trigger selection is based on the pT of reconstructed tracks that have a large impact
parameter to the primary vertex, the highest di-muon invariant mass from L0, and the highest
L0 photon and electron candidate ET.

The HLT execution happens in two steps (Figure 2-12). The first step is the HLT generic
selection that re-does the L1 decision but with better momentum resolution of the particles, as
the tracking uses the information from T1-3 stations. In the generic part the event is partially
reconstructed: approximately 1/3 of the total tracks, those that have a large impact parameter
and all possible muons. The output rate of the HLT-generic is 12 kHz; out of which 900 Hz
correspond to “b-inclusive” events with a muon of high impact parameter and large
transverse momentum (b�� µ); and 600 Hz of events with large di-muon masses, used mainly
for systematic studies. These 1.5 kHz of events are directly marked for storage. In the second
step, the HLT-specific, all the events that passed the generic algorithm are fully reconstructed
and filtered by the exclusive selections. In the initial part of the exclusive selection,
intermediate particles created in a standard way from 2 or 3 tracks vertices are combined to
form B-decay candidates. In the second part, specific cuts are applied to each selection
variable such as invariant masses, impact parameter significance, quality of vertices, etc. The
use of the RICH in the HLT is currently under study. The final output rate of the specific
selection is 200 Hz, with an additional branch of 300 Hz of D* candidates, to be used for
calibration and systematic studies and also for charm physics. The final output rate of the
HLT is 2 kHz.

L1 and HLT applications share the same event data classes and algorithms; therefore trigger
algorithms are interchangeable between both applications. In order to have a flexible code,
the trigger is a sequencer of small algorithms. The algorithms can alternate doing
reconstruction or trigger decision. Only the necessary data is processed at each trigger level,
for example, in the HLT generic selection, a fraction of the tracks are reconstructed, and only
if the event passes the generic selection the rest of the tracks are reconstructed. Therefore the
reconstruction algorithms need to be able to perform a “partial” reconstruction on demand. In
order to save time, a Gaudi tool is used to manage the memory allocation of the data classes
(the tool will be replaced in the future by a Gaudi Data Service). This tool creates a finite
number of objects at the beginning of the run to store clusters, tracks and particles. These
data objects are then filled and cleared per event, avoiding the time used for memory
management in their creation. In a similar way, to avoid losing extra time accessing the
detector and calibration data, a table is filled with the relevant information at the initialization
of the run, and simple and fast access is provided to this information to the different
algorithms.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

30

Figure 2-12: Schematic of the high level trigger for benchmark channels

The software trigger algorithms are currently tested and improved in the DaVinci application
(see section 2.6.6) to assess their performance [43][44][45]. The main priority is to increase
the reconstruction efficiency without losing in speed, and making the code more flexible and
robust against misalignments and detector inefficiencies. The full sequence of HLT takes at
the moment about 20 SI2k.s (Table 2-5) compared to the budget of 27 kSI2k.s foreseen in
2007.

Table 2-5: HLT CPU needs

 SI2k.sec
 CPU needs per algorithm average number of

calls per event
VELO Tracking 2.8 1.0
Generic HLT 7.6 1.0
Rest of tracking 6 0.33
PID (mainly RICH) 14 0.33
Shared resonances 4.8 0.33
D* stream 0.4 0.33
Exclusive stream 3.6 0.33
Total 20 SI2k. sec

2.6.6. DaVinci, the analysis framework

The analysis framework supports selection of events and analysis proceeding from the further
processing of the DST or rDST data. The output of DaVinci can be purely statistical or event
data. Analysis Object Data (or Ntuples) files containing physics objects can be written to
allow further processing. The output of DaVinci can also be a reduced DST, where only
events satisfying certain conditions are written.

A minimal DaVinci job includes:

• the reconstruction of primary vertices,

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

31

• the assignment of one or several particle ID hypotheses to tracks and calorimeter
clusters by using the PID information from the RICH, calorimeters, muon detector
and VELO,

• and a sequence of selection algorithms.

A dedicated algorithm base-class inheriting from the Gaudi classes is provided for physics
selections algorithms. It hides all interactions with the transient event (TES) and histogram
stores from the user, and interfaces several commonly used tools.

Physics analysis tools manipulate physics event objects that are described in terms of
“particles” and “vertices”. They contain for instance a set of vertex fitters, particle
extrapolators or filters (for selection cuts). Wherever possible, tools performing similar tasks
inherit from the same abstract interface, to allow the user an easy switching from basic to
more sophisticated tools without having to rewrite any code. A typical example is the set of
unconstrained and mass or geometry-constrained vertex fitters. DaVinci also contains a
standard algorithm that attempts to assign a flavour tag to each reconstructed B meson.

All these physics tools and algorithms are designed to be able to handle both off-line and on-
line data in a transparent way, allowing running the same algorithms as offline in the HLT
environment [46]. When necessary, a fast but approximate replacement tool is provided for
the HLT needs.

DaVinci also provides a set of “generic” algorithms allowing performing repetitive tasks, like
the reconstruction of a decay to n decay products, involving a vertex fit and some selection
cuts [47]. These standard algorithms are used both in the HLT and in the stripping stage,
ensuring that all successive steps of the selection (HLT, stripping, final physics analysis) of a
decay of interest are highly correlated and well understood.

Selection algorithms can be integrated into a complete, dynamically configured DaVinci
selection job. This job has been successfully used in the stripping stage of the DC04 data
challenge. The DC04 stripping code includes 43 selections and 25 final selections. It
consumes an average of 0.65 kSI2k.s per inclusive bb event. The pre-selections have not yet
been optimized for speed.

To help the physicists understanding their selection, DaVinci also provides a set of tools and
algorithms accessing MC truth and assessing reconstruction and selection efficiencies [48].
These MC utilities are packaged separately to enforce that no MC truth information is used in
the selection phase of the analysis, and that the program can run on data not containing any
truth information, like the future real data. In addition, a special toolkit named LoKi is
provided to facilitate the coding of physics analysis algorithms. It combines the power of the
DaVinci tools with physics oriented semantics.

LoKi, an analysis toolkit

LoKi is a C++ toolkit for Physics Analysis that provides a set of high level analysis utilities
with physics oriented semantics. The package has been inspired by the success of the Kal
program, used for physics analysis by the ARGUS collaboration, and the Pattern[49] package
used by the HERA-B collaboration. The ideas from GCombiner[50], Loki[51] and
CLHEP[52] libraries are also used.

The current functionality of the package includes

• Set of predefined function objects and generic operations

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

32

• Selection and filtering of particles and vertices,

• Multi-particle combinatoric loops

• Simple matching of reconstructed objects with Monte Carlo truth information

There is a clear separation between physics analysis code and technical details.

The majority of complicated physics analysis idioms can be expressed by only one line of
LoKi code. It has been demonstrated that usage of LoKi results in a drastic reduction of the
number of lines of code. In order to make the end-user code even more compact, the concepts
of Patterns and implicit loops in the spirit of standard template library (STL) algorithms have
been introduced.

LoKi-based analysis code is further enhanced by the concept of locality, in which the entities
are declared and defined only at the place they are used. The “book-on-demand” treatment of
histograms and N-Tuples illustrates this important concept.

There are no raw C++ pointer manipulations and explicit memory management in LoKi-
based physics analysis code. This fact together with the suppression of explicit and tedious
loops makes the code less prone to errors and easy to debug.

The implementation of LoKi heavily exploits the modern technique of generic template meta-
programming [51][53]. In general, LoKi code is very efficient due to the templated nature
and the fact that most of the code is in-lined. The kernel components of LoKi are loosely
coupled with the LHCb Event Model.

2.7 Interactive Analysis
Being able to perform interactive analysis of LHCb events is not only useful for providing an
easy way of learning and using the software but also for debugging and developing the
software. The event display allows to visualize and to inspect the detector geometry and the
event data itself using a graphical user interface. Choosing Python as a scripting language
enables direct access to the objects in the C++ world in a much simpler way than writing C++
code and still being able to perform sophisticated physics analysis. Python scripts are also
used to perform complex operations behind the graphical user interface of the event display.

2.7.1. Bender, an interactive physics analysis tool

Bender[54], a Python[55] based physics analysis application, combines the Gaudi software
architecture with the flexibility of the Python scripting language and provides end-users with
a user-friendly physics analysis environment. Bender is based on the generic Python bindings
for the Gaudi framework, called GaudiPython, and on the C++ physics analysis toolkit LoKi
(section 2.6.6). LoKi in turn uses Tools and Algorithms developed in C++ in the context of
the DaVinci analysis framework. The usage of Python, the AIDA [56] abstract interfaces and
standard LCG reflection techniques allow an easy integration of Bender's analysis
environment with third party products like interactive event display, visualization and
statistical analysis tools, like Panoramix (section 2.7.2), ROOT [8] and HippoDraw [57]. It
has been demonstrated that Bender facilitates the writing of extremely compact and easy-to-
read self-contained code. Interactivity of Bender provides physicists with the possibility to
(re)define the algorithms, parameters and configuration in the process of code development
from the interactive program prompt. By delegating the time consuming tasks to the C++
background functions, almost no penalty for using a non-compiled computing language has
to be paid.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

33

Any piece of code or configuration file developed for usage with the DaVinci analysis
framework could be used with no limitation within the Bender analysis environment. The
interactive program prompt provides physicists with the natural bridge to the event display
application Panoramix.

2.7.2. Panoramix, the visualization application

The graphical display of detector geometry and event data objects is provided by a dedicated
application called Panoramix (see Figure 2-13 and Figure 2-14.) It is based on a set of
visualization services and converters providing the graphical representation of the LHCb
setup as well as of the data. The event data can be read from files or produced on the fly. An
interactive user interface allows the user to choose what to display and how it is visualized.
The visualization services are based on the OnX [58] package for interactivity and Open
Inventor [59] for the graphics. Python is used as the scripting language to control the GUI
and to provide the necessary functionality by wrapping LHCb C++ code. Predefined views
have been implemented and are available in the GUI as well as the normal zoom and rotation
facilities.

Since Panoramix is based on the Gaudi framework it can work with any of the data
processing applications described before allowing not only 3D graphical rendering for
geometry verification but also providing aid in the development and understanding of the
physics algorithms.

Graphical User Interface

The GUI is organized as one compact GUI panel organized around a document area made
with a stack of Inventor viewers. At the left of the document area there is a data tree browsing
widget, at the top a menu bar and at the bottom a command typing area. Various dialog
panels can be mapped through the menu bar items in order to parameterize and trigger an
action, like printing or changing parameters. The menu bar items can execute either
complicated C++ functions or Python scripts to define what and how to visualize objects.
Using Python scripts has the advantage that they can be changed on the fly, no re-compilation
of code is necessary.

Connection to the data framework

The data framework (Gaudi) should be understood as the software which manipulates and
connects the event and detector data to facilities like storage, graphic, GUI, scripting.

OnX is the interactivity framework. It allows the connection between the GUI (via an XML
description), viewers, scene manager (Inventor), renderer (OpenGL) and scripting. The
connection between the data framework and interactivity framework is done through the
Gaudi OnX service. The various elements of the LHCb event model have a "representation"
which is in general a Gaudi converter for the Inventor technology (a SoConverter). A
SoConverter builds from a data instance an Inventor scene graph. When built, the scene
graph is sent to OnX to be displayed. A visualization request starts from a scripted GUI
callback, then a data conversion for an Inventor request is activated for various pieces of
selected data. The usage of abstract interfaces permits the use of various different
visualization technologies.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

34

The visualization packages

Various converters are needed to create the graphical representations of the objects in the
transient event store, the detector geometry, hits, tracks, particles, etc.

The SoDet package builds the Inventor representation of the detector. It is very generic and
offers together with the LHCb XML detector description a very flexible way to enter and
view geometry. The SoStat package allows histograms in the Gaudi transient store to be
presented. A package is provided to visualize HepMC information in conjunction with the
LHCb Geant4 simulation program (Gauss). Dedicated converters for most of the
reconstructed objects exist.

Figure 2-13: Example plot for interactive analysis with Panoramix.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

35

Figure 2-14: Close look at the interaction region showing the reconstructed tracks and their

measurements in the Velo overlaid with the original Monte Carlo true tracks.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

36

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

37

Chapter 3 Distributed Computing

3.1 Introduction
The resource requirements for computing in LHCb are such that they can only be obtained
from a distributed environment. The LHCb Computing Model that justifies this statement is
described in the next chapter. We shall describe in this chapter the main activities within
LHCb that are related to providing the infrastructure necessary for using this distributed
computing.

LHCb will use as much as possible the capabilities provided by the LCG both in terms of
computing resources (CPU and storage) and in terms of software components. We expect
some basic services to be completely generic and provided by LCG projects and sites while
higher level integration and LHCb-specific tools will be provided by the LHCb collaboration.

The developers of the LHCb applications described in the previous chapter as well as
physicists developing analysis code use a standard environment and set of tools. These
applications also need to be released, packaged, distributed and placed in the appropriate
environment before running. This infrastructure is described in section 3.2.

It is expected that LCG will provide a set of baseline services for workload management (job
submission and follow-up) and data management (storage, file transfer, etc.) Several higher-
level services however are very much experiment-dependent and thus will be provided by
LHCb. This is the case for the file and job provenance (Bookkeeping database), for the
Workload Management tools (DIRAC) and for the Distributed Analysis tools (GANGA).
These high level services are described in the sections 3.3 to 3.5.

The interplay between the LHCb-provided services and the LCG-provided services are
outlined in each of the appropriate sections.

3.2 Software environment and distribution
The LHCb software is structured in several projects. A project consists of a set of packages
maintained under a unique version number with a well-defined purpose, it can be used by
other projects and can use other projects maintained or not by LHCb.

Gaudi as a foundation project uses several LCG projects such as SEAL[12], POOL[9],
ROOT[8]. Another project called LHCb is dedicated to handle the LHCb Event Model (see
section 2.3), the Detector Description framework and several general use packages on which
all applications depend. A set of projects house the actual algorithms that are assembled in
order to produce applications:

• Lbcom: contains a few packages shared by Boole, Brunel and DaVinci

• Rec: contains all reconstruction packages

• Phys: contains all physics-related packages

• Online: contains the online services used by applications running on the Event Filter
Farm.

On top of these are built all applications projects: Gauss, Boole, Brunel, DaVinci, L1 & HLT
and Panoramix. Figure 3-1 shows the interdependency of the LHCb projects.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

38

Figure 3-1: The LHCb CMT projects and their dependencies. Also shown are the LCG packages on

which LHCb relies

To build any project and to maintain the dependencies between them we use the
Configuration Management Tool (CMT) developed and maintained by LAL-Orsay[60].
Relations between packages of a project or between projects as well as parameters required to
build libraries, executables, and documentation are described by a CMT meta-language in a
requirements file kept within the package. Dependencies and makefiles are automatically
rebuilt every time requirements are modified. Specific site/platform/compiler options can be
included in requirements files to allow different site/platform/compiler configurations.
Similarly dependencies to and within the LCG software use CMT requirements files provided
by the LCG-AA project.

The source code is maintained in a CVS repository on centrally maintained servers at CERN.

Builds are made on Linux and Windows platforms starting from Gaudi as a framework,
followed by the other projects in reverse order of dependencies. Binaries are kept with the
code at CERN on an AFS release area.

We do not produce nightly builds. The frequency of the releases is:

• Gaudi - major release twice a year with minor versions every month or when a new
version of LCG software has to be used.

• LHCb event model – releases following Gaudi releases with intermediate versions.

• Component projects and Applications – releases are made when necessary, usually at
least once a month.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

39

All projects are built with a unique shell script to book the AFS space, checkout the code,
build libraries and executables, create source and binary tar files, dOxygen documentation
and web pages. The AFS space occupied by a full release (Linux optimized and debug,
Windows debug, dOxygen documentation) is about 9 GB.

The tar files are available from the web. It is possible to download one project/version and all
its dependency projects at once with or without binaries. LCG projects tar files are included
in the dependencies as well as some compiler run time libraries to be able to run executables
on Grid platforms that have a different compiler version. A python script is provided to
perform the installation. The use of pacman[61] and the developments that were made to use
it with CMT is under consideration[62]. The goal is a unique tool that could be used to install
the software on any platform: (e.g. laptop or Grid platform.)

3.3 DIRAC
LHCb will have to integrate a coherent system of resources and Grid services to carry out its
computing tasks in the distributed environment. Therefore, a project was started which will
combine LHCb specific components together with general-purpose components where it
proves to be appropriate. This work is being done within the DIRAC project (Distributed
Infrastructure with Remote Agents’ Control).

DIRAC is conceived as a lightweight system with the following requirements:

• support a rapid development cycle,

• be able to accommodate ever-evolving grid opportunities,

• be easy to deploy on various platforms,

• updates to bring-in bug-fixes and new functionalities should be transparent or
possibly automatic.

DIRAC is designed to be highly adaptable to the use of heterogeneous computing resources
available to the LHCb Collaboration. These are mainly resource provided by LCG grid.
However, other resources provided by sites not participating to the LCG as well as a large
number of desktop workstations should be easy to incorporate.

One of the main design goals is the simplicity of installation, configuring and operation of
various services. This makes the threshold low for new sites to be incorporated into the
system. Once installed and configured, the system should automate most of the management
tasks, which allows all the DIRAC resources to be easily managed by a single Production
Manager.

The system is designed to be robust and scale well to the computing needs of the LHCb
Collaboration. This scale we roughly define for the moment as ~104 concurrent jobs, ~105
jobs in the queue processing, handling ~107 datasets.

3.3.1. DIRAC architecture

DIRAC uses the paradigm of a Services Oriented Architecture (SOA). The services
decomposition follows broadly the one proposed by the ARDA LCG/RTAG in 2003 [63] as
shown in Figure 3-2.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

40

Figure 3-2: General view of the DIRAC architecture. Arrows originate from the initiator of the action

(client) to the destination (server.)

The main types of the DIRAC components are Resources, Services and Agents:

• Resources represent Grid Computing and Storage elements and provide access to their
capacity and status information.

• Services provide access to the various functionalities of the DIRAC system in a well-
controlled way. The users interact with the system via agents.

• Agents are lightweight software components usually running close to the computing
and storage resources. These are applications distributed as necessary, which allow
the services to carry out their tasks in a distributed computing environment.

The main DIRAC subsystems, Workload Management and Data Management, are
combinations of central Services and distributed Agents. This allows an efficient operation of
the distributed system with an easy and non-intrusive deployment of its distributed parts. This
feature of the DIRAC architecture is essential in the deployment phase of the system. Since
the grid environment is intrinsically very dynamic, the efficient deployment is one of the
most important characteristics of the system. In the following, the DIRAC services are
presented together with an outlook for possible incorporation of components developed
within the EGEE/LCG projects.

LHCb considers the approach used for the design of DIRAC as the most suitable for efficient
Grid operations. Therefore the necessary infrastructure needed from the LCG to allow the
deployment and usage of DIRAC on its supported resources has been requested. The
requirements in terms of Baseline Services are summarised in section 5.3.

3.3.2. Computing Resources

The Computing Element (CE) in DIRAC is an API abstracting common operations of job
manipulation by computing batch systems. It also provides access to the state information of
the computing resource such as its capabilities, environment or occupancy. The API is

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

41

implemented for various back-end batch systems: PBS, LSF, NQS, BQS, Sun Grid Engine,
Condor or standalone PC. One particular case is the access to the LCG grid that is realized as
standard DIRAC CE. In the latter case, access to LCG resources both through a Resource
Broker scheduling system and direct access to the LCG CE (through GRAM interface) is
possible. We are planning also to provide an interface to any standard CE implementation
that would be deployed on LCG sites, summarised in section 5.3.3.

The DIRAC Storage Element (SE) is a combination of a standard server, like gridftp, and
information stored in the DIRAC Configuration Service (see next section) on how to access
it. The SE API provides a possibility to dynamically plug-in modules for transport protocols
by which the SE is accessible as described in its configuration. Modules for most of the
existing protocols are available: gsiftp, bbftp, sftp, ftp, http, rfio , direct file
access. A special xml-rpc protocol allows transfer of relatively small files encapsulated into
an XML-RPC message. A variant of the SE compatible with other DIRAC components and
accessing standard SRM based storage is being developed (see section 5.3.2.)

3.3.3. Configuration Service

The DIRAC Configuration Service (CS) provides necessary configuration parameters to
other services, Agents and Jobs to ensure their collaborative work. The CS contains endpoints
of all the DIRAC services and resources, their properties as well as policies for the current
production run. This service is vital for the stable operation of the whole system and must be
absolutely available despite any outages of the network or server hardware. Therefore special
care was taken to provide a reliable and redundant implementation.

The service consists of several servers among which one is a master server accompanied with
any number of secondary servers. The master server has interfaces for both updating the
configuration information and for serving it to clients. The slave servers have only a read-
only interface to provide information to clients. The read-only interfaces of both the master
and the slave servers are identical. The secondary servers are periodically updating their
copies of the LHCb-wide configuration parameters from the master. Since this information is
not changing frequently, the updates are done every minute. The secondary servers are
usually running on sites different from the master one in order to eliminate the risk of service
interruption due to network cuts.

����������
������������

����������
������������

������������
������������

��������������������������������������	��

����������� ����

������������ ������������ ������������

�����
������ �����
������

����������������� ����������������� �����������������

�������������������������
�������������

������������������

����������
������������

����������
������������

������������
������������

��������������������������������������	��

����������� ����

������������ ������������ ������������

�����
������ �����
������

����������������� ����������������� �����������������

�������������������������
�������������

������������������

Figure 3-3: Configuration Service architecture. Arrows originate from the initiator of the action (client)
to the destination (server.)

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

42

Each client has a list of configuration servers to talk to. If one server is not available, the
same information can still be obtained from any other server in the list. This ensures the
redundancy necessary for the service reliability, as well as for high query rate capacity. The
client API provides also the possibility to define configuration parameters in any number of
local configuration files. These local settings override the globally provided default values.
The whole parameter space is divided in sections providing a single level hierarchical
structure. The configuration files are following the syntax of Microsoft .ini files.

3.3.4. Monitoring and Accounting

The Job Monitoring Service receives status information about the running jobs and provides
it to the requests of users, for example through a dedicated Web Portal, or to other services.
The monitoring information is currently kept within the DIRAC central WMS jobs database.
We are considering interfacing the DIRAC agents to the MonaLisa monitoring system [64].

The Accounting Service accumulates statistics on the usage of the computing resources and
generates reports that can be used to follow the production progress or to apply policies and
quotas while job scheduling.

3.3.5. Workload Management System

The Workload Management System (WMS) consists of three main components: a central Job
Management Service (JMS), distributed Agents running close to DIRAC Computing
Elements and Job Wrappers which are encapsulating the user job applications.

The JMS is in turn a set of services, highlighted in Figure 3-4:

• Job Receiver Service: provides an interface for users to submit jobs.

• Optimisers: based on the job description provided in standard Job Definition
Language (JDL), they sort jobs in task queues

• Matchmaker Service: receives job requests from the job-agents.

• Monitoring Service (not shown): serving job status information.

 Agents continuously check the availability of resources in their respective CE, make requests
to the matchmaker Service of the central JMS, pull jobs from the JMS and steer job execution
on the local computing resource.

Job Wrappers prepare the job execution on the Worker Node, get the job’s input sandbox,
send job status information to the JMS, and upload the job output sandbox.

The jobs requirements are described using the JDL and their matching to the capabilities of
the computing resources is done with the ClassAd library from the Condor project [65].

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

43

Figure 3-4: The DIRAC Job Management Service architecture. Arrows originate from the initiator of

the action (client) to the destination (server.)

One interesting feature of the WMS is that services or users can communicate with Agents
and Job Wrappers by means of an Instant Messaging (IM) protocol. In particular, the
Jabber/XMPP protocol [66] is used in DIRAC. It provides a reliable asynchronous
bidirectional communication channel that can be used to monitor Agents and Jobs or even
maintain interactive sessions with running jobs.

3.3.6. Data Management System

The Data Management System (DMS) includes File Catalog Services, which keep track of
available data sets and their replicas, as well as tools for data access and replication.

File Catalogs. The LHCb Bookkeeping Database (BKDB) (see section 3.5), which keeps
track of the executed jobs and metadata of the available datasets (what is usually called
Metadata Catalog and Job Provenance Database) [67], also keeps information about the
physical replicas of the files. A service was built as a front-end to this part of the BKDB,
which allows usual File Catalog operations (registering files and their replicas, queries for
file replicas for a given location, etc). However, this File Catalog implementation has rather
limited functionality, and we looked for other solutions that can be imported as a service into
DIRAC.

We have tried out the File Catalog which is part of the AliEn project [68] because of its rich
functionality and proven robust implementation. This catalog provides almost all the
necessary features that we expect:

• hierarchical structure following the file system paradigm,

• access control list (ACL) mechanisms,

• possibility to store metadata associated with files.

A front-end service was developed to provide access to the AliEn File Catalog functionality.
This service keeps a connection to the catalog and translates incoming queries into the AliEn
UI commands.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

44

The client APIs to access both File Catalog services are identical, so that data management
tools can use either of them (or both simultaneously) by just setting the appropriate
configuration parameters.

Other File Catalog implementations are being evaluated in the same way. In particular, we
consider the LFC File Catalog [69], the FiReMan Catalog [70] and the new generation of the
AliEn File Catalog. The final choice will be made based on the thorough assessment of the
catalog properties: completeness of the functionality, scalability, responsiveness with high
query rates, reliability, etc (see section 5.3.2.)

Reliable File Transfer Service. File transfer is a fragile operation because of potential
network and storage hardware failures or errors in the associated software services. It is not
unusual to lose the output of a long job because of the failed data transfer that was never
retried. Therefore, a Reliable File Transfer Service (RFTS), which allows retries of the failed
operations until complete success is a vital part of the DMS.

In DIRAC the RFTS is constructed using the same building blocks as the WMS (Figure 3-5).
Each site maintains a Request Database (RDB) of data operation requests. The requested
operations can be data transfer, replication or registration in a File Catalog. One request can
contain any number of operations. A special module called the Transfer Agent is
continuously checking the contents of the RDB for outstanding requests and attempts to
execute them. In case of failures, the request stays in the RDB for further retries. Partially
accomplished requests are modified to retry only undone operations.

Transfer Agent

Requests DB

JobData ManagerData Optimizer

Local SE Remote SE
cache

Site Data
Management

Transfer Agent

Requests DBRequests DB

JobData ManagerData Optimizer

Local SE Remote SE
cache

Site Data
Management

Figure 3-5: On-site data management tools. Arrows originate from the initiator of the action (client) to

the destination (server.)

The RDB can be populated either by a regular production job executed on the site or by a
special job the only purpose of which is to set a data transfer request. In both cases, the
progress of the request execution can be monitored by the standard job monitoring tools
provided by the WMS.

The DIRAC RFTS uses basic transfer protocols (such as gridftp) as defined in the
Configuration System for transferring files. It is however envisaged to use an underlying
centrally provided fts when available (see section 5.3.2.)

3.3.7. Services implementation

All the DIRAC services are written in Python [55] and implemented as XML-RPC
servers [71]. The standard Python library provides a complete implementation of the XML-
RPC protocol for both the server and client parts.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

45

A significant effort was made to provide fault tolerant services. The crucial services are
duplicated to increase their availability. Many requests are repeated in case of failures to
overcome network outages or service saturation. All the services are run using the runit
watchdog tool [72], which ensures restarting in case of failure or on machine reboot. It
provides also many other useful features for service manipulation and debugging.

The services should provide secure access to their functionalities based on the de-facto
standard GSI security infrastructure adopted on the grid. Several prototypes are being
studied. One possibility is to use upgraded XML-RPC servers communicating with clients
over the HTTPS protocol enhanced to use grid certificates for authentication. The other
possibilities are based on the use of grid service portals ensuring authentication and
authorized access to back-end services. In the latter case, an authentication mechanism
provided by the GridSite project [73] was evaluated and gave satisfactory results. We are also
evaluating the Clarens grid services framework [74] to provide service containers enabled
with authentication/authorization mechanisms. As a result of this prototyping work we will
have a robust secure grid services infrastructure capable of standing the high load of the
LHCb production system.

3.3.8. Interfacing DIRAC to LCG

LCG already in its present state provides a large number of computing resources accessible
through the LCG-2 infrastructure. There are several ways to exploit these resources.

The seemingly most straightforward way is to use the standard LCG- provided middleware
for job scheduling. However at the time of writing, this approach is not yet reliable enough as
demonstrated by the LHCb Data Challenge 2004 [75], so other possibilities had to be
explored. An alternative approach consists in sending jobs directly to the LCG CE. This
approach was tried out successfully in our DC 2003 [76] to gain access to resources provided
by the EDG testbed. However, in the recent Data Challenge 2004 another approach was
realized.

This third approach consists of a workload management with reservation of computing
resources using pilot-agents. We took advantage of having a light easily deployable “mobile”
agent, which is part of the DIRAC native WMS. The jobs that are sent to the LCG-2
Resource Broker (RB) do not contain any particular LHCb job as payload, but are only
executing a simple script, which downloads and installs a standard DIRAC agent. Since the
only environment necessary for the agent to run is the Python interpreter, this is perfectly
possible on all the LCG sites. This pilot-agent is configured to use the hosting Worker Node
(WN) as a DIRAC CE. Once this is done, the WN is reserved for the DIRAC WMS and is
effectively turned into a virtual DIRAC production site for the time of reservation. The pilot-
agent can verify the resources available on the WN (local disk space, CPU time limit, etc.)
and request to the JMS only jobs corresponding to these resources. The reservation jobs are
sent whenever there are waiting jobs in the DIRAC Task queue eligible to run on LCG.

There are many advantages in this approach. The agents running on the WN are ensuring that
a valid environment is available before scheduling the real jobs. If the agent fails to start for
whatever reason (failure of the RB, site mis-configuration, etc), the DIRAC Task Queue is
not affected. This approach allowed LHCb to use both LCG and non-LCG resources in a
consistent way. In fact, the LCG RB was used to dynamically deploy the DIRAC
infrastructure upon the LCG resources providing a completely homogeneous system. The
jobs running on LCG resources were still steered, monitored and accounted for in the same
way and by the same services as other DIRAC jobs. This way allowed for efficient use of the
LCG resources during the DC 2004 (over 5000 concurrent jobs at peak) with a low effective
failure rate, despite the rather high intrinsic failure rate of LCG (about 40%).

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

46

The workload management with “resource reservation” by pilot-agents opens interesting
opportunities for optimization of job scheduling. While the resource is reserved, it can be
used flexibly, for example, running multiple short jobs without repeated scheduling or
participating in a coordinated parallel work together with other reserved resources. The latter
mode of operation is suitable for running interactive data analysis sessions on the grid.

3.3.9. LHCb Workflow Description

The DIRAC job wrapper that sets the environment and runs the actual application on the WN
can accept job scripts, but in order to run complex jobs, a specific workflow description is
used. The execution processes as well as the software packages to be used are described
using the XML language.

A workflow can be defined as a complex diagram of processing phases called steps. A step is
the smallest unbreakable element in a workflow. While the WMS is entitled to break a
workflow into its steps and submit them in parallel if required, steps are always executed
within a single job.

Steps in turn are a sequence of modules that are themselves most usually scripts (e.g. Python
or shell scripts). A library of steps can be used to build up modules that will then be included
in a workflow.

Modules in a step and steps in a workflow are connected by their input and output variables
(usually temporary files). Several instances of a given step can be used to build a workflow,
e.g. several simulation steps used by one or several digitisation steps in order to include
spillover events.

The DIRAC Console [77] provides the framework for describing workflows. It contains
graphical editors for modules, steps and workflows. Workflows can be instantiated in a
Production Request editor to prepare jobs for production. The primary description of
workflows uses XML as a description language that is interpreted by the DIRAC job
wrapper. A Code Generator can also be used to produce directly executable Python scripts to
be submitted to DIRAC or any other WMS.

The DIRAC Console is used successfully in LHCb to prepare production jobs that instantiate
complex workflows (such as the stripping jobs). It is very useful, although not mandatory, to
create jobs to be submitted to DIRAC.

3.4 GANGA - distributed analysis
A physicist analysing data from LHCb will have to deal with data and computing resources
that are distributed across multiple locations and have different access methods. The GANGA
application has been developed, in cooperation with ATLAS, to help with this task by
providing a uniform high-level interface to the different low-level implementations for the
required tasks, ranging from the specification of input data to the retrieval and post-
processing of the output.

For LHCb the goal of GANGA is to assist in running jobs based on the Gaudi framework.
GANGA is written in Python and presents the user with a single interface rather than a set of
different applications. It uses pluggable modules to interact with external tools for operations
such as querying metadata catalogues, job configuration and job submission. At start-up, the
user is presented with a list of templates for common analysis tasks, and information about
ongoing tasks is persisted from one invocation to the next. GANGA can be used either
through a command line interface at the Python prompt (CLIP, see Figure 3-6) or through a

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

47

GUI (see Figure 3-7). Their behaviour are completely linked allowing easy transition from
one to the other.

3.4.1. A typical GANGA session

This section illustrates the use of GANGA through a complete imagined analysis. The
physicist will use GANGA as a way to keep track of his/her analysis, much in the same way
that we all use our email application to keep track of our communications. For his/her
analysis the user wants to analyse 3 large datasets called Data, Monte Carlo and Reference
within the DaVinci framework.

>>> from GANGA.CLIP import *
>>> dv = DaVinci(optionsfile=’myanalysis.opts’)
>>> j = Job(name=’MyAnalysis, application=dv, backend=’DIRAC’)
>>> j.submit()
>>> print jobs
Statistics: 2 jobs jobs

 ID status name
1 completed Bd2DstarPi
2 new MyAnalysis
>>> j.submit()
>>> print jobs
Statistics: 2 jobs jobs

 ID status name
1 completed Bd2DstarPi
2 running MyAnalysis

 Figure 3-6: Use of CLIP from the Python prompt to create and submit a DaVinci job to the DIRAC
Workload Management System.

The user starts GANGA and as the first thing selects a small dataset for developing code on
in the LHCb Bookkeeping database. The dataset is saved as a local template. The user creates
a new job of type DaVinci and develops the C++ code outside GANGA. Using the Job
Options Editor, which is a part of GANGA, the job is configured and submitted as a local
job. In a series of iterations the user copies the job and resubmits it first as a local job and
then to the local batch system for slightly larger datasets.

The user is now ready to perform the analysis. For this he/she creates a set of template jobs,
and selects the data to analyse and saves them as local selections. This involves multiple
selections in each of the 3 large datasets to deal with differences in running conditions over
time. To keep things neat the user divides the analysis up into sub folders corresponding to
the 3 different categories.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

48

Figure 3-7: Screenshot of a GANGA session using the GUI

The analysis is now submitted by creating a small set of jobs from the templates. The datasets
to analyse are specified for the jobs, and a policy for splitting the jobs is defined. The size of
the job is such that it will get divided up into the order of 1000 sub jobs. As the jobs will
provide rather bulky output it is also decided to specify an alternative location for output files
on a scratch disk. The jobs are then submitted to the Grid (via DIRAC.) Days later the user
starts a new GANGA session to monitor the progress and looks at some of the output from
finished sub jobs to see everything works as expected.

A certain fraction of the sub jobs failed due to a hardware failure. These are resubmitted as
identical jobs again. Each sub-job creates a ROOT output file and when all jobs are finished
the user merges the output to ease the analysis. Towards the end of the analysis the user
cleans up the system by deleting the many jobs that are no longer relevant by selecting them
all at a high level and issuing a single delete command.

3.4.2. Implementation

The GANGA project has developed over the last 3 years and the current version 3.0
represents a functional model that is used within the collaboration. However it has several
restrictions such as the implementation of new features are difficult due to the design being
developed along with the implementation; the central job registry does not scale much
beyond 100 jobs; and the existing implementation does not easily allow certain parts of
GANGA to be placed on remote servers. It was therefore decided to use the current release as
a functional prototype for a complete reimplementation of the core of GANGA. Experience
from the current GANGA version was also used to create an updated set of Use Cases for
LHCb [78]. This reimplementation, known as GANGA-4 [79] has more or less the same
functionality as the existing implementation but without the limitations mentioned above.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

49

The finished product should support all details of the use case outlined in the previous
section.

Figure 3-8: The reimplemented Ganga is logically divided into 4 parts that can all be hosted on
different client/servers if required

The GANGA client, which the user interacts with directly, is mainly implemented in pure
Python. It initially sets up the job and performs client side job splitting if required. If there is
server side splitting the client receives a notification from the Job Manager and can then go to
the registry to get information on the sub-jobs. Server side sub-jobs are limited in
manipulation depending on the features supported by the backend. The client also talks to the
bookkeeping or to the file catalog to retrieve data sets. The client communicates with:

• The Application Manager to retrieve available applications and their versions,
compiled user code (shared libraries), and pre-processed job-parameters (option files).

• The Application Manager to send application relevant parameters for manipulation
(e.g., option files) and user code to be compiled in the context of the chosen
application (optional). The client also receives information on pre-processed run-
options and compiled user code (shared libraries).

• The Registry Service: several simultaneous registry services are possible, which may
be local or remote. The client saves new jobs in the selected remote repository. Once
the job is submitted, the Job Manager manages the job status and the client only has
read-access to the entry in the registry.

• The Job Manager: the client submits a configured job to the Job Manager.
Subsequently it receives notifications of the status from the Job Manager. Commands
to restart or kill a job are submitted to the Job Manager, which will take action and
subsequently update the registry.

The Application Manager informs the client on available applications it knows about (e.g.
generic, DaVinci, general Gaudi, Bender etc.). For all of these it defines sensible defaults to
aid the user. The Application Manager processes all user options and the configuration
associated with the job itself. It is planned to implement the application manager on a server.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

50

In addition, the Application Manager might also compile user code to generate shared
libraries.

The Job Manager accepts jobs from the client. It has knowledge of the supported back-ends
(local, batch system, DIRAC etc.) and creates the required wrapper scripts in order to run the
job on the chosen back-end. This requires a certain level of matching between back-ends and
applications that is taken care of by the Application Runtime Handler. As an example, the
method for running jobs within DIRAC is different for a general script and for a Gaudi job
that takes advantage of the preinstalled environment. The Job Manager also modifies the job
information on the job output depending on what the application and back-end support. As an
example the Job Manager may decide to change the output location of output files specified
in the output-data to be local and then subsequently copy the data to the final location. After
the Client has submitted a job the Job Manager takes ownership on behalf of the client for
operations like kill, resubmit or delete. The Job Manager will change the information in the
registry each time the job enters into a new status. This includes information on run status,
number of subjobs created from server side splitting, location of output data like large ROOT
files and the location of the output sandbox. The only information flowing from Job Manager
to Client is notifications and information about available back-ends. Following a notification
about a job the Client can then update itself from the registry.

Users Jobs creation retrieval deletion
1 10 0.47 0.1 0.019
1 50 0.29 0.09 0.015
1 100 0.35 0.06 0.01
10 10 0.49 0.08 0.048
10 50 0.31 0.1 0.03
10 100 0.35 0.14 0.028
Table 3-1: Test of multiple users creating, retrieving and deleting a given number of jobs in a remote

registry implemented using the ARDA MetaData database. All times are in seconds per job

The registry keeps track of GANGA jobs. It is implemented as a remote registry with a local
cache. The remote registry receives job configuration from a client for new jobs. This
consists of the job object, the input sandbox and information about the output location
(sandbox) and the output-data. For a submitted job the registry receives the job status from
the Job Manager. The remote registry is implemented as a dumb storage of information and
will not by itself initiate any actions. In Table 3-1 the performance of GANGA is given for
the use of multiple clients (i.e. different users) working with several jobs in the remote
registry implemented using the ARDA MetaData database[80].

3.4.3. Required Grid services

In order for GANGA to work smoothly for a physics analysis many services are required
from the Grid. For LHCb the submission model for distributed analysis jobs is that they will
be submitted to the DIRAC WMS and from there go onto the Grid. In this way LHCb will
only have to deal with Grid submission from one application. Analysis, opposed to
production, presents extra issues with respect to using the Grid. The first one is that analysis
is typically done by physicist with a lower computational expertise so requirements on
transparency, clear error messages, success rate etc. are higher than for the Grid used for
production type tasks. The second one is that analysis jobs are more iterative and individual
so the process of changing the executed code and configuration of jobs needs to be much
easier than for production jobs.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

51

3.5 Bookkeeping
The processing of data in LHCb is performed iteratively in a chain of programs each
executing as a separate processing step, both for real data and for simulated data. Each of
these processing steps may require one or several input files and produces one or several
output files, which may be data files, tag collections or simply log files. A step is typically
running an application that is steered by a set of parameters. In order to ensure reproducibility
of these data as well as the possibility to classify the produced data all these parameters need
to be recorded and made accessible publicly to the LHCb physicists. The Bookkeeping
Database (BKDB) is used for storing all these parameters. Typically a physicist will perform
queries to the BKDB in order to select a dataset to be analysed.

A dataset is a set of files logically grouped according to common properties. The atomic
dataset is a single file. The published information allows:

• Fast selection of datasets possibly consisting of many individual files according to
predefined physics criteria

• Detailed browsing of all parameters characterizing a given file and its processing
history (job provenance).

The Bookkeeping database is accessed by two sets of users with different characteristics:

• Data Production Managers, who supervise and control major data processing efforts
on behalf of the collaboration. The data production on one hand publishes the
provenance information to the bookkeeping facility, but also requires access to
datasets e.g. in the case of reprocessing. The production manager must also be able to
mask faulty files such that they are not selectable for physics analysis.

• Physicist users, who develop data analysis algorithms in order to extract physics
parameters from the data. Physicists query the bookkeeping system in order to select
the dataset they are interested in. Physicist users are interested to obtain a subset of
the produced datasets depending on physics parameters related to their subject of
work.

Both may need access to the detailed history of a produced dataset e.g. in case of problems.

The different access mechanisms to the datasets are discussed below.

In order to facilitate the development of tools such as graphical user interfaces (GUI) and
applications for production managers and users, the information must be accessible using a
programming interface (API) and not expose the internal database schema.

3.5.1. The Data Model

The data model needs to be flexible enough to describe different processing steps and the
resulting files. The relation between processing steps and files has the constraints that:
• Every file is the output of a unique step but may be the input of many steps. This is valid

for data files as well as event tag collections.
• A step may have several files as input and several files as output
The schema for steps and jobs contains the following information:
• Each step is described by

- The step execution date
- The configuration tag of the application identified by a name and a version.
- A set of parameters that characterises the step, given as name/value/type triplets.

Examples of parameters are the production site, the run number (if any), the
version of the detector geometry used etc.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

52

- A set of input files and a set of output files (possibly empty)
• Each file is described by

- A logical name.
- A file type.
- A set of quality flags.
- A set of parameters. Examples of parameters are the file size. If the file is a data

file, more parameters may be defined such as the run number, the first and last
event numbers, the number of events in the file, the event type etc.

• A File Type is
- A name (RAW, DST, Log, Tag Collection, etc.)
- A version number.
- A set of parameters if more details are required to describe the data type. An

example is a short description of the type.
• A Quality flag

- A group, which is the type of analysis or the group of people concerned by this
quality. Examples are “Production Manager” or “Calo”.

- The actual quality, which can be “Good”, “Bad” and “Not checked”.

Figure 3-9 shows the logical model describing execution steps and the corresponding input-
and output files using generic (name, value) tuples. Data quality flags facilitate the exclusion
of certain files. Such a data model is flexible enough to host any kind of job provenance
information.

In absence of a suitable file catalog in the early stage of the BKDB development, a table has
been added to the schema containing replica information for those files that are made
persistent. Not all files registered in the file tables do actually correspond to a replicated file,
but they need to be present in the BKDB in order to provide history / provenance information
for subsequent steps and files.

Figure 3-9: The logical data model of the Bookkeeping application

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

53

3.5.2. Views to the Bookkeeping

Though very flexible, the above data model cannot satisfy all criteria required by the different
clients. A (name, value) based data model is not optimised to allow e.g. the fast selections of
many datasets according to many parameters describing either the dataset itself or the parent
step(s). On the other hand it is not necessary that such queries always completely reflect the
latest update, but one can usually allow for certain latency.

Following known recipes of data warehousing [81] these requirements were implemented
using separate views created from the primary data model, which are optimized for the
different client applications. An example is the WWW GUI interface (see Figure 3-10) and
the browsing interface as it is used by GANGA (see Figure 3-7.)

Another application, which is based on a view of the primary information of the replica table,
is the implementation of a read-only file catalog interface.

The views optimized for access by individual applications need to be refreshed regularly
depending on the tolerable latency. Such a refresh is implemented either as a complete view
recreation or an incremental update if only very few changes need to be reflected.

Figure 3-10: The browsing applications to the bookkeeping.

3.5.3. The BKDB Application Programming Interface

Any application accessing the bookkeeping and job history information can use either of two
interfaces: an HTTP interface on which e.g. the web GUI is implemented and an application
programming interface.

As shown in Figure 3-11, neither the web based data access nor the API implementation of
the interfaces depends on the internals of the data model, both rely on a “Bookkeeping
service”. The bookkeeping service itself implements two interfaces: a read-only and a
read/write interface to emphasize the logical distinction between query and update roles.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

54

The programming interface only requires network access; data are transferred using the
XML-RPC [71] protocol. The XML-RPC protocol provides a very flexible and lightweight
communication mode with much less overhead than e.g. the SOAP protocol [82]. Any client
using this API is entirely independent from the database structure or technology. For
dedicated applications like the GANGA GUI or the read-only file catalogue, also the distilled
data stored in some of the bookkeeping views can be programmatically accessed in read-only
with a special API using the XML-RPC protocol.

The web-based interfaces were implemented using standard servlet technology, which can be
hosted by web servers like TomCat [83]. The XML-RPC based API is currently hosted by a
standard python web server.

DB

BookkeepingSvc

Python interface

B
oo

kk
ee

pi
ng

S
er

ve
r

Servlets
ServletsServlets

Servlets

JDBC

•Oracle
•MySQL
•...

XMLrpc

HTTP

Server Client

Tools

Java
Python

Figure 3-11 The implementation of the various interfaces of the bookkeeping facility.

3.5.4. Experience with the BKDB

LHCb has used the bookkeeping implementation described above since 2003. Currently the
bookkeeping contains the characterization of ~8 x 106 files described by 26 x 106 parameters.
These files were produced by ~3.5 x 106 processing steps described by 64 x 106 parameters.

The complete recreation of all required views takes on average 40 minutes. A daily
incremental update typically finishes within a few minutes.

The bookkeeping applications have shown to be rather independent of the database
technology. Whereas the application is deployed on ORACLE 10g [18], a prototype is
available using mySQL [19].

3.5.5. Alternative Implemetation

After the LHCb bookkeeping applications were operational, the ARDA project started to
define an experiment-independent metadata catalogue [80]. We are currently investigating if
our data provenance model can be applied using the ARDA metadata catalogue concept.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

55

Clearly a solution shared between several experiments would be favourable for the following
reasons:

• The API would be standardized and implementation could be replaced without
consequences on applications.

• The maintenance of the implementing software would be shared and the effort for
LHCb would be smaller.

The ARDA concept is solely based on name, value pairs attached to files. The main
differences between the two approaches are:

• The concept of “Steps” representing executed applications does not exist. The step
information must be replicated for each file.

• The ARDA model is based on logical files organized in a file-system like
directory structure. Such an approach may have, depending on the
implementation, a better scaling behaviour than the solution currently used for the
BKDB. However, scanning the entire step or file space, for which our model was
designed, is rather costly due to such partitioning concepts.

• The concept of “Steps” representing executed applications has to be implemented
using the concept of logical files i.e. a step is described by a special type of file.

• In the ARDA model the schema for the parameters describing a file is shared for
all entries in a directory.

First results show that the ARDA model is functionally able to replace the views created from
the provenance data. Further tests are ongoing and it is too early for a final decision about
moving from the existing solution.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

56

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

57

Chapter 4 Workflow and Computing Models

4.1 Introduction
This section describes the dataflow model for all stages in the processing of the real and
simulated LHCb events. The CPU and storage, both disk and mass storage (MSS),
requirements for 2006-2010 are given based on estimates made from the current software;
these estimates are under continuous review. In addition, the trigger rates and selection
efficiencies of the various processing steps should be considered as the current best estimates.

The roles of the various Tier centres are discussed and the distribution of the processing load
and storage needs are given. Requirements are also presented for the computing
infrastructure, both internal (e.g. MSS i/o rates) and external (e.g. data transfer rates) to the
Tier centres.

The baseline LHCb computing model is based on a distributed multi-tier regional centre
model. It attempts to build in flexibility that will allow effective analysis of the data whether
the Grid middleware meets expectations or not. Of course this flexibility comes at the cost of
a modest requirement overhead associated with pre-distributing data to the regional centres.
Analysis is foreseen at the Tier-1 centres and possibly the larger Tier-2 centres. The LHCb
Tier-1 centres are, in general, already familiar in providing such analysis centres for current
HEP experiments and the associated infrastructure is already in place or in a mature state of
planning.

4.2 Logical Dataflow and Workflow Model
There are several phases in the processing of event data; this section describes the
terminology used to define each processing step and the data sets that are produced. The
various stages normally follow each other in a sequential manner, but some stages may be
repeated a number of times. The workflow reflects the present understanding of how to
process the data. A schematic of the logical dataflow is shown in Figure 4-1 and is described
in more detail in this section.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

58

Figure 4-1: The LHCb computing logical dataflow model. The arrows indicate the input/output

datasets at each data processing stage.

4.2.1. RAW data

The “real” raw data from the detector is produced via the Event Filter farm of the online
system. The first step is to collect data, triggering on events of interest. This procedure
involves processing data coming from the sub-systems using sophisticated and highly
optimised algorithms in the High Level Triggers. The trigger software will apply calibration
corrections during the reconstruction of physical properties of the particles and will apply
selections based on physics criteria. The results of this step are the RAW data. For
convenience the RAW data can be grouped in several output streams.

The RAW data are transferred to the CERN Tier 0 centre for further processing and
archiving. Those data not selected for permanent storage by the trigger are lost forever.

4.2.2. Simulated data

The simulated data are produced from a detailed Monte Carlo model of LHCb that
incorporates the current best understanding of the detector response, trigger response and
dead material. These RAWmc data sets contain simulated hit information and extra ‘truth’
information. The truth information is used to record the physics history of the event and the
relationships of hits to incident particles. This history is carried through to subsequent steps
in the processing so that it can be used during analysis. Simulated raw data sets are thus
larger than real raw data. Otherwise the format of the simulated raw data is identical to that of
the real data and they are processed using the same reconstruction software. In analogy with
the “real” data the RAWmc will, in general, only be stored for events that pass the trigger
simulation.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

59

4.2.3. Reconstruction

The RAW data, whether real or simulated, must then be reconstructed in order to provide
physical quantities: calorimeter clusters to provide the energy of electromagnetic and
hadronic showers, trackers hits to be associated to tracks whose position and momentum are
determined. Information about particle identification (electron, photon, ��0, hadron separation,
muons) is also reconstructed from the appropriate sub-systems.

The event reconstruction results in the generation of new data, the Data Summary “Tape”
(DST). Only enough data will be stored in the DST that is written out during reconstruction
to allow the physics pre-selection algorithms to be run at a later stage. This is known as a
reduced DST (rDST.)

The pattern recognition algorithms in the reconstruction program make use of calibration and
alignment constants to correct for any temporal changes in the response of the detector and its
electronics, and in its movement. Calibration and alignment data as well as necessary detector
information (detector conditions) will be stored in a distributed database.

The calibration and alignment data will be produced from online monitoring and/or off-line
from a pre-processing of the data associated with the sub-detector(s). Detector conditions will
be a subset of the Experiment Control System database and will contain only information
needed for reconstruction, e.g. information for monitoring the detector will not be included.

It is planned to reprocess the data of a given year once, after the end of data taking for that
year, and then periodically as required.

The reconstruction step will be repeated to accommodate improvements in the algorithms and
also to make use of improved determinations of the calibration and alignment of the detector
in order to regenerate new improved rDST information.

4.2.4. Data stripping

The rDST is analysed in a production-type mode in order to select event streams for
individual further analysis.

The rDST information (tracks, energy clusters, particle ID) is analysed to determine the
momentum four vectors corresponding to the measured particle tracks, to locate primary and
secondary vertices and algorithms applied to identify candidates for composite particles
whose four-momentum are reconstructed. Each particular channel of interest will provide
such a pre-selection algorithm. The events that pass a physics working group’s selection
criteria are written out for further analysis. Since these algorithms use tools that are common
to many different physics analyses they are run in production-mode as a first step in the
analysis process. This is shown schematically in Figure 4-2.

The events that pass the selection criteria will be fully re-reconstructed, recreating the full
information associated with an event. The output of the stripping stage will be referred to as
the (full) DST and contains more information than the rDST.

Before being stored, the events that pass the selection criteria will have their RAW data
added in order to have as detailed event information as needed for the analysis. We note that
in the early stages of data taking both the Fermilab and HERA experiments needed access to
the RAW data for analysis. It is envisaged the amount of information stored at the output of
the stripping stage will reduce as the experiment and the accelerator matures.

An event tag collection will be created for faster reference to selected events. It contains a
brief summary of each event’s characteristics as well as the results of the pre-selection

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

60

algorithms and a reference to the actual DST record. The event tags are stored in files
independent of the actual DST files.

It is planned to run this production-analysis phase (stripping) 4 times per year: once with the
original data reconstruction; once with the re-processing of the RAW data, and twice more,
as the selection cuts and analysis algorithms evolve.

It is expected user physics analysis will primarily be performed from the output of this stage
of data processing (DST+RAW and TAG.) During first data taking it is foreseen to have at
least 4 output streams from this stripping processing: two associated with physics directly (b-
exclusive and b-inclusive selections) and two associated with “calibration” (dimuon and D*
selections)1, discussed in more detail in section 4.3.1.

Figure 4-2: Schematic of the logical dataflow for the production analysis phase. The arrows indicate

the input/output datasets at each data processing stage.

4.2.5. Analysis

Finally physicists will run their Physics Analysis jobs, illustrated in Figure 4-3. They process
the DST output of the stripping on events with physics analysis event tags of interest and run
algorithms to reconstruct the B decay channel being studied. Therefore it is important that the

1 It is quite possible there will be more than 4 output streams, corresponding to subsets of the 4 categories.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

61

output of the stripping process is self-contained. This analysis step generates quasi-private
data (e.g. Ntuples or personal DSTs), which are analysed further to produce the final physics
results.

Since the number of channels to be studied is very large, we can assume that each physicist
(or small group of physicists) is performing a separate analysis on a specific channel. These
“Ntuples” could be shared by physicists collaborating across institutes and countries, and
therefore should be publicly accessible.

Figure 4-3: LHCb physicist analysis cycle

4.3 Data Processing and Storage Requirements
The frequency of each of the data processing operations, the volume of input and output data,
and the amount of computing hardware resources needed to accomplish the tasks must be
quantified in order to specify the computing model precisely. A detailed breakdown of the
processing and data requirements has been made in terms of each processing stage. The
parameters used to estimate these requirements for real data are given in Table 4-1. The
expected event sizes listed correspond to the size of data as stored on disk.

LHCb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

62

Event Size kB

RAW 25

rDST 25

DST 75

Event processing kSI2k.s

Reconstruction 2.4

Stripping 0.2

Analysis 0.3
Table 4-1: Event parameters for real data

In this section the estimates of the CPU and storage requirements do not assume any
inefficiencies.

4.3.1. Online Requirements

A detailed discussion of the online and trigger systems has been presented elsewhere [3][38].
The Event Filter Farm will contain of the order of 1800 CPUs and the Online system will
provide about 40 TB of local storage at the experimental pit.

The High Level Trigger (HLT) receives data, at 40 kHz, corresponding to the full event after
each positive Level 1 decision. The HLT will then be applied in a series of steps of increasing
refinement until the event is either positively accepted or rejected. The events can be thought
of as being classified in 4 categories: exclusive b sample, inclusive b sample, dimuon sample
and D* sample2. The expected trigger rate after the HLT for each of these samples is given in
Table 4-2.

The b-exclusive sample will be fully reconstructed on the online farm in real time and it is
expected two streams will be transferred to the CERN computing centre: a reconstructed b-
exclusive sample at 200Hz (RAW+rDST), the “hotstream”, and the RAW data sample at
2kHz. The RAW event size is expecterd to be 25kB, compared to the current measured value
of ~30kB, whilst there is an additional 25kB associated with the rDST. This would
correspond to a sustained transfer rate of 60MB/s, if the data is transferred in quasi real-ti