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Abstract

This paper presents the beam test results of the first four double-sided silicon strip
modules built for the inner tracker of ALICE detector. The basic detector perfor-
mance was studied with the focus made on the efficiency and spatial resolution
determination. A fast method for the determination of the spatial resolution of the
sensors in the telescope is described.
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1 Introduction

The inner tracker system (ITS) [1,2] of ALICE [3] experiment consists of six
cylindrical layers of silicon detectors. The silicon strip detectors (SSD) com-
prise the outer two layers of ITS and play an important role in matching the
particle tracks found by ITS to the TPC tracks and in particle identification
by ITS.

The SSD layers are constructed from 1698 SSD modules, each containing a
75 × 42 mm2 double-sided 300 µm thick silicon strip sensor. The strip pitch
is 95 µm on both sides, with 768 strips per side. On one side the strips are
tilted by an angle of 7.5 mrad with respect to the short edge of the sensor
and on the other side by an angle of 27.5 mrad creating a stereo angle of
35 mrad so that each strip crosses only 15 strips of the opposite side. This
allows to reconstruct multiple hits from the same sensor at the expense of
the poorer spatial resolution in the direction along the sensor shorter edge (z
direction in ALICE frame) while keeping fine resolution in rφ direction (along
the longer edge) for better particle momentum resolution. The bulk of the
sensor is n-type silicon with p+ type implanted strips on one side (P-side)
and n+ type silicon strips on the other side (N-side) insulated by p+ doped
region. Integrated capacitors on top of each strip enable AC coupling to the
front end, providing separation of the leakage current in the strips from the
inputs of readout electronics [1]. The sensor is biased by a punch-through
structure [4]. The sensors are produced by three different manufacturers, each
implementing the sensor in a slightly different way. The differences relevant
in this context are the strip widths: 40 µm (ITC 1 ), 26 µm (SINTEF 2 ) and
45 µm (CANBERRA 3 ). Each side of the sensor is connected to a hybrid
circuit carrying 6 HAL25 4 read-out chips[5] each. The readout pitch is the
same as the strip pitch. The 128-channel front-end chips amplify and shape
the signals from the sensor and contain a sample-hold circuit to store the
analogue signal after a trigger. The analog samples can be read-out serially
at speeds up-to 106 samples per second. The peaking time of the shaping
circuit is adjustable between 1.4 µs and 2.2 µs . All parameters of the front-
end chips are controlled via a JTAG interface. Connections on the hybrid and

∗ Corresponding author, Tel.: +31-(0)30-253-9462; fax: +31-(0)30-251-8689
Email address: O.Sokolov@phys.uu.nl (O. Sokolov).

1 Manufactured by ITC-IRST, Italy
2 Manufactured by SINTEF, Norway
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4 Manufactured by IBM, USA.
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Fig. 1. Schematic layout of the beam test set-up. The four modules under test were
surrounded by the trigger scintillators A,B and C.

the connections between the front-end chips and the sensor are made using
micro-cables consisting of aluminium conductors on a polymer carrier[6]. The
hybrids are connected to the EndCap boards which decouple the analog and
control signals from the sensor bias voltage and buffer all signals to and from
the front-end chips and generate the control signals for read-out of the analog
buffers using two ASICs[7].

The first four prototype SSD modules corresponding to the final design were
tested using a secondary 7 GeV/c pion beam produced at the CERN PS accel-
erator. This paper presents the major detector performance results obtained
during this beam test. In the Section 2 the description of the beam test setup is
given, Section 3 gives extensive details on the off-line analysis and the Section
4 summarizes the obtained results.

2 Experimental Set-up

A schematic view of the set-up is shown in figure 1. Four modules were ar-
ranged in a telescope with a spacing of 3 cm between the sensors. No external
telescope was used. The incident beam traversed the sensors normal to the sur-
face and was centered in the middle of the sensors, covering almost the entire
sensor area. Every particle spill delivered about 5000 pions in 0.6 s, with 16 s
gap between the spills. The trigger signals were produced from the coincidence
of four plastic scintillators. Scintillator B, about 8× 5 cm2, was placed down-
stream with respect to the modules. The two scintillators A, placed upstream
in the beam, were 20×25×1 cm3, with a gap of 6 cm between them. Another
small scintillator covering roughly 1/6 of the sensor allowed the selection of a
fraction of the sensor area. The hybrids were connected to the prototype End-
Cap boards. The EndCap boards were connected to a data acquisition system
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consisting of a four channel 12-bit ADC 5 board in a PC running Labview.
The sampling frequency of the ADC card was set to 10 MHz, corresponding
to the nominal read-out speed of the front-end modules. The maximum trig-
ger rate that the system could accept was about 100 Hz. The preliminary hit
reconstruction was performed in between the particle spills (every 16 seconds)
and the information on the hit locations and deposited charge was displayed
online for monitoring purposes. JTAG interface to the front-end chips and
EndCaps was done using a boundary scan controller 6 .

3 Off-line analysis

3.1 Cluster finding

The initial pedestals and noise were calculated from the first 1000 events of
a particle run. The pedestals were continuously updated during the run using
a “moving window” method to track the pedestal drift. After the pedestal
and common mode subtraction one obtains the signals Si proportional to the
charge collected by the i-th strip. Strips with (Si/Ni) > 3 are qualified as
fired strips, where Ni is the noise of the i-th strip. Contiguous fired strips are
combined into a cluster, disconnected strips (i.e. due to a bonding failure) that
collect no charge are included in the cluster if they are in between two other
fired strips. Only clusters with SCl/NCl > 5 are kept, where SCl =

∑n
i Si is

the total cluster charge and

NCl =

√

√

√

√

n
∑

ij

ρij · NiNj (1)

is the total cluster noise calculated including the noise correlation coefficients
ρij between the strips i and j. The cluster position (in pitch units) is deter-
mined using a center of gravity (COG) algorithm:

〈i〉COG =

∑n
i i · Si

∑n
i Si

(2)

where the i’s are the indices of the strips included in the cluster. This procedure
is done independently for both sensor sides. Two clusters found on opposite
sides are associated with a particle hit if the fired strips on one side have a point
of intersection with the fired strips on the other side. If more then one cluster
per side is found, then as long as the distance between the cluster centers
on the same side is more than 15 strips, no ambiguity emerges, otherwise

5 ADC DAS 4020/12 card manufactured by Measurementcomputing .
6 PM 3705 manufactured by Philips
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the ambiguity is resolved by keeping only the combination with the best P-N
charge match [1]. All the analysis in this paper was done using the events with
at most one hit per sensor. The information on the cluster position from both
sides is used to calculate the hit cartesian coordinates (x, y).

3.2 Cluster size and charge

The histogram of the relative number of clusters having 1, 2, 3 or more strips
in the cluster is shown on fig. 2 for all four modules. For this figure only the
clusters not adjacent to disconnected strips were selected. Due to a large strip
pitch compared to the diffusion width of the generated charge cloud, there is a
significant fraction of single strip clusters on all the modules. The single-strip
clusters give no opportunity to use any charge sharing model to determine
the position of those clusters with a better precision. A high strip noise seen
on the N-side of modules 1 and 2 (see tab.1) increases the number of such
clusters even more since the high noise masks the charge collected due to the
carrier diffusion and capacitive coupling by the strips adjacent to the strip
that collects the most of the charge.
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Fig. 2. Cluster size histogram at normal incidence.

The histogram of the cluster charge collected by both P and N sides of module
4 is shown on fig.3. Only events with clusters not adjacent to disconnected and
very noisy strips were used. The position of the peak corresponds to the most
probable charge deposition by beam particles, assumed equal to 25000 e− [8].
This value in ADC counts is slightly different for P and N sides due to a
different capacitive networks on the two sides and/or a different gain of the
front end electronics for signals of the opposite polarity. The histogram is
fitted with a Landau curve convoluted with a Gaussian function:

f(x, ∆) = 1/
√

2πσ2

∫ +∞

−∞

fL(x, ∆′) × exp[−(∆ − ∆′)2/2σ2]d∆′ (3)

where ∆ is the actual energy loss when a distance x is traversed, and fL(x, ∆)
is the Landau distribution function [9]. This is necessary to account for the
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Fig. 3. The distribution of the cluster charge fitted with Landau function (adapted
from CERNLIB routine DENLAN) folded with a Gaussian function. The fit parameter
∆mp = 25000 e− is the most probable charge deposition given by the Landau
function and is used for the calibration of the ADC scale. The parameter ξ is the
measure FWHM of Landau distribution and σGauss is the standard deviation of the
Gaussian function.

Table 1
Signal-to-noise ratio of the modules.

Module Median strip noise, e− S/N ratio

number P-side N-side P-side N-side

1 435 1487 57 18

2 435 1415 56 18

3 354 559 70 45

4 331 575 75 43

finite charge resolution and a broadening of the charge deposition distribution
for thin absorbers [10,11].

The signal-to-noise ratio for all modules is summarized in table 1. The signal-
to-noise ratio is defined as the most probable value of the ratio SCl/Nmean,
where SCl is the cluster charge and Nmean is the mean noise of the cluster
strips. A relatively low S/N ratio on the N-side of the modules 1 and 2 is due
to roughly three times higher noise on the N-side of these modules.

A good matching between the cluster charge collected by P- and N-sides is
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Table 2. The measured σcorr, com-
pared to (σcorr)l.l..

essential for the hit reconstruction in the high-multiplicity events. The figure
4 shows the correlation of the P-side cluster charge SP and the N-side cluster
charge SN obtained in the single-particle events for module 4. The quality
of the charge matching can be characterized by the r.m.s. of the difference
between SP and SN:

σ2
corr =

1

n

n
∑

i=1

[(SP)i − (SN)i]
2 (4)

The lower limit of σcorr can be obtained from the detector strip noise data as:

(σ2
corr)l.l. =

1

n

n
∑

i=1

[(NCl,P)2
i + (NCl,N)2

i ] (5)

where (NCl)i is the cluster noise in the event i and the summation is done over
all the considered events. The lower limit and the actual σcorr are listed in the
table 2. The actual σcorr obtained from the data are 1.2-1.7 times bigger then
the cluster noise estimates (σcorr)l.l.. This can be attributed to the occasional
loss of a fraction of the cluster charge in the cases when the charge is shared
between two strips. If the most of the charge goes to one strip, then the fraction
of the signal collected by the neighboring strip is taken into account only if
it exceeds S/N cut, which leads to an underestimation of the cluster charge
in this case (unless all the signal really goes to one strip). Since this happens
on P- and N-sides independently, it increases the difference between P- and
N-side measured charge.
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3.3 Alignment

In order to benefit from the high intrinsic spatial resolution of the detectors,
one has to know the exact location of the sensors of the telescope. The ap-
proximate position of the sensors is known to the precision of ≈ 1 mm from
the design of the detector holders, and the small corrections that determine
the actual position can be measured by studying particle track fit residuals.
The algorithm of aligning the detectors by particle tracks described in [12]
was used here. Following this algorithm the alignment of the two inner sen-
sors with respect to the outer two was made. Three alignment parameters
for each of the two inner sensors were determined: the horizontal offset ∆u
along the longer sensor edge, the vertical offset ∆v along the shorter edge
and the rotation angle ∆γ around the beam axis Z. The method consists of
fitting a straight track to the two outer sensors and finding the position of the
inner sensors which minimizes the global fit χ2

Glob for each sensor. Very few
iterations were required to reach the convergence of all alignment parameters.
Using 14000 tracks the obtained precision of the alignment parameters was
much better than the sensor intrinsic resolution.

3.4 Spatial Resolution

The sensor intrinsic position resolution can be estimated by fitting a track
to the reconstructed hits and investigating the residuals. There exist several
methods of how to obtain it from the distributions of the residuals [13]. In
the first method, a straight track is fitted to the reference sensors and then
extrapolated to the studied sensor. Since the studied sensor is not included in
the fit, the dispersion of the fit residuals σ2

r is just a sum of the squared sensor
intrinsic spatial resolution σ2

intr and squared track fit error σ2
f , hence:

σ2
intr = σ2

r − σ2
f (6)

In the other method the studied sensor is included in the fit, and then one has
to include the correlation term which leads to:

σ2
intr = σ2

r + σ2
f (7)

In both cases one needs to know the fit error σf which is defined by the geo-
metrical arrangement of the modules along the beam axis and by the intrinsic
resolutions of the modules σintr – the values we are looking for and which
are not known beforehand. One has to make an initial assumption on the
resolutions and then solve the problem iteratively.
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We will make an attempt to use here a different method that requires no
iterations. We consider an unweighted straight line fit to all four modules
and establish the relation between the observed fit residuals and the sensor
measurement errors. From the formalism of the method of least-squares one
can obtain this relation in the linear form:

〈ε2〉 = BI · 〈r2〉. (8)

where 〈ε2〉 is the column four-element vector of the squared intrinsic resolu-
tions defined as the dispersions of the sensor measurement errors ε, 〈r2〉 is the
vector of the observed dispersions of the fit residuals and BI is the pseudoin-
verse of the 4 × 4 matrix B which depends only on the z-coordinates of the
sensors. The derivation and the caveats of the matrix inversion method are
given in the appendix of this paper.

For the spatial resolution measurements we kept the events with one and only
one hit in each sensor. The unweighted least squares fit with straight tracks
to the four hit points was done independently for x and y coordinates. The
unweighted fit minimizes the sum of squared residuals for each track:

s2
x =

4
∑

i=1

r2
i,x =

4
∑

i=1

(xm,i − xf ,i)
2 (9)

s2
y =

4
∑

i=1

r2
i,y =

4
∑

i=1

(ym,i − yf ,i)
2 (10)

where xm,i and ym,i are the x and y hit coordinates measured by i-th module;
xf ,i and yf ,i are the fitted track impact points; ri,x and ri,y are the fit resid-
uals. The variances of the fit residual distributions, which are used for the
calculation of the spatial resolutions, are sensitive to the shape of the tails of
the distributions. If a particle gets scattered by a significant angle in one of
the two inner sensors (the scattering in the outer two plays no role because
the directions of the incoming and outgoing particles are not measured), then
the straight line fit to a real kinked track would result in large residuals in all
four sensors, hence in larger values of sx and sy. A cut on sx and sy may thus
effectively remove these events from the analysis and suppress the influence of
the multiple scattering by large angles on the final results. The distribution
of sx is shown on figure 5. The effect of different scut

x on the spatial resolu-
tion calculated according to eq. (26) is demonstrated on figure 6. The cut
values scut

x and scut
y are chosen such that they remove the non-gaussian tails

of the residual distributions (especially prominent for x-residuals where the
spatial resolution is high) but practically do not affect the core (see the pulls
distribution on fig. 8). The chosen value scut

x discards ≈ 2.5% of the events.

The spatial resolution results are shown on the fig.7. In order to compare the
above described method with the more commonly used iterative method, the
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Fig. 5. The distribution of sx. The
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results of the later are also shown on the same plot. One can see that for
the position resolution along the coarse coordinate y, both methods produce
practically identical results, although the matrix inversion method does it in
one step. The results for the fine coordinate x are also rather close albeit not
identical because of the measurement error correlations caused by multiple
scattering. In the absence of multiple scattering both methods would give
the same answer. Both methods result in an average spatial resolution of
≈ 17 µm in x-direction and ≈ 800 µm in y-direction. The errorbars shown
on the picture represent the statistical errors, the systematical uncertainty
is estimated to be of the order ≈ 1 µm for x-coordinate and ≈ 30 µm for
y-coordinate due to the uncertainty of scut

x and scut
y values and the neglected

correlation in the measurement errors.
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The fit pull distributions can be used to cross-check the correctness of the
obtained result. For a particular module the pull functions px and py are de-
termined as the weighted fit residuals normalized to their standard deviations
estimated from the sensors spatial resolutions:

px =
xm − xf

√

σ2
intr − σ2

f

(11)

The fit errors σf are obtained from least squares fit formalism using error
propagation of the errors on slope and intercept. The figure 8 demonstrates
the fit pull distributions for the modules 1 and 2 obtained using the fit weights
equal to the inverse of the sensor spatial resolutions. The standard deviations
are close to unity, as expected from the equation (11).

3.5 Efficiency

The module efficiency is defined as the probability of detecting a charged par-
ticle if it passes through the sensor sensitive area. Let’s denote the i-th module
as a “test module” and all others as “reference modules”. The efficiency εi of
the module i in the telescope can be measured as a ratio of the number of
events where all four modules detected a hit over a number of events where
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Table 3
Module efficiency

Module P-side efficiency, % N-side efficiency, % Total efficiency ε, %

1 99.76 ± 0.03 99.17 ± 0.05 98.97 ± 0.09

2 99.81 ± 0.02 99.34 ± 0.05 98.34 ± 0.07

3 99.16 ± 0.05 99.61 ± 0.04 98.84 ± 0.09

4 99.71 ± 0.03 99.89 ± 0.02 99.57 ± 0.06

either only the reference modules or all four modules detected a hit:

εi '
Nall

Nref + Nall

(12)

or in other words 1 − εi is a chance that the i-th module misses a particle
hit. In order to determine εi, the tracks found using only the three reference
modules were inter- or extrapolated to the test module. In order to make
sure that the particle track really passed through the test sensor’s sensitive
area, we kept only those events where the projected impact point lied at least
5 mm away from the sensor edge in y-direction and 200 µm in x-direction.
The region around the projected impact point was searched for the hits and
the hit was accepted if it was found closer then 300 µm in x-direction and
7500 µm in y-direction from the extrapolated impact point. These cut values
were selected after studying the distribution of the residuals and were chosen
such to include also the events were the particle was deflected off the trajectory
due to multiple scattering or δ-ray production. The chance of finding a noise
cluster inside this region is negligible since the probability of having a noise
cluster per sensor side is less than 1%. The results of the efficiency calculation
with statistical errors are shown in the table 3.

It’s illustrative to plot the expected location of the missing hits in the test
module using the tracks reconstructed from the reference modules. It was
found that the missing hits are not randomly scattered across the sensor area
but are concentrated along the noisy or dead strips of the module (see fig. 9).
The disconnected strips seem not to cause a particle loss as long as these strips
are not clustered together. The particle loss is thus a direct consequence of the
module production defects. The efficiency of the module areas with nominal
strip noise and absence of bonding defects is consistent with 100%.

4 Conclusion

In this paper we have presented results from the tests, with 7 GeV/c pion
beam, of four double-sided silicon strip detectors of ALICE SSD design.
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Fig. 9. Location of the missing hits on the module 3. The trigger scintillator C
selects only the middle part of the sensor. The missing hits are located along the
noisy strips or disconnected strips clustered together.

It was demonstrated that the module design provides excellent signal to noise
ratios in the range 40-75. The higher noise level found on the N-side of the
sensors of one of the manufacturers was discussed with the manufacturer and
has been corrected before the final production. The cause of the higher noise
was a high interstrip capacitance, which has been decreased in the final sensor
design, so that the noise level on the N-side decreased practically to the noise
level of the P-side.

The good performance of the sensors and the front-end electronics results in
a high detection efficiency for minimum ionizing particles, typically 99.5% per
sensor side or 98.9% for both in coincidence.

A fast method for determination of the spatial resolution was developed. It was
shown that a measurement with four unknown detectors, without a reference
telescope, can still be analyzed assuming that the four detectors have similar
(but not necessarily exactly equal) spatial resolution. The four ALICE SSD
modules were shown to provide a resolution of 17 µm in the x-direction and
800 µm in the y-direction. Since the clustering algorithm used here exploits the
information provided by the charge sharing between neighboring strips, these
resolutions are better then the digital resolution expected for the 95 µm strip
pitch, which would already be sufficient for ALICE experiment.
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5 Appendix

Let’s consider a least squares straight line fit to the hit points in all the modules
in the telescope and establish a connection between the observed dispersion
of the fit residuals and the sensor measurement errors. The weights of all the
points of the fit are kept equal to avoid the recursiveness of the problem.
We follow the matrix formalism of the least squares method described for
example in [14]. Let’s denote z = (z1, . . . , zn)T as the coordinates of the n
sensor planes along the beam axis Z, and xm = (xm,1, . . . , xm,n)T as the hit
coordinates measured by the sensors in the particular event and projected on
the plane XZ or Y Z (see fig.1). The measurement errors ε = (ε1, . . . , εn)T are
defined as the difference between the measured hit coordinates xm and the
real particle track impact points xt:

xm = xt + ε (13)

The sensor intrinsic position resolution is defined as the r.m.s. of the measure-
ment errors: σ2

intr,i ≡ 〈ε2
i 〉.

Considering the particle track as a straight line we can rewrite eq. (13) in the
following form:

xm = Z · β + ε, (14)

where Z is a design matrix and β is a vector of coefficients :

Z =





















1 z1

1 z2

...
...

1 zn





















; β =







β0

β1







Values β0 and β1 are the track intercept and slope respectively. The effect of
multiple scattering in the sensor material makes the real particle trajectory
slightly kinked, so that the parameters β0 and β1 serve only as a straight track
approximation to the real particle trajectory. With this approximation the
effect of multiple scattering will contribute to the measurement errors. The
scattering angle distribution has a gaussian core which contains 98% of all
the events, and long non-gaussian tails extending far outside several standard
deviations. For pions with momentum of 7 GeV/c and a spacing between the
sensors of 3 cm the r.m.s. deviation of the particle track in the next sensor
plane due to multiple scattering in the previous sensor plane is about 2.5 µm,
which is a small number compared to the expected resolution of ≈ 18 µm in
the x-direction if the numbers are added in quadrature, and totally negligible
compared with the resolution of 800 µm in the y-direction. However, the non-
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gaussian tails of the distribution can not be neglected in our case. Events with
large scattering angle were excluded from the analysis, as will be explained
later in this section.

The fitted track impact points xf = (xf ,1, . . . , xf ,n)T are determined as:

xf = H · xm (15)

where
H = Z(ZTZ)−1ZT . (16)

The fit residuals r = xm − xf are given by:

r = (I − H) · xm. (17)

where I is an n × n unitary matrix. Plugging eq.(14) into eq.(17) and noting
that

(I − H) · Z = 0 (18)

one obtains the relationship between the fit residuals and the measurement
errors:

r = (I − H) · ε. (19)

The matrix (I − H) depends only on the position of the modules along Z axis
and does not depend on the data. The rank of this matrix is n− 2 since there
are only n − 2 independent residuals. Assuming that there is no correlation
between the measurement errors in different sensors:

cov(εi, εj) = 0, i 6= j, (20)

one can make a step from r and ε to their r.m.s values and obtain the linear
relationship between the dispersions of the fit residuals 〈r2

i 〉 and the squared
sensor intrinsic resolutions 〈ε2

i 〉:

〈r2〉 = B · 〈ε2〉, (21)

where matrix B is obtained by squaring the elements of (I − H):

Bij = (δij − Hij)
2. (22)

As well as H, the matrix B also depends only on the position of the modules
along Z axis. If the matrix B is nonsingular, then the system of linear equations
(21) can be solved, and one obtains, without any iterations, the vector of
squared intrinsic resolutions 〈ε2〉 using the inverse of the matrix B:

〈ε2〉 = B−1〈r2〉. (23)

It is easy to show 7 that the matrix B is nonsingular only if n > 5, which
means that n = 5 is the minimal number of sensors in the telescope, with

7 Using the fact that the rank of the matrix I − H is n − 2
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which the resolution of each of them can be unambiguously determined using
eq. (23).

In our case n = 4 and rank(B) = 3, therefore B−1 does not exist and there
is no unique solution to the equation (21) which becomes underdetermined.
Instead, if the vector 〈r2〉 belongs to the rangespace of the matrix B, which
is the case when the eq. (20) holds, there exists a family of solutions each of
which satisfies the equation (21). The family of solutions can be described as:

〈ε2〉 = 〈ε0
2〉 + α · V0 (24)

where 〈ε0
2〉 is the particular solution, V0 – the null-space of the matrix B (the

eigenvector that corresponds to the zero eigenvalue) and α is a free parameter.
If no other information is available on the sensor resolutions or their ratios,
then there is no preference in choosing a particular parameter α 8 . But if, as
is often the case, all the sensors in the telescope are similar, then a reasonable
choice would be to pick a solution which gives the closest values for all the
sensors. In the general case, to find such a solution one has to find a point on
a line in a 4-D space represented by the equation (24), which is the closest to
the skew line given by the equation:

s = n · τ, where the vector n = (1, 1, 1, 1), and τ is a free parameter. (25)

In case of a symmetric arrangement of the modules around the middle plane
of the telescope (like in our setup), this is equivalent to minimizing the norm
of the vector 〈ε2〉. This solution can be obtained by multiplying the vector
〈r2〉 by a matrix BI pseudoinverse to B:

〈ε2〉min = BI · 〈r2〉. (26)

The vector 〈ε2〉min also belongs to the family of solutions given by the eq. (24)
but has the smallest norm ‖〈ε2〉‖.

The introduction of multiple scattering creates certain correlations between
the measurement errors in different sensors and as a result eq. (21) holds only
approximately. For n > 5 the solution of this equation always exists, but for
n = 4 it can be solved only in the least-squares sense, which means finding
a solution 〈ε2〉 that minimizes the norm ‖B · 〈ε2〉 − 〈r2〉‖, or in other words,
best explains the observed dispersions of fit residuals. Such a solution is again
given by the eq. (26) and it was used in the current data analysis.

8 Of course, α can only be chosen such that the squared resolutions 〈ε2〉 remain
positive.
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[12] V.Karimäki, A.Heikkinen, T.Lampén, T.Lindén, “Sensor Alignment by Tracks”,
CHEP03, La Jolla California; arXiv:physics/0306034.
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