CKM Fits: What the Data Say (Focused on B Physics)
S. T’Jampens

To cite this version:

HAL Id: in2p3-00123996
http://hal.in2p3.fr/in2p3-00123996
Submitted on 11 Jan 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CKM Fits: What the Data Say
(focused on B-Physics)

Stéphane T’JAMPENS
LAPP (CNRS/IN2P3 & Université de Savoie)
Outlines:

- CKM phase invariance and unitarity
- Statistical issues
- CKM metrology
 - Inputs
 - Tree decays: $|V_{ub}|, |V_{cb}|$
 - Loop decays: $\Delta m_d, \Delta m_s, \epsilon_K$
 - UT angles: α, β, γ
 - The global CKM fit
- What about New Physics?
- Conclusion

Charm is interesting in several special areas, but I will concentrate on b’s
The Unitary Wolfenstein Parameterization

The standard parameterization uses Euler angles and one CPV phase \rightarrow unitary!

$$ V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_3 e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} $$

Now, define $s_{12} \equiv \lambda$ $s_{23} \equiv A\lambda^2$ $s_{13}e^{-i\delta} \equiv A\lambda^3(\rho - i\eta)$

And insert into $V \rightarrow V$ is still unitary! With this one finds (to all orders in λ):

$$ \bar{\rho} + i\bar{\eta} = \frac{\sqrt{1 - A^2\lambda^4(\bar{\rho} + i\bar{\eta})}}{\sqrt{1 - \lambda^2[1 - A^2\lambda^4(\bar{\rho} + i\bar{\eta})]}} $$

where:

$$ \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} $$

$$ \lambda^2 \equiv \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2} \quad A^2\lambda^4 \equiv \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2} $$

Physically meaningful quantities are phase-convention invariant

Four unknowns [unitary-exact and phase-convention invariant]: $A, \lambda, \bar{\rho}, \bar{\eta}$
The CKM Matrix: Four Unknowns

Measurement of Wolfenstein parameters:

- λ from $|V_{ud}|$ (nuclear transitions) and $|V_{us}|$ (semileptonic K decays)
 - combined precision: 0.5%

- A from $|V_{cb}|$ (inclusive and exclusive semileptonic B decays)
 - combined precision: 2%

- $\bar{\rho}, \bar{\eta}$ from (mainly) CKM angle measurements:
 - combined precision: 20\% (ρ), 7\% (η)
Predictive Nature of KM Mechanism

All measurements must agree

Pre B-Factory:

Can the KM mechanism describe flavor dynamics of many constraints from vastly different scales?

This is what matters and not the measurement of the CKM phase’s value \textit{per se}
The (rescaled) Unitarity Triangle: The B_d System

Convenient method to illustrate (dis-)agreement of observables with CKM predictions

\[\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0 \]

phase invariant: $\bar{\rho} + i\bar{\eta}$

"There is no such thing as α/ϕ_2"

\[[\alpha = \pi - (\beta + \gamma)] \]

$B \rightarrow D^{(*)}K^{(*)}$

$B \rightarrow D_{K_S^0\pi^+\pi^-}K^{(*)}$

$B^0 \rightarrow DK^0_S$, ...

$B^0 \rightarrow D^+\pi(\rho)$

$B^0 \leftrightarrow \bar{B}^0 : \Delta m_d$

$B \rightarrow \rho(\omega)\gamma / B \rightarrow K^{(*)}\gamma$

$B^0 \rightarrow J/\psi K^0_S$, ...

$B^0 \rightarrow \phi K^0_S$, ...

$B \rightarrow u\ell\nu$

$B \rightarrow c\ell\nu$

$b \rightarrow c\bar{c}s$

$b \rightarrow s\bar{s}s$
The Unitarity Triangle: The B_s System (hadron machines)

(sb) triangle ("B_s triangle"):

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

$O(\lambda^4) + O(\lambda^2) + O(\lambda^2) = 0$

⇒ squashed triangle

$$\chi = \beta_s = \arg \left[-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*} \right]$$

Attention: sign

(ut) triangle:

$$V_{td}V_{ud}^* + V_{ts}V_{us}^* + V_{tb}V_{ub}^* = 0$$

$O(\lambda^3) + O(\lambda^3) + O(\lambda^3) = 0$

⇒ non-squashed triangle

$B_s^0 \leftrightarrow \bar{B}_s^0 : \Delta m_s / \Delta m_d$

$B_s^0 \rightarrow \mu^+ \mu^-$ (BR for $B_s^0 \sim 1 \times 10^{-10}$)

$B_s^0 \rightarrow D_s K$

$B_s^0 \rightarrow K^+ K^-$

$B_s^0 \rightarrow J / \psi K_s^0$

$B_s^0 \rightarrow D_s^+ D_s^-$, ...

$B_s^0 \rightarrow \bar{B}_s^0$

$B_s^0 \rightarrow J / \psi \phi, ...$

$b \rightarrow c\bar{c}s$

$b \rightarrow s\bar{s}s$
Probing short distance (quarks) but confined in hadrons (what we observe)

➔ QCD effects must be under control (various tools: HQET, SCET, QCDF, LQCD,…)
➔ “Theoretical uncertainties” have to be controlled quantitatively in order to test the Standard Model. There is however no systematic method to do that.
Digression: Statistics
Frequentist: probability about the data (randomness of measurements), given the model

\[P(\text{data}|\text{model}) \]

Hypothesis testing: given a model, assess the consistency of the data with a particular parameter value \(\Rightarrow \) 1-CL curve (by varying the parameter value)

Bayesian: probability about the model (degree of belief), given the data

\[P(\text{model}|\text{data}) \times \text{Likelihood(}\text{data, model}\text{)} \]

Although the graphical displays appear similar: the meaning of the “Confidence level” is not the same. It is especially important to understand the difference in a time where one seeks deviation of the SM.
The Bayesian approach in physical science fails in the sense that nothing guarantees that my uncertainty assessment is any good for you - I'm just expressing an opinion (degree of belief). To convince you that it's a good uncertainty assessment, I need to show that the statistical model I created makes good predictions in situations where we know what the truth is, and the process of calibrating predictions against reality is inherently frequentist."

How to read a Posterior PDF?
→ updated belief (after seeing the data) of the plausible values of the parameter
♭ it's a bet on a proposition to which there is no scientific answer

My talk is about “What the Data say”, thus I will stick to the frequentist approach
Metrology: Inputs to the Global CKM Fit

I) Direct Measurement: magnitude
 $|V_{ud}|$ and $|V_{us}|$ [not discussed here]
 $|V_{ub}|$ and $|V_{cb}|$
 $B^+ \rightarrow \tau^+\nu$

 CPV in K^0 mixing [not discussed here]
 B_d and B_s mixing

II) Angle Measurements:
 $\sin 2\beta$
 $\alpha: (B \rightarrow \pi\pi, \rho\rho, \rho\pi)$
 $\gamma: \text{ADS, GLW, Dalitz (GGSZ)}$
$|V_{cb}|$ and $|V_{ub}|$
$|V_{cb}|$ (→ A) and $|V_{ub}|$

For $|V_{cb}|$ and $|V_{ub}|$ exist exclusive and inclusive semileptonic approaches (complementary)

<table>
<thead>
<tr>
<th>exclusive</th>
<th>inclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \rightarrow u$</td>
<td>$b \rightarrow c$</td>
</tr>
<tr>
<td>$B \rightarrow \pi \ell \nu$</td>
<td>$B \rightarrow X_u \ell \nu$</td>
</tr>
<tr>
<td>$B \rightarrow D^* \ell \nu$</td>
<td>$B \rightarrow X_c \ell \nu$</td>
</tr>
</tbody>
</table>

Complication for charmless decays:

$$\frac{\Gamma(b \rightarrow ul\nu)}{\Gamma(b \rightarrow cl\nu)} \approx \left| \frac{|V_{ub}|^2}{|V_{cb}|^2} \right| \approx \frac{1}{50}$$

- need to apply kinematic cuts to suppress $b \rightarrow c\ell\nu$ background
- measurements of partial branching fractions in restricted phase space regions
- theoretical uncertainties more difficult to evaluate

OPE parameters measured from data (spectra and moments of $b \rightarrow s\gamma$ and $b \rightarrow c\ell\nu$ distributions)

$|V_{ub}|$ (→ $\rho^2 + \eta^2$) is crucial for the SM prediction of $\sin(2\beta)$

$|V_{cb}|$ (→ A) is important in the kaon system (ϵ_K, $BR(K\rightarrow\pi\nu\nu)$, …)
|V_{cb}| and |V_{ub}|

|V_{cb}|: Precision measurement: 1.7% !

|V_{cb}\text{incl.}[10^{-3}] = 41.70 \pm 0.70 |V_{ub}|\text{incl.}[10^{-3}] = 39.7 \pm 2.0

w/ FF=0.91\pm0.04

|V_{cb}|\text{excl.}[10^{-3}] = 39.7 \pm 2.0

|V_{ub}|:

SF params. from b\to c/\nu, OPE from BLNP
BR precision \sim 8\%, |V_{ub}| excl. \sim 16\%: theory dominated
HFAG with our error budget

our average

|V_{ub}| [10^{-3}] = 4.10 \pm 0.09_{\text{exp}} \pm 0.39_{\text{theo}}
$B^+ \rightarrow \tau^+ \nu_\tau$

- Helicity-suppressed annihilation decay sensitive to $f_B \times |V_{ub}|$
- Powerful together with Δm_d: removes f_B (Lattice QCD) dependence
- Sensitive to charged Higgs replacing the W propagator

$$\text{BR}(B^+ \rightarrow \tau^+ \nu_\tau) = \frac{G_F^2 m_{B^+} m_{\tau^+}}{8\pi} m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_{B^+}^2}\right)^2 f_B^2 |V_{ub}|^2$$

ICHEP06

$\text{BR}[10^{-4}]=0.88^{+0.68}_{-0.67} \text{ (stat)} \pm 0.11 \text{ (syst)}$

(320m)

$\text{BR}[10^{-4}]=1.79^{+0.56}_{-0.49} \text{ (stat)}^{+0.39}_{-0.46} \text{ (syst)}$

(447m)

- Prediction from global CKM fit:

$$\text{BF}(B^+ \rightarrow \tau^+ \nu_\tau) = (0.87^{+0.13}_{-0.20}) \times 10^{-4}$$
Δm_d and Δm_s
Δm_d and Δm_s: constraints in the (ρ-η) plane

\[
\Delta m_s = \frac{G_F^2}{6\pi^2} m_{B_d} m_W^2 \eta_B S_0(x_t) f_{B_d}^2 B_d |V_{ts} V_{tb}^*|^2
\]

Very weak dependence on $\bar{\rho}$ and $\bar{\eta}$

The point is:

\[
f_{B_s}^2 B_s = \frac{f_{B_d}^2 B_d}{f_{B_s}^2 B_d} f_{B_d}^2 B_d = \xi^2 f_{B_d}^2 B_d
\]

ξ: SU(3)-breaking corrections

Measurement of Δm_s reduces the uncertainties on $f_{B_d}^2 B_d$ since ξ is better known from Lattice QCD

$\sigma_{rel}(\frac{f_{B_d}^2}{f_{B_s}^2} B_d) = 36\% \quad \rightarrow \quad \sigma_{rel}(\frac{\xi^2}{f_{B_s}^2 B_s / f_{B_d}^2 B_d}) = 10\%$

→ Leads to improvement of the constraint from Δm_d measurement on $|V_{td} V_{tb}^*|^2$

\[
\Delta m_d = \frac{G_F^2}{6\pi^2} m_{B_d} m_W^2 \eta_B S_0(x_t) f_{B_d}^2 B_d |V_{td} V_{tb}^*|^2 \propto A^2 \lambda^6 \left[(1 - \bar{\rho})^2 + \bar{\eta}^2 \right]
\]
\[\Delta m_s : 17.77 \pm 0.10 \text{(stat.)} \pm 0.07 \text{ (syst.) ps}^{-1} \]

The signal has a significance of 5.4\(\sigma \).
First strong indication that B_s-B_s mixing is probably SM-like.
angle β
sin2β

- “The” *raison d’être* of the B factories:
 \[\sin(2β) \equiv \sin(2φ_1) \]

- Conflict with \(\sin^2β_{\text{eff}} \) from s-penguin modes? (New Physics (NP)?)

NP can contribute differently among the various s-penguin modes (Naïve average: 0.52 ± 0.05).

NB: a disagreement would falsify the SM. The interference NP/SM amplitudes introduces hadronic uncertainties

⇒ Cannot determine the NP parameters cleanly
angle α
angle α

Tree: dominant

$B^0 \left\{ \begin{array}{c} b \\ \bar{d} \end{array} \right\} \pi^- \left\{ \begin{array}{c} \bar{u} \\ d \end{array} \right\}$

$\propto V_{ub} V_{ud}^*$

$\propto \lambda^3$

Penguin: competitive?

$B^0 \left\{ \begin{array}{c} b \\ \bar{d} \end{array} \right\} \pi^- \left\{ \begin{array}{c} \bar{u} \\ d \end{array} \right\}$

$\propto V_{tb} V_{td}^*$

$\propto \lambda^3$

Time-dependent CP observable:

$$A_{h^+h^-}(t) = S_{h^+h^-} \cdot \sin(\Delta m_d t) - C_{h^+h^-} \cdot \cos(\Delta m_d t)$$

$$= \sqrt{1 - C_{h^+h^-}^2} \cdot \sin(2\alpha_{\text{eff}}) \cdot \sin(\Delta m_d t) - C_{h^+h^-} \cdot \cos(\Delta m_d t)$$

Time-dependent CP analysis of $B^0 \rightarrow \pi^+\pi^-$ alone determines α_{eff}: but, we need α!

Isospin analysis

(α can be resolved up to an 8-fold ambiguity within $[0,\pi]$)
Isospin Analysis: $B \rightarrow \pi \pi$

<table>
<thead>
<tr>
<th></th>
<th>BABAR (347m)</th>
<th>Belle (532m)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\pi\pi}$</td>
<td>$-0.53 \pm 0.14 \pm 0.02$</td>
<td>$-0.61 \pm 0.10 \pm 0.04$</td>
<td>-0.58 ± 0.09</td>
</tr>
<tr>
<td>$C_{\pi\pi}$</td>
<td>$-0.16 \pm 0.11 \pm 0.03$</td>
<td>$-0.55 \pm 0.08 \pm 0.05$</td>
<td>-0.39 ± 0.07</td>
</tr>
</tbody>
</table>

"agreement": 2.6σ

BABAR & Belle

Graph:
- $\pi^+ \pi^- S_{CP}$ vs C_{CP}
- 1-CL vs α (deg)
- Contours give $-\Delta\chi^2 = 1$, corresponding to 68.3% CL for 2 dof
Isospin Analysis: $B \rightarrow \rho \rho$

<table>
<thead>
<tr>
<th></th>
<th>BABAR (347m)</th>
<th>Belle (275m)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\rho\rho}$</td>
<td>$-0.19 \pm 0.21^{+0.05}_{-0.07}$</td>
<td>$0.08 \pm 0.41 \pm 0.09$</td>
<td>-0.13 ± 0.19</td>
</tr>
<tr>
<td>$C_{\rho\rho}$</td>
<td>$-0.07 \pm 0.15 \pm 0.06$</td>
<td>$0.0 \pm 0.3 \pm 0.09$</td>
<td>-0.06 ± 0.14</td>
</tr>
</tbody>
</table>

BABAR & Belle

Isospin analysis:

$\alpha = [94 \pm 21]^\circ$
Isospin Analysis: angle $\alpha_{\text{eff}} [B \to \pi\pi/\rho\rho]$

- Isospin analysis $B \to \pi\pi$:

 $|\alpha - \alpha_{\text{eff}}| < 32.1^\circ$ (95% CL)

- Isospin analysis $B \to \rho\rho$:

 $|\alpha - \alpha_{\text{eff}}| < 22.4^\circ$ (95% CL)
The $B \to \rho \pi$ System

Dominant mode $\rho^+ \pi^-$ is not a CP eigenstate

Amplitude interference in Dalitz plot

Aleksan et al, NP B361, 141 (1991)

Snyder-Quinn, PRD 48, 2139 (1993)

simultaneous fit of α and strong phases

Measure 26 (27) bilinear Form Factor coefficients

correlated χ^2 fit to determine physics quantities

Lipkin et al., PRD 44, 1454 (1991)
Isospin Analysis: angle $\alpha [B \rightarrow \pi\pi / \rho\pi / \rho\rho]$

$\alpha_{B\text{-Factories}} = [93^{+11}_{-9}]^\circ$

$\alpha_{\text{Global Fit}} = [100^{+5}_{-7}]^\circ$

$B \rightarrow \rho\rho$: at very large statistics, systematics and model-dependence will become an issue

$B \rightarrow \rho\pi$ Dalitz analysis: model-dependence is an issue!
angle γ
angle γ [next UT input that is not theory limited]

$b \to c\bar{u}s, u\bar{c}s$

Tree: dominant
\[\propto V_{cb}V_{us}^* \propto \lambda^3 \]

Tree: color-suppressed
\[\propto V_{ub}V_{cs}^* \propto \lambda^3 \sqrt{\rho^2 + \eta^2} \]

Relative CKM phase: γ

Several variants:

- **GLW**: D^0 decays into CP eigenstate
- **ADS**: D^0 decays to $K^-\pi^+$ (favored) and $K^+\pi^-$ (suppressed)
- **GGSZ**: D^0 decays to $K_S\pi^+\pi^-$ (interference in Dalitz plot)

All methods fit simultaneously: γ, r_B and δ (different r_B and δ)

\[\{r_B, r_B^*\} \; \text{how small?} \]

σ_γ depends significantly on the value of r_B
Constraint on γ

$$r_B(DK) = 0.10^{+0.03}_{-0.04}$$
$$r_B(D^*K) = 0.10^{+0.04}_{-0.06}$$
$$r_B(DK^*) = 0.11^{+0.09}_{-0.11}$$

$$\gamma_{B-\text{Factories}} = [60^{+38}_{-24}]^\circ$$
$$\gamma_{\text{Global Fit}} = [59^{+9}_{-4}]^\circ$$
Putting it all together: the global CKM fit

Inputs:

- $|V_{ub}/V_{cb}|$
- Δm_d
- Δm_s
- $B \to \tau\nu$
- $|\varepsilon_K|$
- $\sin 2\beta$
- α
- γ
The global CKM fit: Testing the CKM Paradigm

CP Conserving

CP-violating observables imply CP violation!

Angles (no theory)

No angles (with theory)
The global CKM fit: Testing the CKM Paradigm (cont.)

Tree (NP-Free) “Reference UT”

[No NP in \(\Delta l=3/2 \) b\(\rightarrow \)d EW penguin amplitude
Use \(\alpha \) with \(\beta \) (charmonium) to cancel NP amplitude]

Conceptual figure showing the CKM mechanism as the dominant source of CP violation.

The global fit is not the whole story: several \(\Delta F=1 \) rare decays are not yet measured ➔ Sensitive to NP
The global CKM fit: selected predictions

Wolfenstein parameters:

\[
A = 0.806^{+0.014}_{-0.014} \quad \lambda = 0.2272^{+0.0010}_{-0.0010} \quad \bar{\rho} = 0.195^{+0.022}_{-0.055} \quad \bar{\eta} = 0.326^{+0.027}_{-0.015}
\]

Jarlskog invariant:

\[J = (2.91^{+0.25}_{-0.14}) \times 10^{-5}\]

UT Angles:

\[
\alpha = (99.0^{+4.0}_{-9.4})^\circ \quad \beta = (22.03^{+0.72}_{-0.62})^\circ \quad \gamma = (59.0^{+9.2}_{-3.7})^\circ \quad \Sigma_{\text{meas.}} = (175^{+40}_{-27})^\circ
\]

UT sides:

\[R_u = 0.380^{+0.011}_{-0.009} \quad R_t = 0.868^{+0.060}_{-0.025}\]

B-B mixing:

\[\Delta m_s = (18.9^{+5.7}_{-2.8}) \text{ ps}^{-1} \quad \text{(CKM Fit)} \quad \Delta m_s : 17.77 \pm 0.1 \text{(stat.)} \pm 0.07 \text{ (syst.) ps}^{-1} \quad \text{(direct,CDF)}\]

B\rightarrow\tau\nu

\[\text{BF}(B^+ \rightarrow \tau^+ \nu_{\tau}) = (0.87^{+0.13}_{-0.20}) \times 10^{-4} \quad \text{(CKM Fit)} \quad (1.45^{+0.46}_{-0.43}) \times 10^{-4} \quad \text{(direct,WA)}^{36}\]
New Physics?
New Physics in B_d-\bar{B}_d Mixing?

$$r_d^2 \exp(2i\theta_d) = \frac{\langle B^0|H_{\text{full}}^{\text{eff}}|\bar{B}^0 \rangle}{\langle B^0|H_{\text{SM}}^{\text{eff}}|\bar{B}^0 \rangle}$$

No significant modification of the B-\bar{B} mixing amplitude.
Hypothesis: NP in loop processes only (negligible for tree processes)

Mass difference: $\Delta m_s = (\Delta m_s)^{SM} r_s^2$

Width difference: $\Delta \Gamma_s^{CP} = (\Delta \Gamma_s)^{SM} \cos^2(2\chi - 2\theta_s)$

Semileptonic asymmetry:
$A_{SL}^s = -\text{Re}(\Gamma_{12}/M_{12})^{SM} \sin(2\theta_s)/r_s^2$

$S\psi \phi = \sin(2\chi - 2\theta_s)$

UT of B_d system: non-degenerated
$\Rightarrow (h_d, \sigma_d)$ strongly correlated to the determination of (ρ, η)

UT of B_s system: highly degenerated
$\Rightarrow (h_s, \sigma_s)$ almost independent of (ρ, η)

B_s mixing phase very small in SM: $\chi = -1.02 \pm 0.06$ (deg)
\Rightarrow Bs mixing: very sensitive probe to NP

NP wrt to SM:
- reduces $\Delta \Gamma_s$
- enhances Δm_s
NP in B_s System

$\Delta m_s, \Delta \Gamma_s$ and $A_{s,SL}$

$\sigma(\Delta m_s) = 0.035$, $\sigma(\sin(2\chi)) = 0.1$

First constraint for NP in the B_s sector
Still plenty of room for NP
Large theoretical uncertainties: LQCD

$h_s \sim\leq 3$ ($h_d \sim\leq 0.3$, $h_K \sim\leq 0.6$)
\(\beta_s = (-0.56^{+0.44}_{-0.41}) \) (stat+syst) [rad]

Time-dependent angular distribution of untagged decays \(B_s \to J/\psi\phi \) + charge asymmetry

- Prediction from global CKM fit:
 \(\beta_s = (-0.0175^{+0.0015}_{-0.0008}) \) [rad]

- Precision prediction
- Sensitive test to NP
NP in $b \rightarrow s$ transitions?
NP related solely to the third generations?
Conclusion

• CKM mechanism: success in describing flavor dynamics of many constraints from vastly different scales.

• Improvement of Lattice QCD is very desirable [Charm/tau factory will help]

• B_s: an independent chapter in Nature’s book on fundamental dynamics
 • there is no reason why NP should have the same flavor structure as in the SM
 • B_s transitions can be harnessed as powerful probes for NP (χ: “NP model killer”)

• With the increase of statistics, lots of assumptions will be needed to be reconsidered [e.g., extraction of α from $B \rightarrow 3\pi, 4\pi$, etc., P_{EW}, …]

• Before claiming NP discovery, be sure that everything is “under control” (assumptions, theoretical uncertainties, etc.)
 ➔ null tests of the SM

• There are still plenty of measurements yet to be done
BACKUP SLIDES
Radiative Penguin Decays: $\text{BR}(B \rightarrow \rho \gamma)/\text{BR}(B \rightarrow K^* \gamma)$

$B \rightarrow \rho \gamma \ (\propto |V_{td}|^2)$ & $B \rightarrow K^* \gamma \ (\propto |V_{ts}|^2)$ sensitive to New Physics

![Diagram of loop and annihilation diagrams]

Additional amplitude contribution to charged modes => less reliable

$$\frac{BF(B^0 \rightarrow \rho^0 \gamma)}{BF(B^0 \rightarrow K^{*0} \gamma)} = 1.023 \frac{1}{2} \left| \frac{V_{td}}{V_{ts}} \right|^2 \xi^{-2} (1 + \Delta)$$

<table>
<thead>
<tr>
<th>BABAR (347m)</th>
<th>Belle (386m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^0 \gamma$</td>
<td>$0.77^{+0.21}_{-0.19} \pm 0.07$</td>
</tr>
<tr>
<td>$\rho^+ \gamma$</td>
<td>$1.06^{+0.35}_{-0.31} \pm 0.09$</td>
</tr>
</tbody>
</table>
FLAVOR STRUCTURE

<table>
<thead>
<tr>
<th></th>
<th>$b \to s$</th>
<th>$b \to d$</th>
<th>$s \to d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta F=2$ box</td>
<td>ΔM_{B_s}, $A_{CP}(B_s \to \psi(\phi))$</td>
<td>ΔM_{B_d}, $A_{CP}(B_d \to \psi K)$</td>
<td>ΔM_K, ϵ_K</td>
</tr>
</tbody>
</table>
| $\Delta F=1$
4–quark box | $B_d \to \phi K$, $B_d \to K \pi$, ... | $B_d \to \pi \pi$, $B_d \to \rho \pi$, ... | ϵ'/ϵ, $K \to 3\pi$, ... |
| gluon penguin | $B_d \to X_s \gamma$, $B_d \to \phi K$, $B_d \to K \pi$, ... | $B_d \to X_d \gamma$, $B_d \to \pi \pi$, ... | ϵ'/ϵ, $K_L \to \pi^0 \ell \ell$, ... |
| γ penguin | $B_d \to X_s \ell \ell$, $B_d \to X_s \gamma$ | $B_d \to X_d \ell \ell$, $B_d \to X_d \gamma$ | ϵ'/ϵ, $K_L \to \pi^0 \ell \ell$, ... |
| Z^0 penguin | $B_d \to X_s \ell \ell$, $B_s \to \mu \mu$ | $B_d \to X_d \ell \ell$, $B_d \to \mu \mu$ | ϵ'/ϵ, $K_L \to \pi^0 \ell \ell$, $K \to \pi \nu \nu$, $K \to \mu \mu$, ... |
| H^0 penguin | $B_s \to \mu \mu$ | $B_d \to \mu \mu$ | $K_{L,S} \to \mu \mu$ |

G. Isidori – Beauty ‘03
Bayes at work

Zero events seen

\[P(n; \lambda) = e^{-\lambda} \frac{\lambda^n}{n!} \]

Posterior \(P(\lambda) \)

Prior: uniform

\[\int_{0}^{3} P(\lambda) \, d\lambda = 0.95 \]

Same as Frequentist limit - Happy coincidence
Bayes at work again

Is that uniform prior really credible?

Posterior $P(\lambda)$

$P(0 \text{ events}|\lambda)$

Prior: uniform in $\ln \lambda$

Upper limit totally different!

$\int_{0}^{3} P(\lambda) \, d\lambda \gg 0.95$
Bayes: the bad news

• The prior affects the posterior. It is your choice. That makes the measurement subjective. This is BAD. (We’re physicists, dammit!)

• A Uniform Prior does not get you out of this.

• Beware snake-oil merchants in the physics community who will sell you Bayesian statistics (new – cool – easy – intuitive) and don’t bother about robustness.
Hypersphere:

One knows nothing about the individual Cartesian coordinates x, y, z…

What do we known about the **radius** $r = \sqrt{x^2 + y^2 + \ldots}$?

One has achieved the remarkable feat of learning something about the radius of the hypersphere, whereas one knew nothing about the Cartesian coordinates and without making any experiment.

6D space