
HAL Id: in2p3-00118224
https://hal.in2p3.fr/in2p3-00118224

Submitted on 4 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Organization and management of ATLAS software
releases

S. Albrand, J. Collot, J. Fulachier, F. Lambert, C. Arnault, V. Garonne, A.
Schaffer, E. Nzuobontane, P. Sherwood, B. Simmons, et al.

To cite this version:
S. Albrand, J. Collot, J. Fulachier, F. Lambert, C. Arnault, et al.. Organization and management of
ATLAS software releases. 15th International Conference on Computing in High Energy and Nuclear
Physics - CHEP 06, Feb 2006, Mumbai, India. pp.426-429. �in2p3-00118224�

https://hal.in2p3.fr/in2p3-00118224
https://hal.archives-ouvertes.fr

ORGANIZATION AND MANAGEMENT OF ATLAS SOFTWARE
RELEASES

Solveig Albrand, Johann Collot, Jerome Fulachier, Fabian Lambert, LPSC, IN2P3/CNRS,
Grenoble, France. Christian Arnault, Vincent Garonne, Arthur Schaffer, LAL/IN2P3/CNRS, Paris,
France. Eric Nzuobontane, Peter Sherwood, Brinick Simmons, University College, London, UK.

Simon George, Grigori Rybkine, Royal Holloway, University of London, UK. Steve Lloyd,
Queen Mary, University of London, UK. Emil Obreshkov, Institute for Nuclear Research

and Nuclear Energy (INRNE) Bulgarian Academy of Sciences, Bulgaria. Alessandro De Salvo,
INFN - Roma1, Italy. Hans von der Schmitt, Max-Planck-Institut für Physik (Werner-Heisenberg-

Institut), München, Germany. Vasily Kabachenko, Institute for High Energy Physics (IHEP),
Protvino, Russia. Zhongliang Ren, Di Qing, Institute of Physics Academia Sinica, Taiwan.

David Quarrie, LBNL, CA, USA. Traudl Hansl-Kozanecka, University of California, Santa Cruz,
USA. Frederick Luehring, University of Indiana, USA. Alexander Undrus, BNL, Upton, NY, USA.

Edward Moyse, University of Massachusetts, Amherst, MA, USA. Saul Youssef, Boston
University, MA, USA. Steven Goldfarb, University of Michigan, USA.

Abstract
ATLAS is one of the largest collaborations ever
undertaken in the physical sciences. This paper
explains how the software infrastructure is organized to
manage collaborative code development by around
300 developers with varying degrees of expertise,
situated in 30 different countries. We will describe how
the succeeding releases of the software are built,
validated and subsequently deployed to remote sites.
Several software management tools have been used,
the majority of which are not ATLAS specific; we will
show how they have been integrated.
ATLAS offline software currently consists of about
2 MSLOC contained in 6800 C++ classes, organized in
almost 1000 packages.

INTRODUCTION
ATLAS is one of the largest collaborative efforts

ever undertaken in the physical sciences. About 2000
physicists participate, from more than 150 universities
and laboratories in more than 30 countries.

The software is correspondingly large both in size,
and also by the number of developers involved. These
considerations have lead us to put into place policies
and technical methods to make the development and
release mechanism as smooth and efficient as possible.

A release of ATLAS offline software contains
approximately 1000 code directories containing about
2 MSLOC. The code is almost exclusively in C++
although some legacy FORTRAN code remains. Job
options files for run time control are written in Python.

Currently about 300 members of the collaboration
are registered as involved in development, although of
course many of them are not engaged in this activity
full-time. However the number is expected to increase
as we move towards real data taking, as effort

previously devoted to building the detector will
become available.

On the other hand, we expect the total size of the
release to be reduced, as this is normal in the
development process as software reaches maturity.

 Since the first release of ATLAS off line software
for the Physics Technical Design Report in May 2000,
12 major releases of the software have been produced.

By 2001, it became clear that the difficulties
involved in managing software produced by a large
number of people who are widely distributed
geographically and in their majority not expert
software engineers, required the establishment of a
management structure, and a coordinated set of tools.
The ATLAS software infrastructure team was put into
place to provide the technical support necessary. This
paper explains the organization we have put in place,
the different tools we use, and how they work together.

RELEASE ORGANIZATION
These parties are involved in the release in either a

management or a technical capacity:
• The Chief Architect directs the software effort

and takes the final decisions on the software
design and the schedule for the introduction of
new features of the software or the release
structure.

• The Software Project Management Board
(SPMB) approves major policy decisions in
consensus with the Chief Architect and serves
as a forum for discussion of policy. All
interested communities, such as the sub-detector
groups, the testbeam coordination, the physics
working groups and the software sub-domains
have representatives on the SPMB.

• The Software Infrastructure Team (SIT) is the
technical group which brings together the

providers and the users of the tools used to build
the software and its distribution kit. The group
meets every two weeks to discuss coordination
issues and schedules.

• The Software Librarians are the principle users
of the build tools; they actually build the
software releases and the kits, and they oversee
the distribution.

• The Release Coordinators have a policing role.
They must validate that software submitted by
each community functions properly and meets
the design goals of each release. They can ask
for changes in the submitted code or refuse to

accept code. They decide when a release is
ready to be built. Release coordination is a
heavy responsibility, so we try to rotate this role
so that no one person holds it for longer than the
time it takes to build a major release.

• The Package Managers and Package Developers
manage and write the software that we produce.
For smaller packages these roles may be held by
the same people. Larger packages have a
hierarchical organization whereby new code
must be approved by a manger before inclusion
in the release.

Figure 1 : The software life cycle - shows the different time scales for different types of releases.

RELEASE POLICIES AND THE RELEASE
CYCLE

ATLAS uses several kinds of builds in order to make a
release. As we approach a production release it becomes
more and more difficult to insert new packages, or new
versions of packages in the software. Indeed, we have a
mechanism to lock parts of the release which prevents
such an insertion. Figure 1 shows the chronology of these
different releases, and introduces two of the tools we use;
Tag Collector [1], which is a database application which
holds the list of the package versions which make up the
release, and contains some locking functions, and
NICOS [2], which runs the nightly builds.

Every 24 hours there is a nightly build of the software.
Usually the “nightly” is an incremental build (to save
time) but once a week, it is a full build of all packages

(~20 hours). Developers can generally put code freely
into a nightly release, and it is not essential for the
configuration file to be correct. The main purpose of these
builds is to test the integration of the different packages.

Every 3-4 weeks there is a development or minor
release of the software. New code is expected to follow
the software design but developers do have considerable
freedom in what code they submit. These builds provide a
stable version to develop against, but are not rigorous
production quality releases – they are not validated for
use in physics.

Every 6 months there is a production candidate or
major release which provides the basis of the software
used in the next production. Restrictions are put on what
code can be added to the production release.

In general we are obliged to follow each production
candidate release by one or more bug fix releases that fix

problems found during testing and validation of the
production candidate release and the succeeding bug fix
releases. Very strict rules for adding code are followed.

THE DEVELOPEMENT PROCESS
We describe here the cycle of development and tool

usage which are used by ATLAS to manage software.

Submitting a new version of a package
Using CMT [3], a configuration management tool, a

developer checks out a package from the CVS repository
and works on it, building against one of the releases
which already exist. When he is satisfied, the code is
committed to CVS, and tagged. Next, if the new package
version is to be included in a release, the tag must be
entered into the Tag Collector database. The user logs on
to the Tag Collector, and is presented with a list of
releases which are currently open for tag collection. If the
build of a production release is pending, tag collection
may be locked, and it is impossible for the developer to
make any addition; he must request that the operation be
done by the release coordinator.

Building and distributing the release
The nightly build system, NICOS, and the librarian,

who uses pure CMT commands to make a release, both
obtain the list of tags of package versions to be included
in the release from the Tag Collector. The essential
difference between a nightly release build and a
numbered release build is that the Container packages
(e.g. Event, Database) are not used to determine the set of
packages and tags for the nightly releases, but the set is
taken directly from the leaf packages which contain the
source code. In contrast, developer or production releases
use the information from container packages and
consistency is enforced between the set of packages and
tags derived directly from the Tag Collector, and that
derived hierarchically by CMT from the Container
packages.

Once a release suitable for physics has been produced,
the librarian prepares the distribution kit using a suite of
shell and python scripts developed for this purpose [4].
The kit is placed on a disk cache accessible via http. Grid
site managers or individuals can use Pacman [5] to fetch
and install ATLAS software. The kit includes a validation
suite.

Automatic Documentation
Doxygen documentation is produced for every release,

and we have made considerable effort over the past year
to improve its quality. A large number of packages now
include a “mainpage” which provides an overview of the
package and its interfaces. Other documentation
initiatives are described below.

Quality Assurance and Testing
Unit and integration tests are managed by NICOS.

Regression tests are run by the Run Time Tester

(RTT) [6]. Tests are run after the completion of all
releases. We also run some other QA tools over the
release. They are described in more detail below.

SOME DETAILS OF TOOLS USED BY
ATLAS FOR RELEASE MANAGEMENT

Configuration Management
The tool ATLAS uses for configuration management is

CMT [3]. This tool supports the decomposition of the
software base into packages, or groups of packages.
Every package or package group must specify its
configuration in a textual requirements file. The
configuration defines the dependencies on other packages
(“use” statements) and the parameters needed to run tools
like “make”, Doxygen or kit building scripts. It also
describes how to make the release components such as
applications or libraries, how to use them, for example
how to find the application job options, and how to apply
management actions (build, documentation generation,
tests, installation etc.). Management actions are broadcast
through the software hierarchically following the
dependency tree.

Tag Collection
The ATLAS Tag Collector [1] is a database application

with a powerful web interface. A web service is also
provided. It provides management tools to enforce policy,
such as the ability to lock parts of the release, and tools
for release building. In particular both CMT and NICOS
use the web service interface to obtain the list of package
versions which must be built together. Tag Collector is
also able to construct the correct CMT requirements file
for a package group, and to tag package groups
automatically in the code repository.

Tag Collector was designed for ATLAS, but in a
generic way; the links to CVS and to CMT are decoupled
from the main code.

Tag Collector is part of the ATLAS metadata
framework, and as such provides required information on
releases and code packages.

Nightly Builds
The NICOS tool runs both a debug and an optimized

build for each open release every 24 hours. Each build has
a 7 day lifetime. The results are returned to NICOS for
error analysis, and any problems detected are relayed by
e-mail to the registered developer. NICOS provides a set
of detailed web pages showing the status of all releases
and also the results of the unit and integration tests run
after the build.

The tool contains automatic discovery and recovery of
build failures. It builds on reliable local disks before
copying to the developers’ release area.

Kit Building and Distribution
The packaging unit chosen for kit building follows the

CMT package granularity. The kit compressed tar ball
includes binaries, header, configuration, and data files.

 This meets both production and development use
cases. The Pacman [5]file references the packed software
and describes how it should be fetched, installed,
configured and updated. Pacman aims to maintain the
integrity, repeatability and verifiability of installed
releases at remote sites.

Testing
As mentioned above, NICOS includes a mechanism

for running both unit and integration tests. Regression
tests are managed by the Run Time Tester (RTT) [6]. This
powerful tool runs tests, which are defined by developers,
after each build is created. Jobs are constructed, and then
run under surveillance on either a batch farm, or on a Grid
element. Results are captured, and analysed, and reported
to the user via a detailed set of web pages. It is possible to
download the job result files or log files for a detailed
analysis.

Our testing tools have agreed on a common test
description language. Tests are defined within the CMT
framework, and are read by NICOS, RTT and the Kit
validation mechanism

Quality Assurance Tools
A tool named “checkreq” is run over all packages to

verify the consistency of the declared package
dependencies, and the #include instructions of the C++
code.

RuleChecker, a tool to check compliance with many of
the ATLAS C++ coding rules can be run on all or parts of
the release source code using RTT. At present this is done
on a volunteer basis.

For further information on ATLAS quality assurance
please see reference [7].

Documentation
The past year has seen an enormous effort to improve

the quality of ATLAS documentation. Building Doxygen
documentation is done for every release of ATLAS
software.

There has been a total remodelling of the ATLAS
computing pages, with effort to bring up to date the
contents, and to improve and unify the format [8]. The
pages follow latest recommended web standards,
separating content and style by using style sheets.

Another very popular initiative has been the ATLAS
workbook [9]. This is a set of WIKI pages updated for
each production release, which is a beginner’s guide to
the software. It provides information on everything from
how to obtain an ATLAS account, to how to run physics
jobs on the grid. A PDF version of the workbook can be
generated.

RECENT IMPROVEMENTS AND
FUTURE PLANS

The ATLAS software release is large. A monolithic
build currently takes ~20 hrs. To alleviate matters we
have divided the software into “projects”. A project is a

group of packages which can have its own independent
development timeline. Higher level projects can develop
against stable versions of lower level ones (closer to the
core software). The division of the release into projects
was introduced in January 2006; but it is not yet finished.
It has implied modification of all tools.

A new kit building scripts suite was developed to
construct the distribution kit for each project. Packaging
with the granularity of CMT projects, the suite has
reduced kit-building time significantly. The project kit is
sub-divided into platform-dependent (optimized, debug),
platform-independent, source and documentation parts.
This permits a switch to using the distribution kit for
CERN installations as well as remote sites.

We expect to see an increasing emphasis on code
testing and validation by increasing the use of the RTT,
extending its use to grid nodes.

Coding Rules will be verified by a more strict
application of the RuleChecker tool.

Finally, following a detailed evaluation of the
“Subversion” repository management tool, we will decide
over the next few months if what we might gain by
replacing CVS is greater than the likely perturbation of
release production.

CONCLUSION
ATLAS has developed a suite of tools for code release

that works well with our base of about 300 code
developers spread out over the world.

The suite, combined with our management structure,
allows us the flexibility to respond to the inevitable crises
in building releases without losing control of the release
process.

Most of this suite has been developed and integrated
since the advent of the Software Infrastructure Team
(SIT).

The SIT has taken the critical central role in integrating
the tools and using them to make over 50 Atlas offline
software releases. The value of having this dedicated team
leading the software releases can not be overstated.

REFERENCES
[1] https://atlastagcollector.in2p3.fr
[2] http://www.usatlas.bnl.gov/

computing/software/nicos/
[3] http://www.cmtsite.org/
[4] http://atlas-sw.cern.ch/cgi-bin/viewcvs-

atlas.cgi/offline/Deployment/
[5] http://physics.bu.edu/pacman/
[6] http://www.hep.ucl.ac.uk/atlas/AtlasTesting/
[7] http://cern.ch/atlas-computing/projects/qa/qa.php
[8] http://cern.ch/atlas-computing/computing.php
[9] https://twiki.cern.ch/twiki/bin/view/

Atlas/WorkBook

https://atlastagcollector.in2p3.fr/
http://www.usatlas.bnl.gov/computing/software/nicos/
http://www.usatlas.bnl.gov/computing/software/nicos/
http://www.cmtsite.org/
http://physics.bu.edu/pacman/
http://atlas-computing.web.cern.ch/atlas-computing/computing.php

	INTRODUCTION
	RELEASE ORGANIZATION
	RELEASE POLICIES AND THE RELEASE CYCLE
	THE DEVELOPEMENT PROCESS
	Submitting a new version of a package
	Building and distributing the release
	Automatic Documentation
	Quality Assurance and Testing

	SOME DETAILS OF TOOLS USED BY ATLAS FOR RELEASE MANAGEMENT
	Configuration Management
	Tag Collection
	Nightly Builds
	Kit Building and Distribution
	Testing
	Quality Assurance Tools
	Documentation

	RECENT IMPROVEMENTS AND FUTURE PLANS
	CONCLUSION
	REFERENCES

