Theory of small aspect ratio waves in deep water

Abstract : In the limit of small values of the aspect ratio parameter (or wave steepness) which measures the amplitude of a surface wave in units of its wave-length, a model equation is derived from the Euler system in infinite depth (deep water) without potential flow assumption. The resulting equation is shown to sustain periodic waves which on the one side tend to the proper linear limit at small amplitudes, on the other side possess a threshold amplitude where wave crest peaking is achieved. An explicit expression of the crest angle at wave breaking is found in terms of the wave velocity. By numerical simulations, stable soliton-like solutions (experiencing elastic interactions) propagate in a given velocities range on the edge of which they tend to the peakon solution.
Type de document :
Article dans une revue
Physica D: Nonlinear Phenomena, Elsevier, 2005, 211, pp.377-390. <10.1016/j.physd.2005.09.001>


http://hal.in2p3.fr/in2p3-00149077
Contributeur : Francoise Duceau <>
Soumis le : jeudi 24 mai 2007 - 12:30:57
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Collections

Citation

A. Kraenkel, J. Leon, M. A. Manna. Theory of small aspect ratio waves in deep water. Physica D: Nonlinear Phenomena, Elsevier, 2005, 211, pp.377-390. <10.1016/j.physd.2005.09.001>. <in2p3-00149077>

Exporter

Partager

Métriques

Consultations de la notice

53