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Chapter 1 Introduc tion

The LHCb expement [1] [2], illustratedin Figure 1-1, is desgned to sudy CP violation in
the bguak sector at the LHC and expandthe aurrent gudiesundeway at the B-factories
(Babar, Belle) and & the Tevatron (CDF, D0). The LHC, bang a hadron-wollider, opens the
oppotunity to gudy B-hadionsthat cannot be pduced at cuent B-factoies and the engyy
of 14 TeV, much higherthan thatof the Tevatron, allows an abundant pyduction of B-
paticles (10 paticles/s a thenominal luminosty).

The bb poduction coss section 5 2 oders of magnitude snaller than the total @ss section
visble in the deecbr, and he decay nodes of the b hadons that are of interest for CP
violation gudiesall have vey low visible branching factions typically smaller than 10.

Hence a ver selective and sphisticated trgger is neededLHCDb is planning to oprate a 3-
level trigger system [3] to slect the events of interest. The LO trigger is a hadware cugom-

desgned tigger requiring high g leptons or halrons Its output rae is limited to 1.1 10° Hz

out of the40 1 crossingsper second.Far LO-selected eventsa sibset of informationfrom

a limited numberof sub-detectos is readout inb a farm of CPUs that peform a further
selection usng pure ftware (L1 trigger). L1 requires that high p paticles have a large
impact paameter with respect to theprimary vertex. The rate is further reduced to 40 kHz.

For thoe eventghat ae slected,thefull information of all the sib-detectos is readout into
the sme farm of computes where theHigh Level Trigger selection (HLT) is applied.As all

information is now avalable, more accuete selecionscan be appéd in the HLT in orderto

reduce the ovell rate to2 kHz.

Figure 1-1: The LHCb spectrometer displayed using the Panoramix visualisation package. Some
detectors are only shown partially to allow visualization of their measurements.
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1.1 Requirements and scope

The Offline Computing system must allow the LHCb physicists to perform an efficient
processing of the collected data (about 20drillevents a year), an accurate alignment and
calibration of the sub-detectors and an efficient selection of events of interest as well as
provide facilities for extracting physics results from the selected samples. The measurements
aimed at by LHCb require a very high precisiomdeesystematic errors must be mastered to

a very high degree. Amongst the 2 kHz of Hadeepted events, a large fraction is dedicated

to a very precise calibration and understagdf the detector and its capabilities.

Each group of physicists working on specificag modes of B-particles will only handle a
limited number of events; hence they rely heavily on a full central processing chain from the
raw data to very elaborated and pre-seleaednstructed data. It expected that individual
analyses will cope with only a few million pre-selected events while manipulation of larger
datasets will be handled deally by a production team.

The Computing project is responsible for providing the software infrastructure for all
software data processing applications (from L1 trigger to event selection and physics
analysis). It is also in charge of cdorating the computing resources (processing and
storage) as well as providing all the tools neemeshanage the large amounts of data and of
processing jobs.

In order to develop efficiently the softwafer example developing L1 or HLT applications
using simulated data, it is beneficial to implement a high level of standardisation in the
underlying software infrastructure provided. Algloms must be able to be executed in very
different contexts, from the Online Event Filter Farm to a physicist's laptop. The Core
Software sub-project is in charge of providing this software infrastructure.

The large amounts of data and of computing paveerds imply that data processing must be
performed in a distributed manner, takingstbbedvantage of all resources available
throughout the sites that allow the collaboration to use their resources. These resources (CPU
and storage) are expected to be accessible through a standard set of services provided to all
LHC experiments but also to the larger HEP community and beyond. The LHC Computing
Grid project [4] is expected to provide these resources.

The LHCb Collaboration is fully committed to participate in the LCG by utilising and
contributing to the common software projectsaeedl as making full use of LCG computing
Grid infrastructure. It is expected that LH@ll be able to benefit from the developments
made inside LCG or available through LCG. particular, the offline software uses the
software developed by the LCG Applicatiomsea. The distributed computing (data
management and job handling) uses the @rfcastructure deployed by LCG as well as
baseline services provided through the LCG.

1.2 Overview

The present TDR describes first the architecture of the LHCb Offline software in Chapter 2.
It covers the LHCb Software framework Gaudi as well as the main applications that are built
on this framework.

The high-level tools needed for managing theCbHDistributed Computing are described in
Chapter 3. It covers the LHCb-specific services such as bookkeeping and file query, the
distributed workload management system, DIRAC, and the end-user interface to Distributed
Computing, GANGA.
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The software and computing infrastructure described in the preceding chapters are used for
data processing following the CompwiNodel described in Chapter 4.

The requirements of LHCb on the LCG software or services are described in the relevant
chapters referred to above. We describe the current experience we had with the LCG-
deployed infrastructure LCG-2 in Chapter 5.

Finally Chapter 6 presents the organisation of the project, the sharing of responsibilities and
the planning for development andotleyment of the described system.
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Chapter 2 LHCb Software

2.1 Introduction

The LHCb software development strategy follows an architecture-centric approach as a way
of creating a resilient software framework that can withstand changes in requirements and
technology over the expected lifetime of thgpexment. The software architecture, called
Gaudi [5], supports event data processingliepipons that run in different processing
environments ranging from the real-time L1 dmngdh-level triggers in the on-line system to

the final physics analysis performed by mdnran one hundred physicists. Object oriented
technologies have been used throughout. THEb reconstruction (Brunel), the trigger
applications (L1/HLT), the analysis (DaVinci) package, the digitization (Boole) together with
the simulation application (Gauss) based on Beand the event and detector visualization
program (Panoramix) are all based on the Gaudi framework.

LHCb will produce large amounts of data, of trder of Petabytes per year, which will need

to be reconstructed and analyzed to produedfitial physics results. In addition, physicists

are continuously studying the detector and giysics performance that can be achieved
using it. Software for all data processing stafpeshe various needs of the experiment has
been produced and is at different levels of deployment. This software will have to be
maintained throughout the lifetime of LHCb, expected to be of the order of 10-20 years; the
impact of changes in software requirements nthe technologies used to build software

can be minimized by developing flexible and adaptable software that can withstand these
changes and can be easily maintaioeer the long timescale involved.

With these goals in mind we have constrdoaudi, a general Object Oriented framework
designed to provide a common infrastructurel amvironment for the different software
applications of the experiment. The appiicas, supporting the typical phases of Particle
Physics experiments software, from simulation to reconstruction and analysis, are built within
the Gaudi framework. Experiment specific software, as for example the Event Model and
Detector Description are also provided withire framework as core software components.
The framework together with these servieggl the applications constitutes the complete
LHCDb software system. The sub-detectoftvgare developers, or physicists performing
analysis, provide the software algorithms to these applications. Use of the framework in all
applications helps to ensure the integrity of the overall software design and results in
maximum reuse of the core software components.

Tutorials with hands-on documentation are regularly held to train members of the
collaboration. In addition, there are also specialized courses for software developers.

2.2 Gaudi Architecture & Framework

The development process for Gaudi is architecture-centric, requirements-driven, incremental
and iterative. This involves identifying c@onents with specific functionality and well-
specified interfaces, defining how they interact with each other to provide the whole
functionality of the framework. Whereas the atetture is the blueprint of the things to

build, the framework is real code implementing the architecture and ensuring its design
features are respected. The approach to the final software system is via incremental releases,
adding to the functionality at each release adogrdo the feedback and priorities of the

5
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physicists developing the code for the differapplications and following the evolution and
changes in their needs.

A schematic view of the Gaudi architecture can be seen in the object diagram shown in
Figure 2-1. It represents a hypothetical snapsif the state of the system showing the
objects (in this case component instances)that relationships in terms of ownership and
usage. Note that it does not illustrate the structure of the software in terms of class hierarchy.
In the following we will outline the major design choices taken in the Gaudi architecture.

Classical Object Oriented programmingsames objects own the required functionality
(methods) to transform themselves. Gaudi ha@wesonsiders the algorithmic part of data
processing also as a set of OO objects. @boupling between the objects describing the
data and the algorithms allows programmers toceatrate separately on both. It also allows

a longer stability for the data objects (the LHCb event model) as algorithms evolve much
more rapidly. The Event Model classes oobntain enough basic inmteal functionality for
giving algorithms access to their content and derived information. Algorithms and tools
perform the actual data transformations.

Figure 2-1: Object diagram of the Gaudi architecture

2.2.1.  Generic component model with well defined interfaces

Each component of the architecture implementaimber of interfaces (pure abstract classes

in C++, the main language used in the impdatation) for inteacting with the other
components. The basic idea of Gaudi is to dediset of services that are common to most of
the event data processing applications. LHCb defined and developed the interfaces
independent of their actual imphentation. In order to ease the integration of components we
defined an interface model supporting interfaeesioning, dynamic interface discovery and
generic component factories. With these featuresvere able to implement run-time loading

of components (dynamic libraries) allowing us to use a plug-and-play mechanism in the
implementation of the daf@ocessing applications.

Since all components are essentially decoufledch each other, they can be implemented
independently and in a minimalanner, i.e. supplying sufficient functionality to do their job
but without the many refinements that candaeled later. Componts can be developed
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using other specialized frameworks or fas, for example for data persistency,
visualization, simulation, etc.

A specific implementation of a component danreplaced by another one implementing the
appropriate interface and providing equérd functionality. This makes possible a
transparent use dhird-party software. This approach has allowed us to build the LHCb
applications by customizing the frameworle.iby dynamically selecting the most suitable
components to perform the different tasks.eDia these features, the Gaudi framework is
easily adaptable for use in other experimeatgiough originally developed for the LHCDb
experiment it has been adoptaad extended by the ATLAgeriment [6] and adopted by
other experiments e.g. GLAST and HARP.

2.2.2.  Separation between data and algorithms

Broadly speaking, the tasks of event simulation, reconstruction and analysis consist of the
manipulation by algorithms of mathematical gdrysical quantities such as points, vectors,
matrices, hits, momenta etc. This kind of taskps naturally onto a procedural language such

as Fortran, which makes a clear distinction betwa&ta and code A priori, there is no

reason why using an object-oriented language such as C++ should change the way of doing
physics analysis. This is the reason why @eudi application framework makes a clear
distinction betweerDataObjecs (essentially containers of data quantities) Afgbrithms
andToolsthat manipulate these data objects, i.at tave well definethput and output data.

Of course, intelligent data objects (e.g. tracks that know how to fit themselves) are possible,
but they are discouraged in the Gaudi architecture.

While data objects essentially provide manipulation of internal data members, algorithms
will, in general, process datdojects of some type and produce new data objects of a different

type.

AlgorithmsandToolsare themselves objects based on Ghade classes and they implement
an extensive set of interface functions such as simple access to data, to all main services and
run-time configuration fabties through job options.

2.2.3.  Transient and persistent data

An important design choice has been to distinguish betweganaient and apersistent
representation of the data obgctor all categories of datAlgorithmssee only data objects

in the transient representation and as aegmsnce are shielded from the technology chosen
to store the persistent data objects. In faotfar, we have changed from ZEBRA [7] (for
legacy data) to ROOT/IO [8] and more recently to POOL [9] without the physics code
encapsulated in thelgorithms being affected. The two representations can be optimized
following different criteria (e.g. execution vBO performance) and different technologies
can be accessed (e.g. for the different data types).

2.2.4. Transient data stores

The data flow betweealgorithmsproceeds via the so-call8dansient StoreThis not only
shields them from the persistent teclogyl but also minimizes the coupling between
independent algorithms, allowing their demment in a fairly autonomous way.

We have distinguished betweéhree categories of datavent dataobtained from particle
collisions (real or simulated) and their successive procesdetggtor datadescribing the
detecting apparatus (geomgetcalibration, etc.) andtatistical dataderived from processing
a set of events (histograms, Ntuples). Theyrast only conceptually different types of data,
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their access pattern and their “lifetime” duriag“job” is also different, hence we have
organized them in corresponding separate transient data stores.

* TheTransient Event Storeontains the event data that are valid only for the time it
takes to process one event.

* TheTransient Detector Storeontains the data that describe the various aspects of the
behaviour of the detector (e.g. aigent) during a period of data taking
corresponding to the processing of many events.

* TheTransient Histogram Storeontains statistical data that typically have a lifetime
corresponding to a complete job.

Although the stores behave slightly differentlye. the clearing of the store is handled at
different frequencies in the three cases, their implementation is based on a common transient
store component, given the many things they have in common.

We have already mentioned that the data flow between algorithms proceeds via the transient
store. In addition, the transient store acts as an intermediate buffer for any type of data that
needs to be converted to a different type of dapaesentation, in particular the conversion to
persistent or graphical objects. Zero or mpegsistent or graphical representations of the
data can correspond to one transient representation.

The data within the transient store is organirea “tree-like” structure, similar to a Unix file
system, allowing data items that are logically related (for example produced in the same
processing stage) to be grouped together idata container Each node in the tree is the
ownerof everything below it and propagates its deletion to all items in its branches. To map
Object Oriented data models onto a tree strectoipject associations have been implemented
using symbolic links in which ownership ofetlieferenced items is left to the node holding
them in the transient store.

2.2.5.  Algorithms

Algorithmsare the essence of the data processing applications and where the physics and
sub-detectors code is encapsulated. Due tdaittethat algorithms implement a standard set

of generic interfaces they can be called byftamework without knowing the details of their
implementation. Thapplication manageknows which algorithms to instantiate and when to

call them. It is configured by a set of job options.

The algorithms’ execution is scheduled explicitly by configuring the application manager or
by the execution of th®ata On Demandservice: one can instruct this service to run a
specific algorithm when requesting a specific object container that does not exist yet and
cannot be retrieved from the persistent store.

Complex algorithms can be implemented by using a set of simpler ones; a more elaborate
sequencecan be configured in the applicatiomsorder to support filtering and branches.
These can, for example, be combined with multiple output streams to provide event filtering
and selections. The different LHCb dataqassing applications are customized by choosing

the appropriate set of algorithms or sequences to be executed.

2.2.6. Tools

Tools are lightweight algorithmic objects whogeirpose is to help other components in
performing their algorithmic work. They are in essence very similar to algorithms, but can be
re-used by several components in order to pergiven task. They contain a piece of code
that can be executed with different frequency (only for some events or many times per event);
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they are convenient for processing individual siant data objects or data objects that are
local to the component.

Different components may wish to share the same algorithmic opeaatisior configure it
slightly differently (e.g. different evenselection algorithms will want to combine
reconstructed particles to makertices). Hence tools can be either generic or owned by a
component (an algorithm or another tool).

2.2.7. Services

This category of components offers the services common to most of the applications. They
are generally sizable components set up by thedveork at the beginning of a job and used

by the algorithms as often as needed. Thisaggtr avoids the algorithm developers having

to write routine software tasks that are tyflicaeeded in a physics tiaapplication. Some
examples of services can be seen in Figure 2-1.

2.2.8. Core Services

The Gaudi framework is decomposed into a number of independent sub-frameworks to
provide the basic software tasks typically neededn application. Many of these services
usethird-party components. This allows LHCb toghit from existing software and helps in
minimizing development and maintenance efforts.

The basic kernel of the framework, togethdth a set of utility services, constitutes the
General Framework Servicesnongst which:

* TheJob Options Servicaised to configure the applications at run-time. Components
declare at construction time a setr@med Propertieshat are associated to data
members. The default values of these data can be overwritten by values provided in a
set of Job Options files. They are referred to by the instance name of the component
and their property name. Basic C++ types are supported for job options.

» TheMessage Servicallows components to producdéled output. Each message is
associated a level that allows run-time filtering of messages.

« The Event Data Servicallows containers to be retrieved from the Transient Event
Store.

* TheHistogram Servic@rovides a technology neutral handling of histograms.

» TheRandom Number Generator Servielows a uniform usage of random numbers
by all algorithms.

» The Object Persistency Servica:technology-neutral service has been developed and
interfaced with the framework, given thect that a single persistency technology may
not be optimal in all cases. The persistency mechanism has been designed such that
the best-adapted technology can be useecdsh category of data. The LCG POOL
framework [9] is based on a similar architecture allowing the client code to be
technology free. POOL has replaced the LHCb ROOT/IO [8] based persistency
solution previously in place. This alle LHCb to benefit from the additional
functionality provided by POOL such as file catalogues and event collections.

» The Conversion Servicallows specificConvertersto be invoked when accessing
specific classes. Th€onverteris in charge of instantiating the actual object in the
Transient Store. They can eventually perform complex conversions or calculations.

» The Detector DescriptiorServiceallows detector-related information to be available
to the physics applications providing a geaelescription of the structure of the

9
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geometry. The aim is to have a unique desiom of the detector for all applications
(e.g. simulation and reconstruction). The pbgband logical description of the LHCb
detector as well as sub-detector specdeta resides in a Detector Description
Database (DDDB) or in the Conditions Diadige (see section 2.4) that provides the
persistent storage of the detector d&eaveral versions of the DDDB following the
evolution of the LHCb detector dgsi have been produced. Reconstruction
algorithms access the geometry information through an interetedtorElement

that is customised to fulfil the need of a specific sub-system. This service is described
in more details in section 2.5.

» The Data Dictionary Servicgrovides a high level modelly language to define the
event object model, independent of thegiaage used in the current implementation
(i.e. C++) [10]. The description language oloss XML, which provides a very strict
syntax in addition to being very flexiblé\ Gaudi parser package (Gaudi Object
Description) automatically produces the C++ header files. This approach ensures
adherence to coding conventipesnsistent sets of membinctions, standard ways
of cross-referencing objects, and documentation lines in the format required by the
code documentation tool (Doxygen [11]fhe service also provides runtime
introspection information for object persisty and interactive analysis making use of
the LCG object dictionary provided by the SEAL project [12].

Definition and implementation of interactive services, graphical interfaces and scripting tools
are provided ilJser Interactionservices.

Finally, specialized frameworks for simulation, analysis tools (not the tools themselves) and
data visualization have been put in place; they are discussed in more detail in sections 2.6 and
2.7.

2.3 The LHCbh Event Model

The set of classes (and relationships betweassek) that describe the LHCb event data,
together with the conventions governing thdesign and organization, are known as the
LHCb Event Mod€]13].

2.3.1.  Objects in the Transient Event Store

In the Gaudi architecture, algorithms communicate with each other by exchanging data via
transient data stores. In particular, the Transient Event Store (TES) is used to exchange event
data inside the event-processing loop; algoritmetseve their input data on the TES, and
publish their output data to the TES. They are not interested in knowing how (by which
algorithm) their input data was produced, thest jueed to find it in a well defined location

and in a well defined state. This, of course, imposes some discipline on the use and
organization of the TES and requires some conventions.

The Gaudi TES is organized as a tree structure (by analogy with a file system) of nodes
(directories) and leaves (files). In the LHCb Event Model, this tree is structured as a number
of sub-trees, corresponding to the output of each processing step. Typically each sub-tree has
a number of branches and sub-branches, englitigthe leaves containing the event data.

This hierarchical structure is chosen to simplify and optimize navigation within the TES.
Figure 2-2 shows a part of the LHCb Event structure in the TES, highlighting the difference
between nodes and leaves.

10
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Figure 2-2: Part of LHCb Event structure in the TES.

An essential feature of the Gaudi TESthst only objects inheriting from a base-class
DataObjectare directly accessible from the store. This can be either a single object (e.g. the
Event Header) or more generally a containeolgécts that cannot be retrieved individually

from the TES (e.g. the set of MC Particles). &ynvention, algorithms may not modify data
already on the TES, and may not add new objecexisting containers. This implies that a

given container can only be manipulatedtbg algorithm that publishes it on the TES, but
ensures that subsequent algorithms that are interested in this data can be executed in any
order, and greatly simplifies the integration of complex data analysis applications.

In the LHCb event model we use a special type of contateared Containgrthat can only
containKeyed Objed — i.e. objects that can be identified within their container by means of

a uniqueKey. Relationships betwedfeyed Objectgan then be implemented as references
consisting of a container name (or rather,ratex in a table of container names) and a Key
that is unique in the container. The contaieesures the uniqueness of the Key; the default
case is that the Keyed Container assigns a unique Key when the Keyed Object is inserted. In
cases where the Key has a physioabkning (for examplan electronics channel identifier), it

can be defined when creating the Keyed Objeat then the Keyed Container only allows
insertion if an object with the same Key does not already exist.

2.3.2.  Relationship between objects

Explicit relationships between classes in the data model can occur as data members of the
target class (defined as the result of the processing of a source class), but only between
classes adjacent in the processing sequence, as shown in Figure 2-3. For €xachptan

contain pointers t€lustersbut neither tdigits nor Particles

In the LHCb Event Model there is a cleapamtion between recdnsgcted data and the
corresponding Monte Carlo Truth data. There are no references in Digits that allow
transparent navigation to the correspondit@ Digits. This allows using exactly the same
classes for reconstructed real data andnsitucted simulated data. The relationship to
Monte Carlo is preserved by the fact that M€ Digits and theDigits use the unique
electronics channel identifier aka&y, any reconstructed object (suchGlsisterg can refer

to one or more electronics channels via their channel identifier, which is valid for both real
and simulated data.
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Figure 2-3: MC Truth Relation.

The direction of the direct reference between classes is from the class further in the
processing sequence towards the class earlier in the sequence (this is a constraint imposed by
the TES convention that already published oljeeinnot be modified). These relationships,
shown as arrows in the figure, are implemente®martRes (extended pointers allowing
references to objects in other containers, possitdde persistent innather file). They can

be de-referenced directly in the code, and used just like C++ pointers.

One may however want to study also the relationships between objects distant in the
processing chain (e.g. which MCrRele gave rise to a specific Cluster), or in the direction
opposite to the processing chain (e.g. what are all the MC Hits produced by a given MC
Particle). It would be very inefficient to do this by following tBmartRefsparticularly if

one has to navigate through myaintermediate objects that may even reside in different
physical files. An alternative is to calculdtes relationship once only, and store it in a table

that is then accessed by the association code. Two implementations of these tables are
available [14][15], one of which_{nkerg is more appropriate for tables that have to be made
persistent, whereas the secorRel@tion3 offers additional functionality when used in a
purely transient context.

2.3.3.  Gaudi Object Description

The event classes are described in XMLngghe Gaudi Object Description language (see
section 2.2.8). The class header files are automatically generated from the XML, including
the inline implementation of afimple methods (e.g. set and geethods for data members,
serialization methods for printing), a mnemotyipedeffor the templatetKeyed Containeof

this type, and a static string containing the difiocation in the TES of objects of this type,
which is used by algorithms to publish and retrieve data on the TES. This not only ensures a
uniform look-and-feel to the event classes, but also simplifies migration to new versions of
the underlying Gaudi and LCG softwareechuse all the implementation-specific
dependencies are encapsulatethencode generation tool.
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The event model classes have been thorqugtliewed before being implemented, and
changes have to be widely discussed and yusiified before being approved. This is
particularly important for classes that are stored on persistent datasets, and will become more
so in future, to ensure that older data can continue to be read by the newer implementation of
the classes. The problem of schema evolusobeing addressed both in the context of the
LCG persistency solution (POOL [9]), and viee conversion mechanism of the Gaudi data
stores, which makes it possible to have diffestagses in the persistent and transient worlds,
with algorithms triggered automatically to conveetween the two. It is planned to take
advantage of this mechanism to minimize thpethelency of persistertiasses on external
packages such as CLHEP, without imposing such unnecessary restrictions on the
corresponding transient classes.

2.3.4.  Buffer Tampering

The precision measurements of LHCb reqairdetailed understanding systematic effects
introduced at different phases of data takind data analysis due to the applied selection
algorithms. The motivation of Buffer Tampering is to determine these effects from real data
instead of relying on Monte Carlo simulations. The two main goals are to estimate the biases
introduced by the trigger levels and to calceilltite acceptance along the flight path of a B-
meson.

The implementation is based anconditional modification ofniput data at the beginning of

the raw data processing i.e. modifications of L1 and Raw Buffers that come directly from the
readout chain. In the case of the trigger btas raw data relatetd the reconstructed B-
decay chain is removed from the L1 and Raw buffers, while for the lifetime acceptance case,
data is added to mimic the same B-decaywtitt a different decay lenghth. The on-line
algorithms are emulated in the off-line phaseh#f data processing. This requires using the
same software and the same conditions datadm$ms been used during the on-line trigger
execution. The key elements of the impleragoh are the high level manipulation of the
transient event store (TES) and an interactoth the application manager from inside an
algorithm. A set of dedicated todigas been developed which allow to:

* Move a sub-tree of the TES to a temporary location of the TES. This leaves only
references to the objects at the original location.

* Reload the data in their original form to allow independent manipulation, called
"tampering”

* Restore the tree from a temporary locatimack to the TES and delete temporary
space for a new event.

» Send a request to the Application Mgea to execute a given sequence of
algorithms.

A first version of the Tampering algorithm is currently used successfully in the estimate of
the wrong tag fraction for signal events by gstalibration channels, which are generally
triggered differently. There it is necessary to understand in detail the source of a positive
trigger, in order to equalize the phase space of calibration and signal events before estimating
the expected wrong tag fraction in signal events.
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2.4 Conditions Database Services

The Conditions Database (CondDB) is a dasabé&acility that permits the handling of
information regarding the running conditionsLéfCb sub-systems that may vary with time.

A condition can be any kind of information that an algorithm may need, like the temperature
or the pressure inside an element of the RICH as well as the alignment constants of the
stations of the VELO. Each condition value hasnterval of validity and can be superseded

by a newer version (better aligemt or re-calibration of probes). A set of conditions can be
grouped together under a logical name, referred totag. &igure 2-4 shows a schematic
view of the 3-dimension space in which caimhs live: data item, time and version.

Figure 2-4: The three axes for identifying uniquely each data item in the condition database

The aim of the Gaudi CondDB service is to provide a framework integrated in Gaudi that
allows users to use conditions data. Two main issues can be identified: the database access,
and the update of the transient objects; they will be discussed in the following sections.

2.4.1. Database access

The access to a specific database implementation is obtained using a project developed by the
LHC Computing Grid (LCG), named COOL [16][17](section 2.4.3) The usage of the COOL
library is hidden to the general user in order to disentangle as much as possible user
algorithms from the technical details of the uygag library. The connection to the specific
Relational Database Management System (RDBMS) is encapsulated in a dedicated service,
the CondDB Access Servicthat can be configured in order to specify the connection
parameters (user name, daise host, etc.) and tteg name identifying the set of conditions
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to be used by the job. The interfacing@®OL is obtained by exploiting the “conversion
service” mechanism, which is part of the general Gaudi framework.

Conditions reside in memory in the Transient Detector Store (TDS), as they are usually
related to detector information (alignment, calibration, etc.) The TDS is aware of the
existence of a specifi€ondDB Conversion Servic@his service passes the request to the
most appropriate converter for the requesbbegect. The converter accesses the database
through theCondDB Access Servicehich returns a pointer to the object representing the
openCondDB Then the converter uses COOL fotrieving the condition data valid at the
current event time and converts it to its transient representation.

The GPS event time (recorded in the event data) is passed to the TDS for each new
processed event and is then used by the conversion service machinery enabling it to find the
condition data object with a validity rangengpatible with the event being processed.

The implementation of detectortdadescription is based on XMiles and converters for the
condition objects from XML are already availablle.order to avoid replication of code, the
XML conversion service was adapted to handleamty files, but also strings, thus allowing
the storage of XML strings in the CondDB.

The objects retrieved from the CondDB havealidity range and for each event one must
ensure the validity of all conditions. Accessing dag¢abase for each event in order to be sure

that the conditions are still up-to-date is ndviaable. Hence, at the beginning of each new
event in the event loop, one has to check if all objects are still valid for the event that is going
to be processed and, only if they are nottlgetvalid object from the database. The Transient
Store allows users to get normal pointers to objects in the store and guarantees that those
pointers are always valid; hence the new vahas to be stored at the already existing
memory location.

Special consideration applies to the usage of the CondDB by algorithms running on-line.
During data taking, the Event Filter FarmFE nodes will not be able to access a real
database; hence a spediatline CondDB Access Servieall provide conditions uploaded

by the control system, without the intermedistep of a physical database. Newly uploaded
conditions will invalidate existing conditions afpredefined validity time; the new value will

be cached temporarily and replace the current value when a new event enters the new validity
range. This mechanism associated with a slight post-dating of Online conditions changes is
essential to allow reproducibility of results obiadl in the EFF when repeating them Offline.

2.4.2. Update Mechanism

Simple condition objects are not the only ones tiesdd to be updated. Complex objects in

the detector data store, like tBetectorElementwill use condition objects like alignment
constants. User-defined classes deriving from such complex objects will possibly need to re-
compute cached quantities using new values of the conditions.

Other objects that are not in the data store and do not implement the validity interface may
also cache quantities that depend on comakti for example algorithms and tools.

All these objects register their dependencies t&Jpdate Managerservice. A dependency

can only be declared on an object that has the validity interface or that has already been
declared to the Update Manager. A metho@ssociated to each dependency that will be
called whenever the dependent object is updakbdt method will in general be the same

that is used for caching information at initialisation time.

All these objects have to be considered lidvand need to be updated, if any of the
conditions or other objects they depend on besamelid. In order to quickly check if such
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a complex object is valid or not, the Update Manager assigns to it an interval of validity
calculated as the intersection of the intervalgadidity of all the objects it depends on. When

the validity of the object does not contain the current event time, it means that at least one of
the objects it depends on is not valid for that time. Thus the tree of dependencies can be
efficiently navigated from théop level to the far leaves, updating all and only those objects
that really need it without having to check the validity of all the objects in the store; when a
branch is found to be valid, the recursion stops.

2.4.3. COOL Library

The access to an actual RDBMS implementation and the database schema is achieved using
the LCG COOL library, part of the POOL project.

From the user point of view, the CondD&oks like a tree where the leaf nodes can hold
condition data objects. The leaf nodes are cdfi@lders while the nodes that contain other
nodes are calle&olderSets The hierarchical structure allows a logical organization of the
conditions, for example one can put all thelders for the conditions needed by a sub-
detector in a dedicatdeblderSet or all the temperatures measured can dgéolderswithin

the “TemperatureFolderSet

The COOL API provides two types &®lders single-version and multi-version. The first
type can only store conditions values with tagds Of Validity (I0Vs) that do not overlap,

so there is no possibility of superseding them. The second type allows the storage of
conditions values with overlapping IOVs. Single-verdimtdersare less flexible than multi-
version ones, but have better performance for insertion speed and storage space.

In a multi-versionFolder, the most recent version of all tbenditions values stored is called
the HEAD version. At any time it is possible to take the HEAD version and give it a logical
name or tag, allowing users to retrieve aleva defined set of versions while detector
responsible people can produce refimetsions of the conditions data.

The actual RDBMS implementation can he®sen between ORACLE [18], MySQL[19] and
SQLite[20].

2.5 Geometry Framework Services

The geometry framework serves three defined purposes:

* Providing geometry information to algorithms by combining in a transparent way the
values of the nominal alignment with ethmeasured deviations obtained from the
conditions database and valid for the current event.

* Providing a mechanism to modify devais from the nominal alignment without
accessing the conditions database. This is reddior example during the execution of an
iterative alignment procedure. The framework must ensure that the modifications are
propagated coherently to theteletor geometry description.

* Providing a mechanism to update the d&ons in the conditions database.

2.5.1. Detector Description Service

The Gaudi Detector Description Service providekierarchical description of the detector
elements defined as volumes. Volumes are supported in a hierarchical tree. In order to
simplify the description of repetitive volumes,uses the concept of Logical and Physical
volumes. It also contains the description & thaterial out of which the volumes are made;
this information is needed for simulation as well as for track fitting.
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A logical volume represents the shape ofolject and its composition without a particular
position is space. A physical volume consgdtthe placement in space of a physical volume
within a higher-level logicalvolume. The top-level voluen contains the whole LHCb
apparatus and part of the cavern.

The hierarchy of volumes is defined using XML as a meta-language. XML files are
maintained by individual sub-system groups and placed in a hierarchy of files.

XML files describe an ideal detector or thest known positioning of sub-detectors obtained

as a result of a geometrical survey. Fineetd alignment constants obtained by running
sophisticated offline algorithms are represented as small transformations from this ideal
geometry. As they may vary with time and several versions of an alignment valid at a certain
time may arise, they are very convenigstored in the Conditions Database.

The access to geometry information for any algorithm is done vidDétectorElement
interface. Alignment requirements imply that there exisBBetectorElemeninstance for
each *“alignable” component of the LHCDb teletor or that there exist intelligent
DetectorElementxapable of associating the right misalignments to their corresponding
daughter element®etectorElementsan be organised in a hierarchical tree describing more
and more precise elements of the detectoe gianularity needs to be defined by each sub-
detector.

The DetectorElementas well as the hierarchy of volumes that are attached to it are stored in

a dedicated Transient Store: the Transient Detector Store (TDS). They are accessible as in
any TS by a path similar to that of a hierarchical file system. Their lifetime is that of the
application, contrary to the Transient Event Store that is cleared after each event. Figure 2-5
shows an example of the detedlescription hierarchy in the TDS.

Figure 2-5: Browsing view of the TDS showing hierarchy of Detector Description as well as material
description objects.
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2.5.2.  Misalignment in the Conditions Database

The alignment information itself is encapsulated in #ignmentConditionclass, which
contains a transformation matrix for eaclgabible object. The transient store path for each
set of alignment parameters is defined in an XML tree and can refer to a location in the
conditions database or to an XMile holding the parameters.

Dedicated converters have the role of instantiating édignment Conditiorobject starting

from the alignment parameters. References to these addresses are stored in the XML
definition of the correspondinDetectorElementsEachAlignment Conditiorobject contains

the transformation matrix representing thevidgon from the ideal alignment between the
DetectorElemenit corresponds to (or daughter physical volume in the case of an intelligent
DetectorElementand its parent volume. The bridgibgtween the local detector frame and

the global frame is handled by thdignment Infoclass, which has access to thegnment
Conditionsof all parentDetectorElementsthereby calculating the transformation matrix in

the global LHCb frame.

Through theAlignment Infoobject, aDetectorElementan perform transformations to and
from that frame. These transformations d@ncombined with those corresponding to the
nominal geometry, as defined in the deteaescription database. The nominal geometry
information is available to thBetectorElemenvia theGeometry Infaclass, whose interface
allows for transformations to and from global and local reference frames, and allows access
to the corresponding transformation matricese @hviations from the nominal geometry are
accessed via thelignment Infoclass as well as the combination of the two.

2.6 Data Processing Applications

Typical phases of Particle Physics datacpssing have been encapsulated in the various
LHCb applications. Each application is a proeluand/or consumer of data for the other
stages as shown in Figure 2-6. The applicat{or@duding those that run online) are all based

on the Gaudi framework, they share and comgateivia the LHCb Event model and make

use of the LHCb unique Detector Descriptidhis not only ensures consistency between the
applications but allows algorithms to migrdétem one application to another as necessary.
The subdivision between the different applicatidias been driven by their different scopes
(simulation and reconstructiorgnd convenience (simulation dhe events and detector
response) as well as CPU consumption and repetitiveness of the tasks performed
(reconstruction and analysis).
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Figure 2-6: The LHCb data processing applications and data flow. Underlying all of the applications is
the Gaudi framework and the event model describes the data expected. The arrows represent
input/output data.

2.6.1. Gauss, the simulation application

Gauss[21] simulates the behaviour of tbgectrometer to allow understanding of the
experimental conditions and performance. tegrnates two independent phases that can be
run together or separately. Normally they are run as a single job. Both phases make use of
libraries and toolkits available in the Physics community. A schematic structure of the

application phases is shown in Figure 2-7.

Figure 2-7: Structure of the Gauss application
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The first phase consists of the event generation of proton-proton collisions and the decaying
of the B-mesons in channels of interest flle LHCb physics program. It is interfaced to
Pythia [22] for the event production and to a specialized decay package, EvtGen [23]. Pythia
settings were tuned to reproduce the multiplicities at lower energies [24]. EvtGen is a
specialized package for B-decays originally designed for the BaBar collaboration to
accurately model decays of Bnd B hadrons. A modification was necessary for LHCb to
handle incoherent Band B, production in contrast to the coherent production at the B-
factories. Some Bdecay models provided by EvtGen were extended foal decays of
excited B-mesons were addedthe decay tables. EvtGen with the modifications introduced

by LHCD provides the starting point to the EvtGenLHC version now distributed by the LCG
Application Area Generator Project [25].

The generator phase of Gauss also hanttiessimulation of the running conditions, the
smearing of the interaction region due to tlasverse and longitudinal sizes of the proton
bunches and the change of luminosity during alfii to the finite beam lifetime. Single and
multiple pp-collisions are produced according to the chosen running luminosity. Other event
generator engines can be interfaced in this phase if required. The implementation of the
machine backgrounds is in progress: they lsargenerated separately or added to physics
events with the appropriate weight. The p#&sgproduced in the generator phase are stored

in the HepMC [26] generic format and canrbade persistent if this phase is runstand-
alonemode as indicated in Figure 2-7.

The second phase of Gauss consists of theitgdh the LHCb detector of the particles
produced by the generator phase. The simulatidgheophysics processes, which the particles
undergo when travelling through the experimesttlp, is delegated to the Geant4 toolkit
[27]. Geant4 interacts with Gauss using adasdnterfaces and converters encapsulated in a
Gaudi specialized framework (GiGa [28]). Gi@#ows the conversion of the LHCb detector
geometry into the Geant4 geometry. It aleawerts the output of the first phase of Gauss to
the Geant4 input format. The output of Geant4 in the form of hits produced in the sensitive
detectors as well as the Monte Carlo truth history is then converted back into the LHCb event
model. The behaviour of the Geant4 simulatemgine in terms of detectors to simulate,
physics models to use, details of the Monte €#anith to be provided, is controlled at run
time via job options configuration.

The geometry description is taken from a speaiirsion of the XML geometry database as
specified in the job options. For physics perforogastudies particular care has been taken to
describe the detectors and supports in the LHCb acceptance. Details of the infrastructure are
to be added for special studies (e.g. studyadfiation in the cavern). An example of the
details with which the VELO is desbed is shown in Figure 2-8.
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Figure 2-8: Geometry description of the Vertex Locator (VELO)

Gauss replaced the previous FORTRAN-based simulation application at the end of 2003. The
Geant4 simulation was adapted to take care of LHCb specialities. For example, the energy
deposition in individual Electromagnetic calorimeter cells is corrected for saturation effects
according to Birk's law with parameters taken from [29] and the full Electromagnetic
calorimeter simulation is tuned with test beaata [30]. Another feature of the LHCb
spectrometer is the identification of particleshwRICH detectors and the use of an Aerogel
radiator for the low energy range. Physics processes specific to the RICHes, e.g. Cerenkov
emission and Rayleigh scattering, were stddiand validated in the simulation with
comparison with test beam data [31]. The simulation of photoelectron productions in the
HPDs was implemented in Gauss as a Gears#&r physics process to handle directly
Quantum Efficiency values. The details of tegponse of the tracking detectors are handled

in Boole (section 2.6.2).

For MC Particles and MC Vertices, only the necessary information is stored which is needed
to find out the truth for the main spectrometéor the calorimeters, we do not store the full
shower history, though it is possible to do it for special studies. In addition it is possible to
store more detailed information for examphe full Cerenkov and photoelectron history if
necessary so as to produce debugging information for the RICH reconstruction (Figure 2-9).
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Figure 2-9: Detailed RICH simulation showing the charged particles and the tracing of the emitted
Cerenkov photons via the mirrors up to the photon detectors.

After validating Gauss both with test beam data and by comparison with its predecessor, it is
now used for massive production of daf@aC04 data challenge). The Gauss CPU
performance for the version of the code useDC04 varies depending on the complexity of

the events and ranges from ~20 kSI2k sec/event for minimum bias to ~50 kSI2k sec/events
for signal events (using gcc 3.2 -O2). Improvements to the simulation both in terms of the
application itself, additional details in the deptions of the detector, new features (e.g. new
physics or background generators) are fores@ehare being continuously implemented.

2.6.2. Boole, the digitization application

The Boole digitization program is the finakge of the LHCb detector simulation. Boole
applies the detector response to “hits” poergly generated in sensitive detectors by the
Gauss simulation program. The digitization stepgudes simulation of the detector response
and of the read-out electronics, as well as efLiQ trigger hardware. The output has the same
format as the real data coming from the detector.

The program is normally configured to reagents from two distinct Gauss files: @mtime

file containing simulated events for theacimel under study (typically these are specific
decay channels, or a generic mixture of B events, or a minimum bias mixture of events), and
aspilloverfile containing an independent mix of minimum bias events. When initializing the
processing of an event, Boole uses the instantaneous luminosity with whinktithe event

was generated to determine the probability of onenore interactions occurring in the two
preceding (-25ns, -50ns) and one following (+25ns) beam crossings. A random number is
used to populate these additional beam crossings with events fremilitreerfile according

to this probability; these events are then used by the digitization algorithms to simulate
spilloverinto the electronics from the out of time signals of other beam crossings.

The program then executes a sequence of algorithms from each of the sub-detectors, to
simulate the sub-detector and electronicpaase including simulation of imperfections such

as noise, cross-talk and dead channels. Téigsdations are continuously improved with the
evolving knowledge acquired fromstebeam data [32][33][34][35]. The output of this phase

is a series ofligits corresponding to the output of the framd electronics which are then fed
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into a simulation of the readout partitioning and of the on-line zero suppression and
clustering software. This results in a seriesbahks whose format and partitioning is
identical to that of the banks injected ith@ Data Acquisition System (DAQ) by the readout
electronics [36]. Both the L1 (readout after LOYES) and Raw (readout after LIYES) bank
formats are simulated. The event building stage of the DAQ is simulated by concatenating
these banks. The resultant L1 Buffer and Raw Buffer objects have the same format as the
event buffers that will be seen respectively by the Level 1 Trigger (L1) and High Level
Trigger (HLT) applications running in the on-line event filter farm [37] .

The LO trigger simulation is then executed, taking the Raw Buffer as input. It is important to
prove that the LO trigger can be simulated in this way, as this will ensure that the Raw Buffer
contains sufficient information to reproduceethO trigger decision off-line in the real
experiment. The result of the simulation is appended to the L1 Buffer and Raw Buffer, in the
format expected in the real data.

The L1 Buffer and Raw Buffer are the main output of the Boole application. It is important
however to preserve also information about the Monte Carlo truth, e.g. which set of Gauss
hits gave rise to a given digit, or whether a digit came from a noise hit or a spillover event.
Since the L1 Buffer and Raw Buffer mimic tmeal data, they cannot contain explicit
references to the MC Hits. Instead, an association is made between algneellD (the
identifier of an electronics channel encoded in the L1 and Raw buffers) and the
corresponding Monte Carlo truth, as described in section 2.3. Sufficient information is stored
on the Boole output to allow navigation to the MC hits ofithétme event. Any digits that
cannot be associated in this way are then due to noise hits or to spillover.

A monitoring phase is available in Boole. In normal production most histograms and printout
are turned off. They can be selectively turned on to study the performance of the digitization
in specific sub-detectors, in particular to enew versions of the program against reference
output produced with large stdics by a well-tested version.

The event output of Boole can be customiaedording to the requirements of the analysis.
Two types of output are currently possibletl digitization (“Digi” output: L1 Buffer and

Raw Buffer plus full MC truth history) and raw data simulation (“L1” and/or “Raw” output:

L1 Buffer and/or Raw Buffer only). For both types it is possible to output all events, or just
events selected by the LO-trigger. The average event sizes (on disk, after Root compression)
are shown in Table 2-1.

Table 2-1: Event sizes of the Boole output.

Event size (kB) Digi L1 Buffer Raw Buffer
Minimum bias events 340 2.2 154
LO selected 3.6 26.3
LO and L1 selected 4.4 31.7

Note that the numbers given for the Digi fornaa¢ for unpacked data — a reduction factor of

2-3 should be achievable using the techniques described for the rDST in section 2.6.3. The
L1Buffer and RawBuffer include all overheads dadghe formatting and partitioning of the

data, and conservative estimates of the overheads due to electronics noise. The zero
suppression thresholds and the encoding ofsthmletectors is still in the phase of being
optimized. The aim is to reach 25kbytes per triggered event [38]. The breakdown of the
RawBuffer size in memory per sub-detector is shown in Table 2-2. The data compression of
ROOT saves about 30% of disk space for raw data.
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Table 2-2: Raw data sizes for LO selected events.

Sub-detector Raw data size (kB)
Velo 10.4
TT 4.6
Rich 5.3
IT 3.8
oT 7.6
CALO 8.2
Muon 0.9
LOPU 0.3
LOCalo 0.5
Total 41.6

Boole has been used in production in theOB@ata challenge. fHrocessed over 200 million
events, with less than 1000 crashes, the vagbrityaof which were due to a single well
identified problem that has since been fixed. The processing time for a signal (minimum bias)
event is 0.6 kSI2k.s (0.36 kSI2k.s) using gcc 3.2.3 compiler with —O2 optimization. Memory
usage is stable, approximately 300 MB.

2.6.3.  Brunel, the reconstruction application

Brunel is the LHCb reconstruction applicatidin.takes as input the Raw Buffer object
described in the previous section, from whitchroduces an rDST (for use in the application

for production analysis, stripping see section 4.2.4) or a complete DST (for use in analysis
with the DaVinci application).

Because it starts from Raw Buffer, Brunel can process identically real data coming from the
DAQ or the simulated data resulting from the Bodlgitization and as such is independent
from simulation. It is intended to run the saapplication in the on-line event filter farm, for

the rDST production, and for full reconsttion of both real and simulated data.

Brunel is organized as a series of independent procgssaggsIn particular, all access to
Monte Carlo truth is confined to a dedicafgthse that can be switched off when processing
real data. This guarantees that exactly shene algorithms will be run on both real and
simulated data, and that the reconstruction willbretk in the absence of Monte Carlo truth.

In normal running mode, the program readsthie same detailed detector geometry and
material description as used in the simiola thus ensuring consistency between the
simulated geometry and the geometry usedrézonstruction. In addition, a misaligned
geometry different from the simulation can be read in for the reconstruction step for use in
alignment studies. In both cases, alignment corrections, as measured by the alignment
procedure or the detector survey, will be r&adh the conditions databa and applied to the
basic geometry description.

The reconstruction phase is cdetply independent of Monte Carlo truth information. The
detailed description of the rewstruction algorithms that was given in [2] is still relevant,
although many algorithms have evalveince then, and will continue to do so in the coming
years. Here we give only a very brief ovew of the program flow. It begins wittlustering

in the tracking detectors. The Raw Buffer information is decoded and off-line clustering
algorithms applied to produce the clusters usgdnput to the tracking pattern recognition.

The tracking pattern recognition proceeds in several steps, each step benefiting from the
result of the previous steps, the goal beingrtvide as complete and precise a set of tracks
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as possible, while minimizing the number of ghosts. The last stage of the tracking is a full
Kalman filter track fit taking into account treetailed material desption, followed by a
clone-killing step that removes tracks that share too many clusters. The resunitjng
tracks are passed to the Calorimeter, Rich,Muadn detectors for Parte ID reconstruction.
The clusters, unique tracks and Particle ID objects are currently all stored on the DST.

The reconstruction phase is followed by a (Monte Carlo speé&titationsphase in which
algorithms navigate the event model relationships to associate reconstructed clusters to the
MC Particles that gave rise to the hits fromietththe clusters were built. If all (or more than

a predefined fraction of) the clusters that make up a track come from the same MC Patrticle,
the track is said to be associated to that MC Particle, and otherwise it is consigleost 1&

more than one track is associated to the same MC Particle, the tracks are classibieelsas

The association tables between clusters and MC Particles and between tracks and MC
Particles are stored on the DST. All other rintediate truth information is dropped, it can

only be retrieved by re-accessing the Boole ouifait- this can be done transparently by the
Gaudi framework following the smart references present in the data, but has the additional
overhead of a file catalogue lookup and staging separate file. This functionality is only
needed for detailed debugging of the simulatod reconstruction algorithms and therefore,
Boole output files are only kept for a small subset of the data produced.

The event loop finishes with a monitoring phase. Currently much of the monitoring relies on
the existence of MC truth information; it is feezn to split this phase into two, one of which
would be independent of the MC truth andiefthcould be executed also on real data. As
with Boole, histograms and printout candmectively switched on to study the performance

of the reconstruction in specific sub-systems, and to verify new versions of the program
against reference output produced with large statistics by a well tested version.

It is foreseen that, in the on-line environmedrtinel will run in the same application as the
HLT. The HLT will be executed as the first phadethe application, with the reconstruction
following only for events selected by the HLT exclusive selection. In the current
implementation the HLT and reconstruction phases are completely independent of each other,
both starting afresh from the Raw Buffer. A more integrated approach, currently under
investigation, may be beneficial (for expl® sharing the decoding of the Raw Buffer
information, or using the results of the HLT pattern recognition as a starting point for the full
reconstruction).

Most of the currently implemented recomstion algorithms assuma perfectly aligned
detector. In future it will be necessary to tuhe algorithms to deal with a detector whose
alignment is not perfectly known. In additioaljgnment and calibten data will be time-
dependent and may differ from event to ev&ark is in progress to understand how such
conditionsdata will be made available to the algorithms in a consistent way, both in the on-
line and off-line (including grid) environmé&n The development and deployment of a
conditions database frameworklsing carried out in close collaboration with the LCG (see
section 2.4.)

The event output of Brunel can be customiaedording to the production environment. Two
types of output are currently foreseen: compR&T for end-user analysis and reduced DST
(rDST) for input to the event stripping production step. For both types it will possible to
output all events, or just events selected by a selection decision such at the HLT exclusive
selection. The average event sizes (on disk, after ROOT compression) are shown in Table
2-3.
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Table 2-3: Event sizes of the Brunel output.

Event size (kB) rDST DST

Raw+L1 Buffer| Recodath MC Truth
LO+L1 selected events 36.1 198.8 305.5
B signal 7.7 29.1 163.3 255.6

The number given for the rDST format is for padldata, in which all data are packed into
32-bit fields, and where the persistent classes have been optimized to take full advantage of
the ROOT serialization and compression mechanisms. This procedure reduces the size of the
data required for the stripping step from 22 kB to 7.7 kB. It has been shown that similar
reduction factors can be achieved also for tHleD8T data (and in particular the MC Truth)

by applying similar techniques.

The processing time per signal (minimum bias) ewer2.8 kSI2k.s (0.8 kSI2k.s) using gcc
3.2.3 compiler with —O2 optimization, plus 0.6 kSI2k.s (0.3 kSI2k.s) for the MC truth
monitoring. The design goal is 2.4 kSI2k.s per event for real data. Table 2-4 shows the time
for the different phases and the major contributions to the reconstruction time for signal
events.

Table 2-4 Execution times of the major algorithms.

Time per event (ms
on 1Ghz Pl
Initialization 5
Reconstruction (total) 6981
Tracking (total) 4372
Pattern Recognition 2316
Track Fit 1954
Rich 2431
Relations 595
Monitoring 893

The tracking pattern recognition code iscdah implementation dating from 2003. A complete
re-implementation is foreseen, integrating many newer, faster, algorithms that have been
developed recently. The time taken for the track fit can be reduced by optimizing the use of
the detector geometry to determine the material distribution for the Kalman filter (transport
service). Ideas for reducing the Rich processimg are under investigation in the context of
developments for the HLT.

Brunel has been used in production in €03 and DC04 data challenges. In DCO04 it
processed over 200 million events, with less tB@A crashes, the vast majority of which
were due to a single well identified problem that has since been fixed. Memory usage is
stable, approximately 350 MB.

2.6.4.  Gaudi application executing in the on-line environment

The structure of the Gaudi architecture, watgorithmsnever communicating directly with
permanent data storage, makes it also well suited for on-line applications where data comes
from the DAQ. Only the Input Service to the Transient Store, the job control and the
monitoring components need to be specialized to interface with the DAQ and with the
Experiment Control System, while other components can be used identically as in off-line
applications. On-line applications diffeslightly from off-line and batch oriented
applications:

» On-line applications receive the eventadtom the subfarm controller node (SFC)
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» The application must provide run-time monitoring information and
» They must allow for external control.

The use of Gaudi online will be fully test in the 2006 real time trigger challenge.

Access to event data

The applications executed on-line are triggppl@ations, L1 and high level triggers, or
calibration applications. The typical processing soh®f the trigger applications is shown in
Figure 2-10. The difference to off-line like dgmacessing is the interaction with the subfarm
controller node (SFC) to which the resulfittigger decision must be reported.

Figure 2-10: The logical processing scheme for trigger applications

Whereas the physics code executed in on-lindiGgiimns does not need to be aware of the
processing environment, the service responsible to bootstrap the access to the event data
collected in the experiment requires a customized implementation.

The processing scheme implemented in the Gawelnt loop service to analyse events in the
on-line environment includes the following actions:

« The event loop service requests a new event from BhentSelector.This
EventSelectorequires a custom implementation to interact with the SFC.

* TheEventSelectorssues a request to the SFC to receive event data and waits until
the data have arrived. It encapsulates the received data and passes the data buffer to
the event loop service.

* The event loop service bootstraps the transient event data store by passing the data
buffer.

» The physics algorithms then pick-up the digitized data from the event store using the
standard access mechanism and compute the trigger decision, which itself is stored
in the transient data store.

» A specialized algorithm executed last inspects the trigger decision and forwards the
result to the SFC.

For a small fraction of the events it is fages to optionally monitor the trigger decisions.
Hence, before a new event is requested, a sequence of monitoring algorithms may be
executed after sending the trigger decision.
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Gaucho monitoring and application control

Gaucho (GAUdi Component Helping Onlinelloaws the control and monitoring by the
Experiments’ Control System (ECS) of th& and HLT algorithms written in the Gaudi
framework running on the event filter farm.

Gaucho provides a lightweight C++ DIM[39{Distributed Information Manager, a
communication system for mixed environments) library to be used by the algorithms and a
library of PVSS [40] (the Process Visualization and Control System used by the ECS) scripts
and panels to enable integration into the ECS. Algorithms can use a Monitoring Service that
is part of the Gaudi Online project to pish variables, counters and histograms. The
published information is passed to PVSS via DIM where they are displayed in real time.

Gaucho steers the Gaudi Application Managesugh a Gaudi DIM Controller that calls the
Application Manager anthkes control of the event looBommands can be sent from PVSS

via DIM to the Gaudi DIM Controller to configure, start, pause and stop algorithms. Once an
algorithm has been configured and started, commands can be sent to it (from PVSS) to
explore, publish and visualize histograms on ttla@sient store. Propees of the algorithm

can be read and reset. Some real timeyaiglcan be done in PVSS such as adding
histograms, calculation of mean quantities and displaying their evolution in real time.

The communication via DIM presents a low CPU load and interferes as little as possible with
the event data processing by the algorithms. It igeee low network traffic, is scalable with
the number of nodes and is compatible with farm partitioning.

Figure 2-11: GAUCHO Screenshot

2.6.5. L1/HLT, the on-line trigger applications

The L1 and HLT [3][41] applications are running in parallel on every CPU of the event filter
farm [42], with the L1 applications having priority. The L1 application receives only the
input from the VELO, TT and the LO subsystewith a rate of about 0.7 kHz/CPU. After a
positive L1 decision, the data of all sub-detectors are sent to the event filter farm for
processing by the HLT with a rate of about 30 Hz/CPU.
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The L1 trigger selection is based on theop reconstructed tracks that have a large impact
parameter to the primary vertex, the higlgtsthuon invariant mass from LO, and the highest
LO photon and electron candidate E

The HLT execution happens in two steps (Figure 2-12). The first step is the HLT generic
selection that re-does the L1 decision but witttdsenomentum resolution of the particles, as

the tracking uses the information from T1-3 stations. In the generic part the event is partially
reconstructed: approxim#yel/3 of the total tracks, those that have a large impact parameter
and all possible muons. The output rate of & -generic is 12 kHz; out of which 900 Hz
correspond to “b-inclusive” events with muon of high impact parameter and large
transverse momentum (bp); and 600 Hz of events with large di-muon masses, used mainly
for systematic studies. These 1.5 kHz of events are directly marked for storage. In the second
step, the HLT-specific, all the events that passed the generic algorithm are fully reconstructed
and filtered by the exclusive selections. In the initial part of the exclusive selection,
intermediate particles created in a standard way from 2 or 3 tracks vertices are combined to
form B-decay candidates. In the second pspgcific cuts are applied to each selection
variable such as invariant masses, impact parameter significance, quality of vertices, etc. The
use of the RICH in the HLT is currently under study. The final output rate of the specific
selection is 200 Hz, with an additional brarath300 Hz of D* candidates, to be used for
calibration and systematic studies and alsocfearm physics. The final output rate of the

HLT is 2 kHz.

L1 and HLT applications share the same event data classes and algorithms; therefore trigger
algorithms are interchangeable between both epjpbns. In order to have a flexible code,

the trigger is a sequencer of small alfjons. The algorithms can alternate doing
reconstruction or trigger decision. Only the neaggslata is processed at each trigger level,

for example, in the HLT generic selection, a fraction of the tracks are reconstructed, and only
if the event passes the generic selection the rest of the tracks are reconstructed. Therefore the
reconstruction algorithms need to be ablpédorm a “partial” reconstruction on demand. In

order to save time, a Gaudi tool is used to manage the memory allocation of the data classes
(the tool will be replaced in the future by au@aData Service). This tool creates a finite
number of objects at the beginning of the rurstiore clusters, tracks and particles. These
data objects are then filled and cleared per event, avoiding the time used for memory
management in their creation. In a similar way, to avoid losing extra time accessing the
detector and calibration data, a table is filled with the relevant information at the initialization

of the run, and simple and fast access is provided to this information to the different
algorithms.
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Figure 2-12: Schematic of the high level trigger for benchmark channels

The software trigger algorithms are currently tested and improved in the DaVinci application
(see section 2.6.6) to assess their performad@ai][45]. The main priority is to increase

the reconstruction efficiency without losingspeed, and making the code more flexible and
robust against misalignments and detectoffiziencies. The full sequence of HLT takes at

the moment about 20 SI2k.s (Table 2-5) compared to the budget of 27 kSI2k.s foreseen in
2007.

Table 2-5: HLT CPU needs

Sl2k.sec
CPU needs per algorithmn  average number of
calls per event

VELO Tracking 2.8 1.0
Generic HLT 7.6 1.0
Rest of tracking 6 0.33
PID (mainly RICH) 14 0.33
Shared resonances 4.8 0.33
D* stream 0.4 0.33
Exclusive stream 3.6 0.33
Total 20 SI2k. sec

2.6.6. DaVinci, the analysis framework

The analysis framework supports selection of events and analysis proceeding from the further
processing of the DST or rDST data. The outgudaVinci can be purely statistical or event
data. Analysis Object Data (or Ntuplede$ containing physics objects can be written to
allow further processing. The output of Davi can also be a reduced DST, where only
events satisfying certain conditions are written.

A minimal DaVinci job includes:
» the reconstruction of primary vertices,
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* the assignment of one or several parti@ehypotheses to tracks and calorimeter
clusters by using the PID information fnothe RICH, calorimeters, muon detector
and VELO,

* and a sequence of selection algorithms.

A dedicated algorithm base-class inheriting from the Gaudi classes is provided for physics
selections algorithms. It hides all interactions with tila@sient even{TES) andhistogram
storesfrom the user, and interfaces several commonly used tools.

Physics analysis tools manipté physics event objects that are described in terms of
“particles” and *“vertices”. They contain for instance a set of vertex fitters, particle
extrapolators or filters (for selection cut8Yherever possible, tools performing similar tasks
inherit from the same abstract interface, to allow the user an easy switching from basic to
more sophisticated tools without having to reéevany code. A typical example is the set of
unconstrained and mass or geometry-constrauetex fitters. DaVinci also contains a
standard algorithm that attempts to assign a flavour tag to each reconstructed B meson.

All these physics tools and algorithms are desigioebe able to handle both off-line and on-

line data in a transparent way, allowing running the same algorithms as offline in the HLT
environment [46]. When necessary, a fast but approximate replacement tool is provided for
the HLT needs.

DaVinci also provides a set of “generilgorithmsallowing performing repetitive tasks, like

the reconstruction of a decay nadecay products, involving a vertex fit and some selection
cuts [47]. These standard algorithms are used both in the HLT and in the stripping stage,
ensuring that all successive steps of the selection (HLT, stripping, final physics analysis) of a
decay of interest are highly correlated and well understood.

Selection algorithms can be integrated iataccomplete, dynamicallgonfigured DaVinci
selection job. This job has been successfully used in the stripping stage of the DC04 data
challenge. The DCO04 stripping code includes s&ections and 25 final selections. It
consumes an average of 0.65 kSI2k.s per in@usb event. The pre-selections have not yet
been optimized for speed.

To help the physicists understanding their deda¢c DaVinci also provides a set of tools and
algorithms accessing MC truth and assessing reconstruction and selection efficiencies [48].
These MC utilities are packaged separately to enforce that no MC truth information is used in
the selection phase of the analysis, and tt&frogram can run on data not containing any
truth information, like the future real data. In addition, a special toolkit named LoKi is
provided to facilitate the coding of physics anayagorithms. It combines the power of the
DaVinci tools with physis oriented semantics.

LoKi, an analysis toolkit

LoKi is a C++ toolkit for Physics Analysis that provides a set of high level analysis utilities
with physics oriented semantics. The package has been inspired by the success of the Kal
program, used for physics analysis by the ARGUS collaboration, and the Pattern[49] package
used by the HERA-B collaborationThe ideas from GCombiner[50], Loki[51] and
CLHEP[52] libraries are also used.

The current functionality of the package includes
» Set of predefinedunction objects&ind generic operations
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» Selection and filtering of particles and vertices,

* Multi-particle combinatoric loops

» Simple matching of recotrsicted objects with Monte Carlo truth information
There is a clear separation between phyanedysis code angchnical details.

The majority of complicated physics analysis idioms can be expressed by only one line of
LoKi code. It has been demonstrated that esafgLoKi results in a drastic reduction of the
number of lines of code. In order to make énel-user code even more compact, the concepts
of Patternsand implicit loops in the spirit of standaemplate library (STL) algorithms have
been introduced.

LoKi-based analysis code is further enhanced by the concégatadity, in which the entities
are declared and defined only at the plaey tre used. The “book-on-demand” treatment of
histograms and N-Tuples illustrates this important concept.

There are no raw C++ pointer manipulaticarsd explicit memory management in LoKi-
based physics analysis code. This fact together with the suppression of explicit and tedious
loops makes the code less prone to errors and easy to debug.

The implementation of LoKi heavily exploits the modern technique of generic template meta-
programming [51][53]. In general, LoKi code very efficient due to the templated nature
and the fact that most of the code is iretin The kernel componentf LoKi are loosely
coupled with the LHCb Event Model.

2.7 Interactive Analysis

Being able to perform interactive analysis of LHCb events is not only useful for providing an
easy way of learning and using the softwaré also for debugging and developing the
software. The event display allows to visualize and to inspect the detector geometry and the
event data itself using a graphical userrifiaige. Choosing Python as a scripting language
enables direct access to the olgantthe C++ world in a much simpler way than writing C++
code and still being able to gherm sophisticated physics analysis. Python scripts are also
used to perform complex operations behind the graphical user interface of the event display.

2.7.1. Bender, an interactive physics analysis tool

Bender[54], a Python[55] based physics analysis application, combines the Gaudi software
architecture with the flexibility of the Pythatripting language and g@rides end-users with

a user-friend} physics analysis environment. Bender is based on the generic Python bindings
for the Gaudi framework, called GaudiPython, and on the C++ physics analysis toolkit LoKi
(section 2.6.6). LoKi in turn uses Tools aAtfjorithms developed in C++ in the context of

the DaVinci analysis framework. The usage of Python, the AIDA [56] abstract interfaces and
standard LCG reflection techniques allow @asy integration of Bender's analysis
environment with third party products liketénactive event display, visualization and
statistical analysis tools, like Panoramix (section 2.7.2), ROOT [8] and HippoDraw [57]. It
has been demonstrated that Bender facitétte writing of extremglcompact and easy-to-

read self-contained code. Interactivity ofriler provides physicists with the possibility to
(re)define the algorithms, parameters and gumétion in the process of code development
from the interactive program prompt. By delegating the time consuming tasks to the C++
background functions, almost no penalty éising a non-compiled computing language has

to be paid.
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Any piece of code or configuration file developed for usage with the DaVinci analysis
framework could be used with no limitation within the Bender analysis environment. The
interactive program prompt provides physicisithvithe natural bridge to the event display
application Panoramix.

2.7.2. Panoramix, the visualization application

The graphical display of detectgeometry and event data etis is provided by a dedicated
application called Panoramix (see Figure 2&k8l Figure 2-14.) It is based on a set of
visualization services and converters prawgdithe graphical representation of the LHCb
setup as well as of the data. The event data can be read from files or produced on the fly. An
interactive user interface allows the user hoase what to display and how it is visualized.

The visualization services are based on the OnX [58] package for interactivity and Open
Inventor [59] for the graphics. Python is usaslthe scripting language to control the GUI

and to provide the necessary functionalityvimapping LHCb C++ code. Predefined views
have been implemented and are available in the GUI as well as the normal zoom and rotation
facilities.

Since Panoramix is based on the Gaudi fraork it can work with any of the data
processing applications described befatwing not only 3D graphical rendering for
geometry verification but also providing aidl the development and understanding of the
physics algorithms.

Graphical User Interface

The GUI is organized as one compact GUI panel organized around a document area made
with a stack of Inventor viewers. At the left of the document area there is a data tree browsing
widget, at the top a menu bar and at bmétom a command typing area. Various dialog
panels can be mapped througlke thenu bar items in order frarameterize and trigger an
action, like printing or changing parameteiBhe menu bar items can execute either
complicated C++ functions or Python scriptsdefine what and how to visualize objects.
Using Python scripts has the advantage that taeybe changed on the fly, no re-compilation

of code is necessary.

Connection to the data framework

The data framework (Gaudi) should be undmdtas the software which manipulates and
connects the event and detector data tiitfes like storage, graphic, GUI, scripting.

OnX is the interactivity framework. It allows the connection between the GUI (via an XML
description), viewers, scene manager (IngBntrenderer (OpenGL) and scripting. The
connection between the datarfrework and interactivity framework is done through the
Gaudi OnX service. The various elements @ ltitHCb event model have a "representation”
which is in general a Gaudi converter fibre Inventor technology (a SoConverter). A
SoConverter builds from a data instance an Inventor scene graph. When built, the scene
graph is sent to OnX to be displayed. Aualization request starts from a scripted GUI
callback, then a data conversion for an Invemeguest is activated for various pieces of
selected data. The usage of abstract interfaces permits the use of various different
visualization technologies.
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The visualization packages

Various converters are needed to create tlaphgcal representations of the objects in the
transient event store, the detector geometry, hits, tracks, particles, etc.

The SoDet package builds the Inventor represientaf the detector. It is very generic and
offers together with the LHCb XML detectdescription a very flexible way to enter and
view geometry. The SoStat package allows histograms in the Gaudi transient store to be
presented. A package is provided to vizelHepMC information in conjunction with the
LHCb Geant4 simulation program (Gauss). Dedicated converters for most of the
reconstructed objects exist.

Figure 2-13: Example plot for interactive analysis with Panoramix.
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Figure 2-14: Close look at the interaction region showing the reconstructed tracks and their
measurements in the Velo overlaid with the original Monte Carlo true tracks.

35



LHCDb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

36



LHCDb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

Chapter 3 Distributed Computing

3.1 Introduction

The resource requirements for computing in LH&b such that they can only be obtained
from a distributed environment. The LHCb Computing Model that justifies this statement is
described in the next chapter. We shall describe in this chapter the main activities within
LHCDb that are related to providing the infrasture necessary for using this distributed
computing.

LHCb will use as much as possible the capabilities provided by the LCG both in terms of
computing resources (CPU and storage) and in terms of software components. We expect
some basic services to be completely genend provided by LCG projects and sites while
higher level integration and LHCb-specific tools will be provided by the LHCb collaboration.

The developers of the LHCb applicationssci#bed in the previous chapter as well as
physicists developing analysis code use adsted environment and set of tools. These
applications also need to be released, packaged, distributed and placed in the appropriate
environment before running. This infrastture is described in section 3.2.

It is expected that LCG will provide a sethadseline services for workload management (job
submission and follow-up) and dateanagement (storage, fileansfer, etc.) Several higher-
level services however are very much experiment-dependent and thus will be provided by
LHCb. This is the case for the file and job provenance (Bookkeeping database), for the
Workload Management tools (DIRAC) andr fthe Distributed Analysis tools (GANGA).
These high level services are described in the sections 3.3 to 3.5.

The interplay between the LHCb-provided services and the LCG-provided services are
outlined in each of the appropriate sections.

3.2 Software environment and distribution

The LHCb software is structured in sevgpabjects A projectconsists of a set gfackages
maintained under a unique viers number with a well-defined purpose, it can be used by
other projects and can use other projects maintained or not by LHCb.

Gaudi as a foundation project uses several LCG projects such as SEAL[12], POOL[9],
ROOTI[8]. Another project called LHCb is dieated to handle the LHCb Event Model (see
section 2.3), the Detector Description framekvand several general use packages on which
all applications depend. A set of projects hotlse actual algorithms that are assembled in
order to produce applications:

* Lbcom: contains a few packages shared by Boole, Brunel and DaVinci
* Rec: contains all reconstruction packages
* Phys: contains all physics-related packages

» Online: contains the online services ussdapplications running on the Event Filter
Farm.

On top of these are built all applications projects: Gauss, Boole, Brunel, DaVinci, L1 & HLT
and Panoramix. Figure 3-1 shows therdépendency of the LHCb projects.
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Figure 3-1: The LHCb CMT projects and their dependencies. Also shown are the LCG packages on
which LHCD relies

To build any project and to maintain ethdependencies between them we use the
Configuration Management Tool (CMT) weoped and maintained by LAL-Orsay[60].
Relations between packages of a project or éetwprojects as well as parameters required to
build libraries, executables, and documentatiom described by a CMT meta-language in a
requirements file kept within the package. Dependencies and makefiles are automatically
rebuilt every time requirements are modified. Specific site/platform/compiler options can be
included in requirements files to allow difémt site/platform/compiler configurations.
Similarly dependencies to and within the LCG software use CMT requirements files provided
by the LCG-AA project.

The source code is maintained in a CVS repository on centrally maintained servers at CERN.

Builds are made on Linux and Windows platforms starting from Gaudi as a framework,
followed by the other projects in reverse ordemependencies. Binaries are kept with the
code at CERN on an AFS release area.

We do not produce nightly builds. The frequency of the releases is:

* Gaudi - major release twice a year witinor versions every month or when a new
version of LCG software has to be used.

* LHCDb event model — releases following Gaudi releases with intermediate versions.
» Component projects and Applications — reémasre made when necessary, usually at
least once a month.
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All projects are built with a unique shell garito book the AFS space, checkout the code,
build libraries and executables, create soumce binary tar filesdOxygen documentation
and web pages. The AFS space occupieda dull release (Linux optimized and debug,
Windows debug, dOxygen docuntation) is about 9 GB.

The tar files are available from the web. Ipsssible to download one project/version and all

its dependency projects at once with or withbuaries. LCG projects tar files are included

in the dependencies as well as some compiler run time libraries to be able to run executables
on Grid platforms that have a different cdlep version. A python script is provided to
perform the installation. The use piicman[61]and the developments that were made to use

it with CMT is under consideration[62]. The goahisinique tool that could be used to install

the software on any platform: (e.g. laptop or Grid platform.)

3.3 DIRAC

LHCDb will have to integrate a coherent system of resources and Grid services to carry out its
computing tasks in the distributed environméitterefore, a project was started which will
combine LHCb specific components togetheth general-purpose components where it
proves to be appropriate. Thigork is being done within the DIRAC project (Distributed
Infrastructure with Remote Agents’ Control).

DIRAC is conceived as a lightweight sgst with the following requirements:
* support a rapid development cycle,
* Dbe able to accommodate evewking grid opportunities,
* be easy to deploy on various platforms,

* updates to bring-in bug-fixes and newnttionalities should be transparent or
possibly automatic.

DIRAC is designed to be highly adaptablethe use of heterogeneous computing resources
available to the LHCb Collaboration. These are mainly resource provided by LCG grid.
However, other resources provided by sitespaoticipating to the LCG as well as a large
number of desktop workstations should be easy to incorporate.

One of the main design goals is the simpli@tyinstallation, configuring and operation of
various services. This makes the threshold low for new sites to be incorporated into the
system. Once installed and configured, theesysshould automate most of the management
tasks, which allows all the DIRAC resousctd be easily managed by a single Production
Manager.

The system is designed to be robust and scale well to the computing needs of the LHCb
Collaboration. This scale we roughly define for the moment a$ edifcurrent jobs, ~£0
jobs in the queue processing, handling~ddtasets.

3.3.1. DIRAC architecture

DIRAC uses the paradigm of a Services Oriented Architecture (SOA). The services
decomposition follows broadly the one proposed by the ARDA LCG/RTAG in 2003 [63] as
shown in Figure 3-2.
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Figure 3-2: General view of the DIRAC architecture. Arrows originate from the initiator of the action
(client) to the destination (server.)

The main types of the DIRAC components are Resources, Services and Agents:

* Resources represent Grid Computing and Storage elements and provide access to their
capacity and status information.

» Services provide access to the various functionalities of the DIRAC system in a well-
controlled way. The users interact with the system via agents.

» Agents are lightweight software comporensually running close to the computing
and storage resources. These are applications distributed as necessary, which allow
the services to carry out their tasksaidistributed computing environment.

The main DIRAC subsystems, Workloalllanagement and Data Management, are
combinations of central Services and distributed Agents. This allows an efficient operation of
the distributed system with an easy and non-inteudeployment of its distributed parts. This
feature of the DIRAC architecture is essential in the deployment phase of the system. Since
the grid environment is intrinsically very dymne, the efficient deployment is one of the
most important characteristics of the system. In the following, the DIRAC services are
presented together with an outlook for pbksiincorporation of components developed
within the EGEE/LCG projects.

LHCb considers the approach used for the design of DIRAC as the most suitable for efficient
Grid operations. Therefore the necessary infrastructure needed from the LCG to allow the
deployment and usage of DIRAC on its supported resources has been requested. The
requirements in terms of Baseline Services are summarised in section 5.3.

3.3.2.  Computing Resources

The Computing Element (CE) in DIRAC is an API abstracting common operations of job
manipulation by computing batch systems. It also provides access to the state information of
the computing resource such as its capabilities, environment or occupancy. The API is
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implemented for various back-end batch systeRBS, LSF, NQS, BQS, Sun Grid Engine,
Condor or standalone PC. One particular case is the access to the LCG grid that is realized as
standard DIRAC CE. In the latter case, access to LCG resources both through a Resource
Broker scheduling system and direct access to the LCG CE (through GRAM interface) is
possible. We are planning also to provide an interface to any standard CE implementation
that would be deployed on LCG sitesummarised in section 5.3.3.

The DIRAC Storage Element (SE)s a combination of a standard server, like gridftp, and
information stored in the DIRAC Configuratid@ervice (see next section) on how to access

it. The SE API provides a possibility to dynamically plug-in modules for transport protocols
by which the SE is accessible as described in its configuration. Modules for most of the
existing protocols are availablgsiftp, bbftp, sftp, ftp, http, rfio , direct file
access. A speciaml-rpc  protocol allows transfer of relatively small files encapsulated into
an XML-RPC message. A variant of the SEnpatible with other DIRAC components and
accessing standard SRM based storage is being developed (see section 5.3.2.)

3.3.3.  Configuration Service

The DIRAC Configuration Service (CS) prov&eecessary configuration parameters to
other services, Agents and Jobs to ensure tlolaborative work. The CS contains endpoints

of all the DIRAC services and resources, ithegbperties as well as policies for the current
production run. This service is vital for the stable operation of the whole system and must be
absolutely available despite any outages of the network or server hardware. Therefore special
care was taken to provide a relialaind redundant implementation.

The service consists of several servers among which one is a master server accompanied with
any number of secondary servers. The master server has interfaces for both updating the
configuration information and for serving it thients. The slave servers have only a read-

only interface to provide information to clients. The read-only interfaces of both the master
and the slave servers are identical. Theosdary servers are periodically updating their
copies of the LHCb-wide configuration paranmst'om the master. Since this information is

not changing frequently, the updates are done every minute. The secondary servers are
usually running on sites different from the mastee in order to eliminate the risk of service
interruption due to network cuts.

Figure 3-3: Configuration Service architecture. Arrows originate from the initiator of the action (client)
to the destination (server.)
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Each client has a list of configuration servers to talk to. If one server is not available, the
same information can still be obtained from any other server in the list. This ensures the
redundancy necessary for the service reliabitis/well as for high query rate capacity. The
client API provides also the possibility to define configuration parameters in any number of
local configuration files. These local settinggerride the globally provided default values.
The whole parameter space is divided ectt®ns providing a single level hierarchical
structure. The configuration files are following the syntax of Microsoft .ini files.

3.3.4.  Monitoring and Accounting

The Job Monitoring Service receives status information about the running jobs and provides
it to the requests of users, for example throagtedicated Web Portal, or to other services.
The monitoring information is currently kept within the DIRAC central WMS jobs database.
We are considering interfacing the DIRAC agents to the MonaLisa monitoring system [64].

The Accounting Service accumulates statistics on the usage of the computing resources and
generates reports that can be used to fotle@vproduction progress or to apply policies and
guotas while job scheduling.

3.3.5. Workload Management System

The Workload Management System (WMS) consists of three main components: a central Job
Management Service (JMS), distributédhents running close to DIRAC Computing
Elements and Job Wrappers which are encapsulating the user job applications.

The JMS is in turn a set of services, highlighted in Figure 3-4:
* Job Receiver Service: provides an interface for users to submit jobs.

* Optimisers: based on the job description provided in standard Job Definition
Language (JDL), they sort jobs in task queues

» Matchmaker Service: receives job requests from the job-agents.
* Monitoring Service (not shown): serving job status information.

Agents continuously check the availabilityretources in their respective CE, make requests
to the matchmaker Service of the central IMS, pull jobs from the JMS and steer job execution
on the local computing resource.

Job Wrappers prepare the job execution on the Worker Node, get the job’s input sandbox,
send job status information to the JMS, and upload the job output sandbox.

The jobs requirements are described using the JDL and their matching to the capabilities of
the computing resources is done with the ClassAd library from the Condor project [65].
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Figure 3-4: The DIRAC Job Management Service architecture. Arrows originate from the initiator of
the action (client) to the destination (server.)

One interesting feature of the WMS is that services or users can communicate with Agents
and Job Wrappers by means of an Instant Messaging (IM) protocol. In particular, the
Jabber/XMPP protocol [66] is used in DIRAC. It provides a reliable asynchronous
bidirectional communication charngat can be used to monitor Agents and Jobs or even
maintain interactive sessions with running jobs.

3.3.6. Data Management System

The Data Management System (DMS) includds Eatalog Services, which keep track of
available data sets and their replicas, as well as tools for data access and replication.

File Catalogs The LHCb Bookkeeping Database (BKDB) (see section 3.5), which keeps
track of the executed jobs and metadata of the available datasets (what is usually called
Metadata Catalog and Job Promace Database) [67], also keeps information about the
physical replicas of the files. A service was built as a front-end to this part of the BKDB,
which allows usual File Catad) operations (registering files and their replicas, queries for
file replicas for a given location, etc). However, this File Catalog implementation has rather
limited functionality, and wéooked for other solutions that can be imported as a service into
DIRAC.

We have tried out the File Catalog which is gsrthe AliIEn project [68] because of its rich
functionality and proven robusimplementation. This catad) provides almost all the
necessary features that we expect:

» hierarchical structure following the file system paradigm,
» access control list (ACL) mechanisms,
» possibility to store metadata associated with files.

A front-end service was developed to provideeasdo the AliEn File Catalog functionality.
This service keeps a connection to the catalog and translates incoming queries into the AliEn
Ul commands.
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The client APIs to access both File Catalog services are identical, so that data management
tools can use either of them (or both simultaneously) by just setting the appropriate
configuration parameters.

Other File Catalog implementations are being evaluated in the same way. In particular, we
consider the LFC File Catalog [69], the FiReMaatalog [70] and the new generation of the
AliEn File Catalog. The final choice will bemade based on the thorough assessment of the
catalog properties: completeness of the fianality, scalability, responsiveness with high
guery rates, reliability, etc (see section 5.3.2.)

Reliable File Transfer Service File transfer is a fragile operation because of potential
network and storage hardware failures or errors in the associated software services. It is not
unusual to lose the output of a long job becanfsthe failed data transfer that was never
retried. Therefore, a Reliable File Transfer Service (RFTS), which allows retries of the failed
operations until complete successiigital part of the DMS.

In DIRAC the RFTS is constructed using thensabuilding blocks as the WMS (Figure 3-5).
Each site maintains a Request Database (R&fBdata operation requests. The requested
operations can be data transfer, replicatioregrstration in a File Catalog. One request can
contain any number of operations. A specrabdule called the Transfer Agent is
continuously checking the contents of the BREbr outstanding requests and attempts to
execute them. In case of failures, the requestssin the RDB for further retries. Partially
accomplished requests are modified to retry only undone operations.

Data Optimizer {Data Manager }[ Job }
% v rd

Requests DB

Site Data
Management

A

— [Transfer Agent }
i%m“e >
=,

Figure 3-5: On-site data management tools. Arrows originate from the initiator of the action (client) to
the destination (server.)

The RDB can be populated either by a regplarduction job executed on the site or by a
special job the only purpose of which is to set a data transfer request. In both cases, the
progress of the request execution can be monitored by the standard job monitoring tools
provided by the WMS.

The DIRAC RFTS uses basic transfer protocols (such as gridftp) as defined in the
Configuration System for transferring files. It is however envisaged to use an underlying
centrally provided fts when available (see section 5.3.2.)

3.3.7.  Services implementation

All the DIRAC services are written in Byn [55] and implemented as XML-RPC
servers [71]. The standard Python librarp\pdes a complete implementation of the XML-
RPC protocol for both the server and client parts.

44



LHCDb Collaboration CERN LHCC/2005-19
Computing Technical Design Report

A significant effort was made to provide fault tolerant services. The crucial services are
duplicated to increase their availability. Manyjuests are repeated in case of failures to
overcome network outages or service sdtoma All the services are run using thenit
watchdog tool [72], which ensures restarting in case of failure or on machine reboot. It
provides also many other useful featui@sservice manipulation and debugging.

The services should provide secure access to their functionalities based on the de-facto
standard GSI security infrastructure adoptad the grid. Several prototypes are being
studied. One possibility is to use upgraded XML-RPC servers communicating with clients
over the HTTPS protocol enhanced to use gedtificates for authentication. The other
possibilities are based on the use of grid service portals ensuring authentication and
authorized access to back-end services. In the latter case, an authentication mechanism
provided by the GridSite project [73] was evasthand gave satisfactory results. We are also
evaluating the Clarens grid services framew@rq to provide service containers enabled

with authentication/authorization mechanisms. @aAgesult of this prototyping work we will

have a robust secure grid services infrastructure capable of standing the high load of the
LHCb production system.

3.3.8. Interfacing DIRAC to LCG

LCG already in its present state provides a large number of computing resources accessible
through the LCG-2 infrastructure. There are several ways to exploit these resources.

The seemingly most straightforward way isuge the standard LCG- provided middleware

for job scheduling. However at the time of widi this approach is not yet reliable enough as
demonstrated by the LHCb Data Challenge 2004 [75], so other possibilities had to be
explored. An alternative approach consists in sending jobs directly to the LCG CE. This
approach was tried out successfully in our DC 2003 [76] to gain access to resources provided
by the EDG testbed. However, in the rdc®ata Challenge 2004nather approach was
realized.

This third approach consists of a workloathnagement with reservation of computing
resources using pilot-agents. We took advantzfghaving a light edyg deployable “mobile”

agent, which is part of the DIRAC native WMS. The jobs that are sent to the LCG-2
Resource Broker (RB) do not contain any jgatar LHCb job as payload, but are only
executing a simple script, which downloads amstalls a standard DIRAC agent. Since the
only environment necessary for the agent to run is the Python interpreter, this is perfectly
possible on all the LCG sites. This pilot-agentonfigured to use the hosting Worker Node
(WN) as a DIRAC CE. Once this is done, the WNeservedfor the DIRAC WMS and is
effectively turned into a virtual DIRAC producticsite for the time of reservation. The pilot-
agent can verify the resources available on the WN (local disk space, CPU time limit, etc.)
and request to the JMS only jobs corresponding to these resources. The reservation jobs are
sent whenever there are waiting jobs in the DIRAC Task queue eligible to run on LCG.

There are many advantages in this approach. The agents running on the WN are ensuring that
a valid environment is available before scheduling the real jobs. If the agent fails to start for
whatever reason (failure of the RB, site mis-configuration, etc), the DIRAC Task Queue is
not affected. This approach allowed LHCb to use both LCG and non-LCG resources in a
consistent way. In fact, the LCG RBas used to dynamically deploy the DIRAC
infrastructure upon the LCG resources providing a completely homogeneous system. The
jobs running on LCG resources were still steered, monitored and accounted for in the same
way and by the same services as other DIRASS.|d his way allowed for efficient use of the

LCG resources during the DC 2004 (over 5000 concurrent jobs at peak) with a low effective
failure rate, despite the rather high intrinsic failure rate of LCG (about 40%).
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The workload management with “resource reservation” by pilot-agents opens interesting
opportunities for optimization of job scheduling. While the resource is reserved, it can be
used flexibly, for example, running multiple short jobs without repeated scheduling or

participating in a coordinated parallel work together with other reserved resources. The latter
mode of operation is suitable for running intérsecdata analysis sessions on the grid.

3.3.9. LHCb Workflow Description

The DIRAC job wrapper that sets the environtreamd runs the actual application on the WN

can accept job scripts, but in order to run complex jobs, a specific workflow description is
used. The execution processes as well as the software packages to be used are described
using the XML language.

A workflow can be defined as a complexgliam of processing phases cabéeps A step is

the smallest unbreakable element in a workflow. While the WMS is entitled to break a
workflow into its steps and submit them in parallel if required, steps are always executed
within a single job.

Steps in turn are a sequenceraiduleshat are themselves most usually scripts (e.g. Python
or shell scripts). A library of steps can be used to build up modules that will then be included
in a workflow.

Modules in a step and steps in a workflow aonnected by their input and output variables
(usually temporary files). Several instancesa@fiven step can be used to build a workflow,

e.g. several simulation steps used by one or several digitisation steps in order to include
spillover events.

The DIRAC Console [77] provides the framework for describing workflows. It contains
graphical editors for modules, steps and wlowks. Workflows can be instantiated in a
Production Request editor to prepare jobs for production. The primary description of
workflows uses XML as a description language that is interpreted by the DIRAC job
wrapper. A Code Generator can also be wsqatoduce directly executable Python scripts to
be submitted to DIRAC or any other WMS.

The DIRAC Console is used successfully in LHCb to prepare production jobs that instantiate
complex workflows (such as the stripping jolds)s very useful, although not mandatory, to
create jobs to be submitted to DIRAC.

3.4 GANGA - distributed analysis

A physicist analysing data from LHCb will hate deal with data and computing resources
that are distributed across multiple locas and have different access methods. The GANGA
application has been developdad, cooperation with ATLASto help with this task by
providing a uniform high-level interface to the different low-level implementations for the
required tasks, ranging from the specificatioh input data to the retrieval and post-
processing of the output.

For LHCD the goal of GANGA is to assist in running jobs based on the Gaudi framework.
GANGA is written in Python and presents the user with a single interface rather than a set of
different applications. It usgduggable modules to interact wigxternal tools for operations

such as querying metadata catalogues, job gordtion and job submission. At start-up, the
user is presented with a list of templates dommon analysis tasks, and information about
ongoing tasks is persisted from one invamatio the next. GANGA can be used either
through a command line interface at the Python prompt (CLIP, see Figure 3-6) or through a
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GUI (see Figure 3-7). Their behaviour are completely linked allowing easy transition from
one to the other.

3.4.1. Atypical GANGA session

This section illustrates the use of GANGA through a complete imagined analysis. The
physicist will use GANGA as a way to keep track of his/her analysis, much in the same way
that we all use our email application tedp track of our communications. For his/her
analysis the user wants to analyse 3 largasaéds called Data, Monte Carlo and Reference
within the DaVinci framework.

>>> from GANGA.CLIP import *

>>> dv = DaVinci(optionsfile="myanalysis.opts’)

>>> | = Job(name="MyAnalysis, application=dv, backend="DIRAC")
>>> j.submit()

>>> print jobs

Statistics: 2 jobs jobs

ID status name
# 1 completed Bd2DstarPi
# 2 new  MyAnalysis

>>> j.submit()
>>> print jobs
Statistics: 2 jobs jobs

D status name
1 completed Bd2DstarPi
2 running  MyAnalysis

Figure 3-6: Use of CLIP from the Python prompt to create and submit a DaVinci job to the DIRAC
Workload Management System.

The user starts GANGA and as the first thingsts a small datasetrfdeveloping code on

in the LHCb Bookkeeping database. The datassdved as a local template. The user creates

a new job of type DaVincand develops the C++ code outside GANGA. Using the Job
Options Editor, which is a part of GANGA, the job is configured and submitted as a local
job. In a series of iterations the user copies the job and resubmits it first as a local job and
then to the local batch system for slightly larger datasets.

The user is now ready to perform the analysis. For this he/she creates a set of template jobs,
and selects the data to analyse and saves them as local selections. This involves multiple
selections in each of the 3 large dataseet@ with differences in running conditions over

time. To keep things neat the user divides the analysis up into sub folders corresponding to
the 3 different categories.
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Figure 3-7: Screenshot of a GANGA session using the GUI

The analysis is now submitted by creating a small set of jobs from the templates. The datasets
to analyse are specified for the jobs, and a policy for splitting the jobs is defined. The size of
the job is such that it will get divided up into the order of 1000 sub jobs. As the jobs will
provide rather bulky output it is also decidedpecify an alternative location for output files

on a scratch disk. The jobs are then submitted to the Grid (via DIRAC.) Days later the user
starts a new GANGA session to monitor the progress and looks at some of the output from
finished sub jobs to see everything works as expected.

A certain fraction of the sub jobs failed due to a hardware failure. These are resubmitted as
identical jobs again. Each sub-job creates a ROOT output file and when all jobs are finished
the user merges the output to ease the analysis. Towards the end of the analysis the user
cleans up the system by deleting the many joasdahe no longer relevant by selecting them

all at a high level and ise\g a single delete command.

3.4.2. Implementation

The GANGA project has developed over the |8styears and the current version 3.0
represents a functional model that is used within the collaboration. However it has several
restrictions such as the implementation of new features are difficult due to the design being
developed along with the implemtation; the central job géstry does not scale much
beyond 100 jobs; and the existing implementatdoes not easily allow certain parts of
GANGA to be placed on remote servers. It was therefore decided to use the current release as
a functional prototype for a complete reimplentation of the core of GANGA. Experience

from the current GANGA version was also used to create an updated set of Use Cases for
LHCDb [78]. This reimplementation, known &ANGA-4 [79] has more or less the same
functionality as the existing implementatitat without the limitations mentioned above.
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The finished product should support all details of the use case outlined in the previous
section.

Figure 3-8: The reimplemented Ganga is logically divided into 4 parts that can all be hosted on
different client/servers if required

The GANGA client, which the user interacts widlrectly, is mainly implemented in pure
Python. It initially sets up the job and perforntigmt side job splitting if required. If there is
server side splitting the client receives a nadifion from the Job Manager and can then go to
the registry to get information on the sub-jobs. Server side sub-jobs are limited in
manipulation depending on the features supportetidopackend. The client also talks to the
bookkeeping or to the file catalog to retriedaga sets. The clié communicates with:

« The Application Manager to retrieve @able applications and their versions,
compiled user code (shared libraries), arelgmocessed job-parameters (option files).

» The Application Manager to send applicatirelevant paramete for manipulation
(e.g., option files) and user code to be compiled in the context of the chosen
application (optional). The client also receives information on pre-processed run-
options and compiled user code (shared libraries).

* The Registry Service: several simultaneous registry services are possible, which may
be local or remote. The client saves new jobs in the selected remote repository. Once
the job is submitted, the Job Manager manages the job status and the client only has
read-access to the entry in the registry.

« The Job Manager: the client submits a configured job to the Job Manager.
Subsequently it receives notifications of the status from the Job Manager. Commands
to restart or kill a job are submitted to the Job Manager, which will take action and
subsequently update the registry.

The Application Manager informs the clieah available applications it knows about (e.g.
generic, DaVinci, general Gaudender etc.). For all of these it defines sensible defaults to
aid the user. The Application Manager praess all user options and the configuration
associated with the job itself. It is planned to implement the application manager on a server.
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In addition, the Application Manager mightsal compile user code to generate shared
libraries.

The Job Manager accepts jobs from the cli#grttas knowledge of the supported back-ends
(local, batch system, DIRAC etc.) and createsréquired wrapper scripts in order to run the

job on the chosen back-end. This requires tacetevel of matchindpetween back-ends and
applications that is taken care of by the Application Runtime Handler. As an example, the
method for running jobs within DIRAC is diffarefor a general script and for a Gaudi job
that takes advantage of theemstalled environment. The Job Manager also modifies the job
information on the job output depending on wiat application and back-end support. As an
example the Job Manager may decide to chaingeutput location of output files specified

in the output-data to be local and then subsatijueopy the data to the final location. After

the Client has submitted a job the Job Manager takes ownership on behalf of the client for
operations like kill, resubmit or delete. The Job Manager will change the information in the
registry each time the job enters into a new status. This includes information on run status,
number of subjobs created from server side splitting, location of output data like large ROOT
files and the location of the output sandboxe Bimly information flowing from Job Manager

to Client is notifications and informatiotaut available back-ends. Following a notification
about a job the Client can then update itself from the registry.

Users Jobs creation retrieval deletion
1 10 0.47 0.1 0.019

1 50 0.29 0.09 0.015

1 100 0.35 0.06 0.01

10 10 0.49 0.08 0.048

10 50 0.31 0.1 0.03

10 100 0.35 0.14 0.028

Table 3-1: Test of multiple users creating, retrieving and deleting a given number of jobs in a remote
registry implemented using the ARDA MetaData database. All times are in seconds per job

The registry keeps track of GANGA jobs. It is implemented as a remote registry with a local
cache. The remote registry receives job configuration from a client for new jobs. This
consists of the job object, the input sandbox and information about the output location
(sandbox) and the output-data. For a submitbedtipe registry receives the job status from

the Job Manager. The remote registry is implemented as a dumb storage of information and
will not by itself initiate any actions. In Table 3-1 the performance of GANGA is given for
the use of multiple clients (i.e. different usemworking with several jobs in the remote
registry implemented using the ARDA MetaData database[80].

3.4.3. Required Grid services

In order for GANGA to work smoothly for a physics analysis many services are required
from the Grid. For LHCb the submission model for distributed analysis jobs is that they will

be submitted to the DIRAC WMS and from there go onto the Grid. In this way LHCb will
only have to deal with Grid submissidnom one application. Analysis, opposed to
production, presents extra issues with respect to using the Grid. The first one is that analysis
is typically done by physicist with a lower roputational expertise so requirements on
transparency, clear error messages, success rate etc. are higher than for the Grid used for
production type tasks. The second one is thalyars jobs are more iterative and individual

so the process of changing the executed code and configuration of jobs needs to be much
easier than for production jobs.
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3.5 Bookkeeping

The processing of data in LHCb is performed iteratively in a chain of programs each
executing as a separate processing step, botteébrdata and for sinfated data. Each of

these processing steps may require one or several input files and produces one or several
output files, which may bdata files, tag collections or simply log files. A step is typically
running an application that is steered by a s@aohmeters. In order to ensure reproducibility

of these data as well as the possibility to cfagie produced data all these parameters need

to be recorded and made accessible publicly to the LHCb physicists. The Bookkeeping
Database (BKDB) is used for storing all tagsarameters. Typically physicist will perform

queries to the BKDB in order to select a dataset to be analysed.

A dataset is a set of files logically grouped according to common properties. The atomic
dataset is a single file. The published information allows:

» Fast selection of datasets possibly ¢cstirgy of many individual files according to
predefined physics criteria

» Detailed browsing of all parameters chaeaizing a given file and its processing
history (job provenance).

The Bookkeeping database is accessed by two sets of users with different characteristics:

» Data Production Managers who supervise and control joadata processing efforts
on behalf of the collaboration. The tdaproduction on one hand publishes the
provenance information to the bookkeeping facility, but also requires access to
datasets e.g. in the case of reprocessing.praduction manager must also be able to
mask faulty files such that they are not selectable for physics analysis.

* Physicist users who develop data analysis algbms in order to extract physics
parameters from the data. Physicists query the bookkeeping system in order to select
the dataset they are interested in. Physicist users are interested to obtain a subset of
the produced datasets depending on physicanpeters related to their subject of
work.

Both may need access to the detailed histogymoduced dataset e.g. in case of problems.
The different access mechanisms to the datasets are discussed below.

In order to facilitate the del@ment of tools such as gaical user interfaces (GUI) and
applications for production manageand users, the information must be accessible using a
programming interface (API) and not expdke internal database schema.

3.5.1. The Data Model

The data model needs to be flexible enougldéscribe different processing steps and the
resulting files. The relation between processtaps and files has the constraints that:
* Every file is the output of a unique step butynb@ the input of many steps. This is valid
for data files as well as event tag collections.
* A step may have several filesiaput and several files as output
The schema for steps and jobs contains the following information:
» Each step is described by
- The step execution date
- The configuration tag of the applicai identified by a name and a version.
- A set of parameters that characterises the step, given as name/value/type triplets.
Examples of parameters are the prditurc site, the run number (if any), the
version of the detector geometry used etc.
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- A set of input files and a set of output files (possibly empty)
» Each file is described by
A logical name.
A file type.
A set of quality flags.
A set of parameters. Examples of parameters are the file size. If the file is a data
file, more parameters may be defined such as the run number, the first and last
event numbers, the number of events in the file, the event type etc.
 AFile Type is
- A name (RAW, DST, Log, Tag Collection, etc.)
- A version number.
- A set of parameters if more details aegjuired to describe the data type. An
example is a short description of the type.
* A Quality flag
- A group, which is the type of analysis or the group of people concerned by this
quality. Examples are “Production Manager” or “Calo”.
- The actual quality, which can be “Good”, “Bad” and “Not checked”.

Figure 3-9 shows the logical model deserhexecution steps and the corresponding input-
and output files using generic (name, value) tuples. Data quality flags facilitate the exclusion
of certain files. Such a data model iexible enough to host any kind of job provenance
information.

In absence of a suitable file catalog in the early stage of the BKDB development, a table has
been added to the schema containing repldarmation for those files that are made
persistent. Not all files registered in the fidédles do actually correspond to a replicated file,

but they need to be present in the BKDBder to provide history / provenance information

for subsequent steps and files.

Figure 3-9: The logical data model of the Bookkeeping application
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3.5.2.  Views to the Bookkeeping

Though very flexible, the above tdamodel cannot satisfy all criteria required by the different
clients. A (name, value) based data model is not optimised to allow e.g. the fast selections of
many datasets according to many parameters describing either the dataset itself or the parent
step(s). On the other hand it is not necessary that such queries always completely reflect the
latest update, but one can usualipw for certain latency.

Following known recipes of data warehousir@i][ these requirements were implemented
using separate views created from the primary data model, which are optimized for the
different client applications. An example is the WWW GUI interface (see Figure 3-10) and
the browsing interface as it is used by GANGA (see Figure 3-7.)

Another application, which is based on a vievitef primary information of the replica table,
is the implementation of a read-only file catalog interface.

The views optimized for access by individual Bgaiions need to be refreshed regularly
depending on the tolerable latency. Such a refresh is implemented either as a complete view
recreation or an incremental update if omdyy few changes need to be reflected.

Figure 3-10: The browsing applications to the bookkeeping.

3.5.3. The BKDB Application Programming Interface

Any application accessing the bookkeeping and job history information can use either of two
interfaces: an HTTP interface on which e.g. the web GUI is implemented and an application
programming interface.

As shown in Figure 3-11, neither the web lihdata access nor td?l implementation of

the interfaces depends on the internals of the data model, both rely on a “Bookkeeping
service”. The bookkeeping service itself iepents two interfaces: a read-only and a
read/write interface to emphasize the logical distinction between query and update roles.
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The programming interface only requires network access; data are transferred using the
XML-RPC [71] protocol. The XML-RPC protocgirovides a very flexible and lightweight
communication mode with much less overhead #hanthe SOAP protocol [82]. Any client
using this API is entirely independent frothe database structure or technology. For
dedicated applications like the GANGA GUI oetlead-only file catalogue, also the distilled
data stored in some of the bookkeeping vieas be programmatically accessed in read-only
with a special API using the XML-RPC protocol.

The web-based interfaces were implementedgusiandard servlet technology, which can be
hosted by web servers like TomCat [83]. The XML-RPC based API is currently hosted by a
standard python web server.

M Java
Python
- Python interface <:> :
S XMLrpc
I U 5 !
“
C
L
(0]
Q |
4
S 3 !
(@]
o |
JDBC ====l=j= ===y S, @
! | HTTP
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*MySQL 3
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Figure 3-11 The implementation of the various interfaces of the bookkeeping facility.

3.5.4. Experience with the BKDB

LHCb has used the bookkeeping implementatlescribed above since 2003. Currently the
bookkeeping contains the chaterization of ~8 x 1{files described by 26 x i@arameters.
These files were produced by ~3.5 X pfbcessing steps described by 64 kddrameters.

The complete recreation of all requiredews takes on average 40 minutes. A daily
incremental update typically finishes within a few minutes.

The bookkeeping applications have shown b rather independent of the database
technology. Whereas the application ispldged on ORACLE 10g [18], a prototype is
available using mySQL [19].

3.5.5. Alternative Implemetation

After the LHCb bookkeeping applications wesperational, the ARDA project started to
define an experimentidependent metadata catglie [80]. We are currently investigating if
our data provenance model cha applied using the ARDAnetadata catalogue concept.
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Clearly a solution shared between several expnts would be favourable for the following
reasons:
» The API would be standardized and ismpentation could be replaced without
consequences on applications.
* The maintenance of the implementing software would be shared and the effort for
LHCb would be smaller.

The ARDA concept is solely based on name, value pairs attached to files. The main
differences between the two approaches are:
» The concept of “Steps” representing executed applications does not exist. The step
information must be replicated for each file.
» The ARDA model is based on logical files organized in a file-system like
directory structure. Such an approach may have, depending on the
implementation, a better scaling behaviour than the solution currently used for the
BKDB. However, scanning the entire stpfile space, for which our model was
designed, is rather costly due to such partitioning concepts.
* The concept of “Steps” representing exedwpplications haw® be implemented
using the concept of logical files i.e. @gts described by a special type of file.
* In the ARDA model the schema for the parameters describing a file is shared for
all entries in a directory.

First results show that the ARDA model is functionally able to replace the views created from
the provenance data. Further tests are ongoidgtas too early for a final decision about
moving from the existing solution.
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Chapter 4 Workflow and Computing Models

4.1 Introduction

This section describes the dataflow model for all stages in the processing of the real and
simulated LHCb events. The CPU and storage, both disk and mass storage (MSS),
requirements for 2006-2010 are given based amats made from the current software;

these estimates are under continuous reviewaddition, the trigge rates and selection
efficiencies of the various processing steps should be considered as the current best estimates.

The roles of the various Tier centres are discussed and the distribution of the processing load
and storage needs are given. Requirements are also presented for the computing
infrastructure, both internal (e.g. MSS i/o ratasyl external (e.g. data transfer rates) to the
Tier centres.

The baseline LHCb computing model is based on a distributed multi-tier regional centre
model. It attempts to build in flexibility thatill allow effective analysis of the data whether

the Grid middleware meets expectations or notc@irse this flexibility comes at the cost of

a modest requirement overhead associated pvekdistributing data to the regional centres.
Analysis is foreseen at the Tier-1 centres and possibly the larger Tier-2 centres. The LHCb
Tier-1 centres are, in general, already familiar in providing such analysis centres for current
HEP experiments and the associated infrastructure is already in place or in a mature state of
planning.

4.2 Logical Dataflow and Workflow Model

There are several phases in the processingev@int data; this section describes the
terminology used to define each processing step and the data sets that are produced. The
various stages normally follow each other in a sequential manner, but some stages may be
repeated a number of times. The workflow reflects the present understanding of how to
process the data. A schematictod logical dataflow is shown in Figure 4-1 and is described

in more detail in this section.
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Figure 4-1: The LHCb computing logical dataflow model. The arrows indicate the input/output
datasets at each data processing stage.

4.2.1. RAW data

The “real” raw data from the detector isoduced via the Event Filter farm of the online
system. The first step is to collect data, triggering on events of interest. This procedure
involves processing data coming from thebsystems using sophisticated and highly
optimised algorithms in the High Level Triggers. The trigger software will apply calibration
corrections during the reconstruction of physipedperties of the pacles and will apply
selections based on physics criteria. The results of this step are the RAWFadiata
convenience the RAW data can be grouped in several output streams

The RAW data are transferred to the CERN Tier O centre for further processing and
archiving. Those data not selected for permanent storage by the trigger are lost forever.

4.2.72. Simulated data

The simulated data are produced from daitkd Monte Carlo model of LHCb that
incorporates the current best understandinghef detector response, trigger response and
dead material. These RAWmMc data sets contain simulated hit information and extra ‘truth’
information. The truth information is used to record the physics history of the event and the
relationships of hits to incidemqarticles. This history is caed through to subsequent steps

in the processing so that it can be used during analysis. Simulated raw data sets are thus
larger than real raw data. Otherwise the format of the simulated raw data is identical to that of
the real data and they are processed us@gdme reconstruction software. In analogy with

the “real” data the RAWmMc will, in general, only be stored for events that pass the trigger
simulation.
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4.2.3. Reconstruction

The RAW data, whether real or simulated, miln&n be reconstructed in order to provide
physical quantities: calorimeter clusters poovide the energy of electromagnetic and
hadronic showers, trackers hits to be associated to tracks whose position and momentum are
determined. Information about patéiddentification (electron, photon?, hadron separation,
muons) is also reconstructed frdhe appropriate sub-systems.

The event reconstruction results in the generation of new data, the Data Summary “Tape”
(DST). Only enough data will be stored iretBST that is written out during reconstruction

to allow the physics pre-selection algorithmsb® run at a later stage. This is known as a
reduced DST (rDST.)

The pattern recognition algorithms in the re¢argdion program make use of calibration and
alignment constants to correct for any tempohanges in the response of the detector and its
electronics, and in its movement. Calibration ahgnment data as well as necessary detector
information (detector conditions) will &tored in a distributed database.

The calibration and alignment data will peoduced from online monitoring and/or off-line
from a pre-processing of the data associated thvélsub-detector(s). Detector conditions will

be a subset of the Experiment Control System database and will contain only information
needed for reconstruction, e.g. informationrfanitoring the detector will not be included.

It is planned to reprocess the data of a givearyonce, after the end of data taking for that
year, and then periodically as required.

The reconstruction step will be repeate@d¢commodate improvements in the algorithms and
also to make use of improved determinationghefcalibration and alignment of the detector
in order to regenerate namproved rDST information.

4.2.4.  Data stripping

The rDST is analysed in a production-type mode in order to select event streams for
individual further analysis.

The rDST information (tracks, energy clustepsyticle ID) is analysed to determine the
momentum four vectors corresponding to the muesk particle tracks, to locate primary and
secondary vertices and algorithms appliedidentify candidates focomposite particles
whose four-momentum are reconstructed. Epatticular channel of interest will provide

such a pre-selection algorithm. The events that pass a physics working group’s selection
criteria are written out for further analysis. Since these algorithms use tools that are common
to many different physics analyses they are run in production-mode as a first step in the
analysis process. This is shown schematically in Figure 4-2.

The events that pass the selection criteria will be fully re-reconstructed, recreating the full
information associated with an event. The output of the stripping stage will be referred to as
the (full) DST and contains moneformation than the rDST.

Before being stored, the events that pass the selection criteria will have their RAW data
added in order to have as digd event information as needed for the analysis. We note that

in the early stages of data taking both the Fermilab and HERA experiments needed access to
the RAW data for analysis. It is envisaged éimeount of information stored at the output of

the stripping stage will reduce as the experiment and the accelerator matures.

An event tag collection will be created for faster reference to selected events. It contains a
brief summary of each event’'s characteristics as well as the results of the pre-selection
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algorithms and a reference to the actual DST record. The event tags are stored in files
independent of the actual DST files.

It is planned to run this production-analysis géstripping) 4 times per year: once with the
original data reconstruction; once with tleeprocessing of the RAW data, and twice more,
as the selection cuts and analysis algorithms evolve.

It is expected user physics analysis will primarily be performed from the output of this stage
of data processing (DST+RAW and TAG.) Duringsfidata taking it is foreseen to have at
least 4 output streams from this stripping pesoag: two associated with physics directly (b-
exclusive and b-inclusive selections) and @asociated with “calibration” (dimuon and D*
selections), discussed in more detail in section 4.3.1.

Figure 4-2: Schematic of the logical dataflow for the production analysis phase. The arrows indicate
the input/output datasets at each data processing stage.

4.2.5. Analysis

Finally physicists will run their Physics Analygabs, illustrated in Figure 4-3. They process
the DST output of the stripping on events with physics analysis event tags of interest and run
algorithms to reconstruct the B decay channel being studied. Therefore it is important that the

It is quite possible there will be more than 4 output streams, corresponding to subsets of the 4 categories.
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output of the stripping process is self-contain€dis analysis step generates quasi-private
data (e.g. Ntuples or personal DSTs), which are analysed further to produce the final physics
results.

Since the number of channels to be studietery large, we can assume that each physicist

(or small group of physicists) is performing a separate analysis on a specific channel. These
“Ntuples” could be shared by physicists cbba@ating across institutes and countries, and
therefore should be publicly accessible.

Figure 4-3: LHCb physicist analysis cycle

4.3 Data Processing and Storage Requirements

The frequency of each of the data processingatigss, the volume of input and output data,

and the amount of computing hardware resources needed to accomplish the tasks must be
guantified in order to specify the commgi model precisely. A detailed breakdown of the
processing and data requirements has been made in terms of each processing stage. The
parameters used to estimate these requirements for real data are given in Table 4-1. The
expected event sizes listed correspond to the size of data as stored on disk.
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Event Size kB

RAW 25

rDST 25

DST 75

Event processing kSI2k.s
Reconstruction 2.4

Stripping 0.2
Analysis 0.3

Table 4-1: Event parameters for real data

In this section the estimates of the CPU and storage requirements do not assume any
inefficiencies.

4.3.1. Online Requirements

A detailed discussion of the online and trigggstems has been presented elsewhere [3][38].
The Event Filter Farm will contain of the order of 1800 CPUs and the Online system will
provide about 40 TB of local storage at the experimental pit.

The High Level Trigger (HLT) receives data, at 40 kHz, corresponding to the full event after
each positive Level 1 decision. The HLT will then be applied in a series of steps of increasing
refinement until the event is either positivelgcepted or rejected. The events can be thought
of as being classified in 4 categories: exel@d sample, inclusive b sample, dimuon sample
and D* samplé The expected trigger rate after the HLT for each of these samples is given in
Table 4-2.

The b-exclusive sample will be fully reconstructed on the online farm in real time and it is
expected two streams will be transferredite CERN computing centre: a reconstructed b-
exclusive sample at 200Hz (RAW+rDST), the “hotstream”, and the RAW data sample at
2kHz. The RAW event size is expecterd to be 25kB, compared to the current measured value
of ~30kB, whilst there is an additional 25kB associated with the rDST. This would
correspond to a sustained transfer rate of 60MB/s, if the data is transferred in quasi real-time.

b-exclusive| dimuon D* b-inclusive| Total

HLT rate (Hz) 200 600 300 900 2000
Table 4-2: Working numbers for HLT output rates

2|t is appreciated that there will be events that satisfy more than 1 