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A new model for intensity calculation in electron guns

O. Doyen, JM. De Conto

Laboratoire de Physique Subatomique et de Cosmologie — CNRS — IN2P3 — INPG — Université Joseph
Fourier ; 53 avenue des Martyrs 38026 GRENOBLE, France.

JP. Garnier, M. Lefort, N. Richard

Thomson Genlis SA ; avenue du Général de Gaulle 21110 GENLIS, France.

The calculation of the current in an electron gun structure is one of the main investigations involved in the
electron gun physics understanding. In particular, various simulation codes exist but often present some
important divergences with the experiment. Moreover, those differences cannot be reduced because of the lack
of physical information in them. We present a simple physical three dimensional model, valid for all kinds of
gun geometries. This model presents a better precision than all the other simulation codes and models
encountered, and allows the real understanding of the electron gun physics. It is based only on the calculation of
the Laplace electric field at the cathode, the use of the classical Child-Langmuir’s current density, and a
geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely
described with only a few physical parameters. Indeed, we have showed that only the shape of the electric
field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly

the electron gun current generation.

I. INTRODUCTION

The design of electron guns is nowadays an advanced field
for which, more especially, various simulation codes exist.
However, progresses are still necessary in order, for example in
the CRT domain, to improve the performances of small depth
and great angle tubes. The systematic use of codes can then
appear to be limited (design time too important, losses in the
understanding of the most relevant physical behaviors). We
have started (collaboration CNRS-Thomson Genlis SA) a study
program that aim at obtaining a precise and simple theoretical
model able to make the most relevant parameters appear,
contrary to the simulation codes that sometimes seem like
“black boxes”. More particularly, the knowledge of the current
generation is a compulsory step in the whole electron gun
physics understanding.

In principle, the calculation of the current requires the
solution of Poisson’s equations, which are non-linear, and can
only be obtained numerically, by creating simulation codes.'®
However, as exposed before, this generally involves
complicated procedures. Moreover, the divergences with the
experiment are often too important, and cannot be corrected
because of the absence of physical models, especially for
complex gun geometries. In order to obtain a better
understanding of the current characteristics, for instance, its
dependence on various factors such as applied voltages and gun
geometry, it is preferable to use some simple approximate
formulas. Various authors investigated on this kind of models.”
17 Nevertheless, most of them are built on empirical statements
(for example, Hasker uses a real gun as reference in his
calculations and ad hoc formulas).!*!* Furthermore, all of these
studies are valid only for simple rotationally symmetrical
electron guns (succession of two circular hole-drilled
electrodes). As a result, guns made of complex holes structures
cannot be tackled. And finally, even in those simple cases, the
precision obtained is not very satisfying: it can be acceptable on
a limited range of currents (10% of accuracy between 0.5 and
5mA for a symmetrical triode),” but it’s never satisfying on the
whole intensity-voltage characteristic curve. In particular, for
high intensities, an important domain to test the life time of a
cathode, the results obtained in those studies (and in the
simulation codes as well), are far from the experiment.

We present here a new, simple, and accurate physical model
of current generation in electron guns, which describes with a
very high precision the whole intensity-voltage characteristics
(called “drive curve™), including high intensities, for all kind of
symmetrical and asymmetrical gun geometries. The accuracy
obtained is far better than the one encountered in the other
studies and simulation codes. The main important physical
parameters at stake are: the electric field on the cathode without
beam, therefore without space charge effects, (and more
particularly its emissive surface, and electric field value at the
cathode centre), the use of the classical one dimension Child-
Langmuir’s law for calculating the current density,'® and a
distance D of an equivalent infinite planar diode gap.

We first present a full analytical model for a simple case, a
rotationally symmetrical gun with identical-holes electrodes, in
order to understand the main physical tools at stake. The
potential in this structure, and then the electric field on the
cathode, are calculated analytically thanks to Bessel’s functions.
The classical Child-Langmuir’s law being given for an infinite
planar diode, we will show that a correction is required to take
into account the finite radius of the beam. We will then give
two possibilities for the definition of the equivalent diode
distance, the best of them needing an experimental reference.
We will finally show that this model presents an accuracy
greater than the current simulation codes, by comparing with
the experiment and with one simulation program. This code is
evoked in the references.?

Then, this model being validated in a simple case, we will
present its generalization into a numerical model valid for all
kinds of gun geometries. In particular, the main differences with
the previous model appear in the electric field calculation, and
the adaptation of the correction of Child-Langmuir’s law.

To sum up, we will show that the beam creation, in terms of
current density, is based on very simple laws, and is ruled only
by the electric field on the cathode (without beam) and Child-
Langmuir’s law adapted to a finite beam dimension.

Il. ELECTRON GUN STRUCTURE AND NOTATIONS
An electron gun is made of a cathode (noted K) followed by
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several hole-drilled electrodes (G1, G2 and G3), called grids,
into which passes the electron beam. This beam is created by
thermoionic emission at the cathode plane (0,x,y), and is
accelerated (and decelerated) through the z direction of the gun
thanks to the Laplace potential (i.e. without beam) formed by
the grid voltages. In particular, the resulting electric field at the
cathode Ex that extracts the electrons is influenced only by the
first three grids voltages (Vg;, Vg, and Vgs), the cathode
voltage Vg, and the gun geometry. Its positive part will be
considered as the emissive area of the cathode (defined as the
zone where the field accelerates the electrons), and, its value at
the cathode centre will be noted E_... The cathode plane is
taken as the zero equipotential.

Ill. A SIMPLE CASE

In this part is described the analytical model valid for
rotationally symmetric guns with identical-holes electrodes (of
radius R), as represented in figure 1 (r being the radial
coordinate).

Vk

\ﬂ}l \AGZ

Cathode
electric field
Ex r

R ',"IEquipotential A
Emitting radius RS 4 e D

\

Cathode | Grid1 Grid 2

FIG. 1. Description of the structure of the electron gun studied in the
following.

This study highlights the main elements involved in the general
model (part 2).

A. Analytical potential calculation.

The electrostatic potential in the beam forming region
(without beam) is the first mandatory step for the model. In a
general 3D gun, the potential is obtained from numerical
calculations like finite elements (see paragraph 2.1).
Nevertheless, for cylindrical guns, an analytical tool has been
developed and the potential V is written in the following form:

V(r,z)= +j:QK(a))IO (ar)exp(jax)dw

where I, is the Bessel function of first kind. The detailed
calculation of the kemel K is given in appendix.

The advantage of this development is to get a fast and self-
sufficient analytical model using classical tools like Maple or
Mathematica, without the need of additional codes. Even
limited to cylindrical guns, this permits to get the significant
physical parameters of the gun, which could be generalized to
any gun shape.

FIG. 2. Variation of the Laplace potential in plane (r, z) (arbitrary
units).

We check that the potential calculated (displayed in figure 2) is
close to the result provided by a simulation code. This code is
evoked in the references.?

B. Derivation of the cathode electric field

By analytical derivation versus z we obtain the cathode
electric field (all the other components are zero):

E =E,(r0)= 2002

z
Z

z=0
Figure 3 illustrates this parameter on the cathode plane for a
given gun and voltage set.

E, (V/m)

BDDDDU—\EIW = 732000 V/m
400000
200000
R z=0 R.
00007 o002 o001 0 DO OO0z mohaa
T (mm)

-200000

FIG. 3. Cathode electric field for Vg — 0V, Vg — 0V, Vg, — 900V, and
a given gun geometry.

With our notations, the positive part of Ex defines the emissive
zone of the cathode. As a result, for this example, the emitting
radius R, is 0.243mm. Moreover, we verify that Ex has a
parabolic shape, as used by most of the previous authors.
However, we will show in part 2 that for more complicated gun
structures, the parabolic approximation cannot be made.

C. Current density and total current

To calculate the cathode current density jx from the cathode
electric field Ex we propose to use the classical one -
dimensional Child-Langmuir’s law.'® We suppose, like many
authors, that the system behaves like concentric independent
diodes following Child-Langmuir’s law. It gives:
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jK(r) :47‘26/)%‘90 Ez/z(r) (1)
9D

where D is the classical diode gap, e the elementary charge, and
&, the permittivity of vacuum.

By integrating jx on the emitting cathode surface (a disc of
radius R), we obtain the gun intensity:

RZ
1= 21, (r)dr.
0

And, by plotting I = f( Vi), we get the current versus voltage
characteristic curve called “drive curve”.

Obviously, formula (1) is not obvious in our case, because it
is valid only for infinite diodes in the radial direction. As a
result, some modifications and optimizations are required in
order to apply this law to our non-infinite-diode geometry. First,
the equivalent diode distance D has to be defined and work for
our geometry. Second, in order to take into account the finite
dimension of the beam, Child-Langmuir’s law has to be
corrected. These two points will be discussed in the next three
paragraphs.

D. Correction of Child-Langmuir’'s law

The classical Child-Langmuir’s law for the current density
is a 1D model and made for two infinite parallel electrodes.
When the radius of the beam is finite, this density becomes
higher and a small but not negligible correction has to be done.
The general case has been studied elsewhere and is given in
paragraph 2.3. Nevertheless, a simple correction has been
estimated at the beginning of our studies showing that this
correction step is mandatory. "

2
R
| &
— \\\
g1s [N AU NS RS S
8 | \\
s |
k3 T~
o T i
=T S - |
5]
(@]
0.5
0 10 20 30 40 50

Beam radius (arbitrary units)

FIG. 4. Correction factor to the Child-Langmuir’s law.

The calculation is made for a Thomson gun example. For large
radiuses, the Child Langmuir’s law remains valid. At low
radiuses (small currents), the correction can be up to 70% (see
figure 4).

E. Determination of the equivalent diode gap
parameter

In most previous publications this parameter is chosen
constant, what appears to be a good hypothesis for a given
geometry, however the assumptions made in these studies are
not accurate enough and don’t work for complex geometries.

This parameter is not totally understood yet, but we noticed that
it depends only on the gun geometry, what is equivalent to say
that it depends only on the cathode electric field.

We propose two solutions to tackle this problem: on the one
hand, for measured guns, one experimental reference is enough
to get the equivalent diode distance. Indeed, in order to get the
best precision as possible in comparison with the experiment,
for a given gun, we have to chose D so that :

1V, =0=I1_W,=0V).

exp
As aresult, only the experimental current value at VK =0V is

needed to obtain a high precision on the whole characteristic
curve. We have noticed that for a given gun, in every grid
voltages configurations, this distance remains constant.

On the other hand, for new guns, Ploke’s equivalent diode
distance concept can be used (cf. paragraph 5).'° The precision
obtained on the current vs. tension characteristics using this
definition is quite satisfying. This is explained in paragraph 4.

F. Results

After correcting Child-Langmuir’s law and choosing the
right parameter D, we compared to the experiment and to a
simulation code for two different guns. Gun sl has small
electrode holes in comparison with gun s2, and, the thickness
and spacing of the electrodes are significantly different.

For both guns, the coherence with the experiment is very
good (precision better than 5%) for the whole range of
intensities, and every type of grid voltage configuration, unlike
the simulation code results, as shown in figures 5 and 6.

91 — e Expetiment
— - — Model

I (mA)

s
9

0.00 50.00 100.00 150.00 200.00
VK (volts)

FIG. 5. Model and experiment for current versus voltage characteristic
of gunsl, D — 0.283 mm.
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E
6
4
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FIG. 6. Model and experiment for current versus voltage characteristic
of gun s2, D — 0.392 mm.

This elementary case, solved with simple analytical tools,
permits to be aware of the elements at stake for modeling the
current generated in an electron gun: the cathode electric field is
the key point of the model. Then, a correction applied to the
classical one dimensional Child-Langmuir’s law, and the choice
of an equivalent diode distance lead to a good correlation with
the experimental current tension characteristic.

We have set up a simple physical model. Its accuracy is
better the simulation code we use. We will now generalize this
model to a full three dimension case.

IV. GENERAL CASE

Although for simple symmetrical guns it is possible to
calculate analytically the potential in the structure, and thus the
cathode electric field, this parameter cannot be worked out
easily for asymmetrical cases, and above all, the main difficulty
comes from the fact that it has to be valid for all kinds of
geometries. As a result, this calculus will be realized
numerically, by simulation.

A. Calculation of the cathode electric field

Various simulation codes exist which are able to solve
Laplace’s equation AV = 0 in gun structures, and precise in the
electrostatics calculations. We will use one of them,® to work
out the electric field at the cathode without beam.

In order to know this field for every voltage configuration,
the unitary contribution of every single grid is calculated (i.e.
the cathode electric field created by 1Volt on the cathode and
0V to the other grids, and so on). We deduce the cathode
electric field by superposition, as follows:

o e Vs =LV =V =V, =0)

E (V, =50V, =0V, V,, =1220/,V,, =8000) is

represented in figure 7 for an asymmetrical gun.
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FIG. 7. Representations of one fourth of the electric
field £, (V, =50,V =-190V,V,, =12207,V,, =8000")on

the cathode for an asymmetrical gun.

It has been noticed, by verifying on six different guns, that
for every gun, the cathode electric field can be, in first
approximation, represented as elliptical iso-field curves with a
parabolic profile. However, for a good precision, the parabolic
assumption on the cathode electric field profile, often
encountered in the literature, cannot be made (see figure 8).

Electric field on cathode
8.00E+05

—— Simulated electric field
7.00E+05

—— Parabola

6.00E+05
5.00E+05
€ 4.00E+05 -
£
b
N 3.00E+05 -
L
2.00E+05 -

1.00E+05 -

0.00E+00 ——

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400
-1.00E+05

X (mm)

FIG. 8. Comparison between the cathode electric field at full intensity
and a parabola, for a given gun.

As represented in the previous picture, we noticed that for
every gun, the electric field is not parabolic at full intensity (i.e.

when J, =0F), but for small intensities, the parabolic

assumption is relevant. Indeed, we show that changing Vi
corresponds to a simple translation of the electric field with
respect to the cathode: if the cathode voltage is decreased by

AV , then the cathode electric field (cf. formula (1)) decreases
by:

OB Ve Vi Voo Vi) = W Ve =WV VG =05, =55 =0)
= constant

Since we have a numerical model, we will not use any
approximations, and work with the “real” shape of the electric
field.

B. Current density and current

Like in part 1, to calculate the cathode current density jx
from the cathode electric field Ex we use the classical one -
dimensional Child-Langmuir’s law:
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_4N2e/me,

Je(x,¥) " olD

The intensity is obtained by summing the current densities
multiplied by the elementary surfaces (defined by the numerical
mesh) all over the cathode emissive surface:

I=2 jxCx,p,)xby.
iJ
where Ax and Ay are the steps of our mesh, and (i, j) the
indexes of the calculated point.

Like before, first, this law has to be corrected, and then, the
equivalent diode distance has to be defined. These two points
will be discussed in the next two paragraphs.

EIB(/Z(x: y) :

C. New correction of Child-Langmuir’s law

The correction used in part 1 can’t be applied here, because
the assumptions were carried out for a symmetrical case. The
new correction, valid for all cases, comes from a publication of
W.S. Koh, L.K. Ang and T.J.T. Kwan.*

In this document, it is shown that the link between the classical
one dimensional Child-Langmuir’s law j(1D) and the corrected
3D law j(3D) for a planar diode can be written :

JCD) _y, prg.

JaD)
where F and G are factors depending respectively on the
average position of the electrons, and the emissive surface
geometry. We then have to multiply the intensity previously
calculated by 1+ /' *G , where F = 0.25, in our case, and G is
known depending on whether we consider an ellipse, a
rectangle, and so on, as the emitting surface (for a uniform
current density). We can consider that for all the guns, the
emissive surface is elliptical, therefore the expression of G is

given by:?°
G 2EQ1-(b/a))
/i b/D
where E() is the complete elliptic integral of the second kind, a

and b are respectively the long and short radius of the ellipse,
and D is the equivalent diode distance.

For a circular emissive surface, this coefficient becomes:

(G = — , where r is the circle radius.
r

The current density being uniform in this reference, unlike in
our case, we have to calculate the right parameters a and b. To
do so, we integrate the cathode electric field in the plane y = 0
for a, and x = O for b, in order to build equivalent uniform
distributions while keeping the maximum field E .

In plane y=0 we find parameter a with:

j E(x)dx=E__[&.
0

and in plane x=0 we find b with:
IE(y)dy = Emax Db :
0

Choosing E, as the value of the uniform distribution appeared
to be the best and simplest solution among others.

Figure 9 presents an example of variation of this correction for
a given asymmetrical gun: at low currents the correction can be
up to 90%.

0134

Child-Langmuir's law
ecti
-
(¢}

1 T T

50 100 150
VK (Volts)

FIG. 9. Variation of the correction factor versus the cathode voltage for
a given asymmetrical gun.

We notice that the correction increases with the emitting
surface. Moreover, we verify that for every gun, the correction
around OV almost doesn’t change, and remains close to 1.3.

D. Determination of the equivalent diode distance

In comparison with part III, no modification is made for the
determination of this parameter. If we have one experimental

reference at V, =0V, then we choose D so that
IV, =0r)y=1I1 oxp (V, =0V) . Like in the simple case of

part 2, we have noticed that for a given gun, in every grid
voltages configurations, this distance remains constant.

If no experimental value is available, Ploke’s equivalent diode
distance concept can be used for new guns,'® as explained later
in part VI.

V. RESULTS FOR THE GENERAL CASE

In this part are presented several comparisons with the
experiment or/and with a simulation code (same code as
before), in order to validate the electric field and the intensity
calculations (more particularly, the current vs. voltage
characteristics). Moreover, by analyzing those results, many
interesting observations were made.

To do so, we have six different guns (gun s1 and gun s2 are
symmetrical, whereas the guns al to a4 are asymmetrical with
complex geometries) at our disposal, that have been tested
experimentally and simulated as well.

A. Results related to the cathode electric field
calculations

Let’s verify that, for calculating the electric field, the
superposition method is accurate, and that the simulation code
previously used is coherent with the experiment.

1. Definition of the “cut-off” notion

The “cut-off” is the electric state of a gun at the emission
limit, that is to say for zero intensity. The cut-off voltage Vi, is
defined as follows: first, the cathode is set at +Vi,. Then, the
first grid is set to zero. And finally, second grid voltage is
adjusted to Vg, such as I(Vgyeo) = 0. The drive curve is then
obtained by changing Vi within the domain [0, + V).

For example, in the case of gun al, a classical cut-off
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configuration is: Vi, = 150V, Vg = 0V, Voo = 520V and Vg3
= 3000V. In the industry, electron guns are not only used in
classical cut-off configurations, but also in extreme voltages
cases, such as the so called “6MIK” configuration: first we have
VK = OV, VGI = -SOV, ng = Vc}zco and Vg3 = 3000V, and then,
Vg, is set to OV whereas the other voltages remain constant.
“7JMIK” is also an other configuration similar to 6MIK except
that VGI =-150V.

2. Comparison of the cut-off voltages

Let us compare in table I the cut-off voltages with the
experiment in order to validate the electric field calculated by
superposition from simulation codes results.

TABLE I. Modeled and measured cut-off voltages for several guns, and
for Vi — 190V.

TABLE II. Modeled and measured intensities at Vx — 0V, in 6MIK and
TMIK conditions, and for two different guns.

Gun al Gun s2

1(0V) 1(0V) I(0V) I(0V)
experiment  model experiment model

Condition

6MIK 1.34 mA
TMIK 6.41 mA

1.19mA
6.38 mA

1.14 mA
5.45mA

0.99 mA
5.08 mA

Voltage Gun sl Gun al Guna2  Guns2

Va2 0 1082 V 616 V 1250 v 510V
(experiment)

V20 (model) 1001 V 668 V 1223V 507V

Therefore, the superposition method using simulation codes
gives cut-off voltages quite close to the experimental values.
We verify as well that we have the same accuracy in the 6MIK
and 7MIK cut-off configurations.

3. Remarks on the emissive surface at full intensity

A complementary checking of the cathode emissive
surfaces permits to notice that, for a given gun, the emissive
surface at full intensity is constant for all cut-off configurations
(Vg =150V or V¢ =200V or 6MIK, 7MIK, etc...). This can be
easily explained because at full intensity, Vg, = Vg = 0, and
given that G3 has almost no influence on the cathode field (cf.
observations at the end of this paragraph), Vg, is linearly linked
to the electric field (cf. formula (1)):

E VeV Vo Vi) SV [E. Vo =WV, =V =V =0)

The cathode electric field amplitude is proportional to Vg,, but
the emitting surface remains constant.

Furthermore, this area is higher than the surface of the first
grid hole (factor 2.2 for gun s2 and 1.5 for gun al). But the
contribution of the cathode area greater than G1 hole surface is
relatively small (2% of the current for gun s2 in 7MIK
conditions).

B. Results related to intensity calculations

We will first show that the intensity calculated is close to
the experiment, for any kind of cut-off configuration, and then
show that the precision on the whole of the current vs. voltage
characteristics is very good. Moreover, we will also make a
comparison with the previous simulation code, and show that
this tool his highly inaccurate regarding the drive curves.

For a given gun and equivalent diode distance (defined in
classical cut-off conditions), we show that we have a good
model for calculating intensities even in extreme cut-off
conditions as 6MIK and 7MIK (cf. table II).

Finally, for every gun and every cut-off configuration, we
compare the current versus voltage characteristics to the
experiment, and realize that the coherence with the measured
curves is extremely satisfying.

Figures 10 and 11 present some examples of comparisons of
drive curves on two different guns.

16.00

14.00 ] — —- — Model

12.00 1 —&— Experiment

10.00 -
:‘Ei 8.00 -
- 6.00 -
4.00 -

2.00 -

0.00 T T — -»

0.00 50.00 100.00 150.00 200.00
Vk (volts)

FIG. 10. Drive curve for gun al, Vi~ 190V, and D — 0.72mm.

9.00
§
8.00 S — —— — Model
7.00 + —&— Experiment

0.00 50.00 100.00 150.00 200.00
VK (volts)

FIG. 11. Drive curve for gun s1, Vg, — 150V, and D — 0.55mm.

For all of the six guns tested, and in every cut-off condition, the
precision obtained on the whole curve is better than 5% which
is far better than the results obtained by the previous studies,
even based on numerical codes.

C. Complementary observations

First, for all of our guns, the influence of the third grid (G3)
on the electric field (and, as a result, on the intensity) is
negligible. However, we can easily imagine that for guns with
large-hole-grids, and small gaps between the grids, this
influence would be a bit more significant.
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Then, for V¢ = 0V, the ratio between the intensity, or the
current density, or Vg, (at cut-oft), or the electric field, in two
different cut-off conditions, is independent of the gun. For
example, for every gun, between 6MIK and 7MIK conditions,
we have:

TMIK IMIK
7 7 x;
For any (x,y), (;LMIK = ]%;ﬂK( y) =52,
o Jor (%)

TMIK TMIK
and: Vaco - Ey™ (x,)) -
6MIK 6MIK
Voro Eor (%)
Indeed, in cut-off conditions (i.e. at the limit of emission), the
cathode electric field is zero, and as Vg, = 0 and V3 has a week
influence, from formula (1) we have:

0 = VKca EK (VK = 1V= VGl = VGZ = VG3 = O)
+ VGan EwK (VGZ = 1V’ VK = VGl = VGS = O)

Therefore, for two cut-off configurations (1) and (2), we get for
every gun:

) O
VGZco — V

- Kco

2 @)
VGZco VKco

= constant.

Moreover, at Vg =0V:
Ee Ve Vo Vor V) =V, Wy Vo, =W Ve =V =V53,=0)
Then, for two cut-off configurations (1) and (2):

ORI o 2
Loy _ Jor (%) _[ Ve

@ " ;O T
Ly Jos (%)) Ve

3/2 3/2
M €]
VKca — EOV (x7 y) _
- @ - T = constant.
Vieo Eg (x,y)

VI. PERSPECTIVES: ADAPTATION OF THE MODEL
FOR NEW GUNS

For studying new guns, when no experimental reference at
Vg = 0V is available, we can use Ploke’s equivalent diode
distance concept to determine parameter D,'® and obtain drive
curves with a precision quite satisfying, but of course lower
than the one in the last paragraph. As recalled by H. Suzuki,*' in
a rotationally symmetrical electron gun, the equivalent diode
distance can be written:

— VKca

CE_(V.=0V)

When using this definition, and here, without any Child-
Langmuir’s law correction, for gun al (the best case), we
already have an acceptable coherence with the experiment (see
figure 12).

16.00

—=a— Experiment
14.00 1

— —o— — Model

12.00

10.00 +

0.00

0.00 50.00 100.00
Vk (volts)

\ g

150.00 200.00

FIG. 12. Drive curve for gun al, Vi~ 190V, and D — 0.29mm.

We notice that for high intensities, the model describes very
well the experiment, unlike for small intensities, where we have
a factor 2 between the two curves.

As a result, we have to modify a little the definition of the
correction so as not to correct the drive curve for high
intensities. The simplest solution appeared to be the
conservation of the previous correction divided by its value at
maximum intensity. For instance, in the case of gun al, we have
to divide the correction calculated in the previous chapter by

1.3. Finally, we obtain for gun al the curves displayed in figure
13.

16.00 —=a— Experiment

14.00 — —— — Model

0.00 T T T =
0.00 50.00 100.00 150.00 200.00
Vk (volts)

FIG. 13. Drive curve for gun al, Vi~ 190V, and D — 0.29mm.

Without any experimental reference, the model precision is
therefore very high.

Moreover, amoung our six tested guns, four guns present
the same coherence. For the other two, the precision is 9% for
high currents (> 4mA) and 20 % for low currents (< 1 mA).

VII. CONCLUSION

We have first proposed a new and precise analytical model
of current generation for rotationally symmetrical electron guns
that provides a better accuracy on the whole intensity-voltage
characteristic curve than the simulation codes. This model uses
only the Laplace field on the cathode, which can be obtained
easily with an analytical procedure. Moreover, the finite radius
of the beam is taken into account by correcting the classical
Child-Langmuir’s law, and in addition, an equivalent diode gap
parameter is defined.
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Then, we have generalized this study to a fully three
dimensional model, valid for all kinds of electron gun
geometries. The only numerical input needed is again the
Laplace electric field at the cathode in elementary conditions.
The precision obtained is far better than the one of the
simulation codes encountered (accuracy better than 5% on the
whole drive curve domain).

Even for new guns in design process, by using Ploke’s
equivalent diode distance concept, we can get a quite satistying
precision on the whole intensity-voltage characteristic curve.

Finally, we have managed to understand the main
mechanisms at stake in the electron gun current generation.
And, coupled with investigations on the electron beam
dynamics, such as source emittance modelling, this study
provides a good reproduction of the electron gun physics.
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APPENDIX

We consider a system made of several coaxial cylindrical
electrodes whose radius is denoted R. We suppose the gap
between electrodes to be small. The purpose of this section is to
give a simple analytical model for the calculation of the
potential. It is an alternative solution to numerical methods (like
finite elements), and is general, accurate, and avoids any
modelling of the electrodes.

The radial position is denoted “r” and the longitudinal one is
denoted “z”.

We look for a fundamental solution F of the cylindrical Laplace
problem such as:

F(r,z) = f(ar)exp(jaz)
This function verifies the Laplace equation AF=0 if

1a( of
/ 'mﬂrﬂ

A solution is the Bessel function I,

Consequently, we look for a general potential V such as:

V(r,z) = TK(a))IO (wr)exp(jar)dw

We suppose the potential known on the boundaries (r=R). It is
constant on the electrodes and we can suppose with a good
approximation that the potential varies linearly between 2
successive electrodes.

We have:

V(R,z)= TK(&))[O (aR) exp(jax)dw

The goal is to get the kernel K from the known function
V(R,z). The previous integral is a Fourier transform. A simpler
form of the problem is to consider the derivative of V versus z
on the cylindrical boundary. This function is constant in the
gaps (equal to the gap voltage divided by the gap length) and
zero on the electrodes. This function is hence a combination of
Heaviside distributions (see figure 14).

V(R.z)
V2
| /
//
/
L 7
/ Xp X1 // Xp
L L Z
// 0 V1 /
/
L ; S —
/
//
o |
K G, G,
V:(R.2)
N
Xo
Z
0 X X7
Al ]

FIG. 14. Potential on boundary (top) and its derivative (bottom),
combination of Heaviside distributions. We solve the bottom problem
and we get the top one by integration.

The fundamental problem to be solved is the normalized (R=1)
Heaviside problem:

H@) = [Ky(@l @exp(jar)de

By taking the inverse Fourier transform of H, one gets:

o, ]
K, (w!,(w)=—+——
(@) (w) 5 "3

We have the following approximation:

o ot

I(w=1+2+2
(@) 4 64

Hence:
> im
Ky ()= ULl
1+ —+ "
4 64
Finally, we get:
2 4
L@, @ |
Ky (@lyap)=—A_— 64 [0 T |-y p)
o ot 2 2
1+ — +—
4 64
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The potential is obtained as follows:

e A Fourier transform of N is calculated, which is easily
carried out by tools like Maple or Mathematica, leading to

a reference function A ,(p)= N (w, p) (where the
symbol * denotes the Fourier transform). The “zero” index
indicates the Heaviside problem at origin.

*  The Heaviside problem at any location z; is the translation
of the previous function and is written M (0) .

*  The weight of each Heaviside distribution is the ratio AV/g
where AV is the voltage gap and g the electrode gap.

e As the integral of M, is easily obtained analytically, the
general solution is obtained from the previous steps.

The general procedure given here is implemented in a few lines
of Maple language. We check that the approximation made on
the I, function gives a good enough precision.
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