Skip to Main content Skip to Navigation
Conference papers

Description of Quantum Entanglement with Nilpotent Polynomials

Abstract : We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed.
Document type :
Conference papers
Complete list of metadatas
Contributor : Dominique Girod <>
Submitted on : Wednesday, March 1, 2006 - 2:05:00 PM
Last modification on : Friday, January 11, 2019 - 10:31:28 AM

Links full text



A. Mandilara, V. M. Akulin, A.V. Smilga, L. Viola. Description of Quantum Entanglement with Nilpotent Polynomials. 3rd International Symposium on Quantum Informatics, Oct 2005, Moscow, Russia. pp.26402, ⟨10.1117/12.683104⟩. ⟨in2p3-00025699⟩



Record views