Skip to Main content Skip to Navigation
Journal articles

Online muon reconstruction in the ATLAS level-2 trigger system

Abstract : To cope with the 40 MHz event production rate of LHC, the trigger of the ATLAS experiment selects events in three sequential steps of increasing complexity and accuracy whose final results are close to the offline reconstruction. The Level-1, implemented with custom hardware, identifies physics objects within Regions of Interests and operates with a first reduction of the event rate to 75 kHz. The higher trigger levels, Level-2 and Level-3, provide a software based event selection which further reduces the event rate to about 100 Hz. This paper presents the algorithm (/spl mu/Fast) employed at Level-2 to confirm the muon candidates flagged by the Level-1. /spl mu/Fast identifies hits of muon tracks inside the barrel region of the Muon Spectrometer and provides a precise measurement of the muon momentum at the production vertex. The algorithm must process the Level-1 muon output rate (/spl sim/20 kHz), thus particular care has been taken for its optimization. The result is a very fast track reconstruction algorithm with good physics performance which, in some cases, approaches that of the offline reconstruction: it finds muon tracks with an efficiency of about 95% and computes p/sub T/ of prompt muons with a resolution of 5.5% at 6 GeV and 4.0% at 20 GeV. The algorithm requires an overall execution time of /spl sim/1 ms on a 100 SpecInt95 machine and has been tested in the online environment of the Atlas detector test beam.
Document type :
Journal articles
Complete list of metadata
Contributor : Danielle Cristofol Connect in order to contact the contributor
Submitted on : Wednesday, June 27, 2007 - 2:19:32 PM
Last modification on : Tuesday, October 19, 2021 - 10:50:22 PM

Links full text





S. Armstrong, A. dos Anjos, J.T.M. Baines, C.P. Bee, M. Biglietti, et al.. Online muon reconstruction in the ATLAS level-2 trigger system. IEEE Transactions on Nuclear Science, Institute of Electrical and Electronics Engineers, 2006, 53, pp.1339-1346. ⟨10.1109/TNS.2006.872630⟩. ⟨in2p3-00157914⟩



Record views