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Abstract. We show that the ground state of a Bose-Einstein condensate of atoms

with hyperfine spin f = 2 can be either spin aligned, condensed into pairs of atoms

coupled to F = 0, or condensed into triplets of atoms coupled to F = 0. The complete

phase diagram is constructed for f = 2 and the generic properties of the phase diagram

are obtained for f > 2.

PACS numbers: 03.75.Fi, 03.65.Fd

If atoms in a Bose-Einstein condensate (BEC) are trapped by optical means [1],

their hyperfine spins (or spins) are not frozen in one particular direction but are

essentially free but for their mutual interactions. As a result, the atoms do not behave

as scalar particles but each of the components of the spin is involved in the formation

of the BEC. This raises interesting questions concerning the structure of the condensate

and how it depends on the spin exchange interactions between the atoms.

Such questions were addressed in a series of theoretical papers by Ho and co-

workers [2] who obtained solutions based on a generating function method. In the

case of spin-1 atoms the problem of quantum spin mixing was analyzed by Law et al. [3]

who proposed an elegant solution based on algebraic methods. It is the purpose of

this paper to point out that a wide class of many-body hamiltonians appropriate for

the problem of interacting bosons with spin can be solved through algebraic techniques

which have found fruitful applications in nuclear physics [4] as well as in other fields

of physics (see, e.g. Ref. [5]). The main result derived in this paper is that an exact

solution is available for spin values f = 1 and f = 2 (for any value of the number of

atoms N) which allows the analytic determination of the structure of the ground state

of the condensate. For spin values f > 2 solvable classes of hamiltonians give insights

into the generic properties of the phase diagram.

We consider a one-component dilute gas of trapped bosonic atoms with arbitrary

(integer) hyperfine spin f . In second quantization the hamiltonian of this system has

a one-body and a two-body piece that can be written as (we follow the notation of
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Ref. [3])

H ≡ H1 + H2 =
∑

m

∫

Ψ̂†
m

(

− ∇2

2Ma
+ Vtrap

)

Ψ̂md3x

+
∑

mi

Ωm1m2m3m4

∫

Ψ̂†
m1

Ψ̂†
m2

Ψ̂m3
Ψ̂m4

d3x, (1)

where h̄ = 1, Ma is the mass of the atom, and Ψ̂m and Ψ̂†
m are the atomic field

annihilation and creation operators associated with atoms in the hyperfine state |fm〉
with m = −f, . . . , +f , the possible values of all summation indices in (1). The trapping

potential Vtrap is assumed to be the same for all 2f + 1 components. The coefficients

Ωm1m2m3m4
follow from the interaction between atoms which is assumed to be of short-

range, two-body character,

U(~xi, ~xj) = δ(~xi − ~xj)
∑

FM

ν ′
F |f 2; FM〉〈f 2; FM |, (2)

where |f 2; FM〉 is the combined state of the atoms i and j with total spin F , and

ν ′
F ≡ 4πh̄2aF /Ma with aF being the s-wave scattering length in the F channel. The

assumption underpinning the form (2) is rotational invariance of the hamiltonian in

hyperfine-spin space.

We assume in this paper that the scattering lengths in the different F channels

are comparable and that, in first approximation, the interaction strength between the

bosons is independent of F . In that case the dominant part of the hamiltonian (1) is of

the form

Hs = H1 + λ′
∑

m1m2

∫

Ψ̂†
m1

Ψ̂†
m2

Ψ̂m1
Ψ̂m2

d3x, (3)

and is symmetric under any interchange of the spin-component indices. Under this

assumption the condensate wave functions for each spin component φm(~x) (m =

−f, . . . , +f) can be approximated by a single wave function φ(~x) which satisfies the

Gross-Pitaevskii equation associated with the dominant hamiltonian [3]. Furthermore,

the atomic field creation and annihilation operators at zero temperature can be

approximated by

Ψ̂†
m ≈ b†mφ(~x), Ψ̂m ≈ bmφ(~x), m = −f, . . . , +f, (4)

where bm and b†m are annihilation and creation operators associated with the entire

condensate, satisfying the usual boson commutation rules

[bm, b†m′ ] = δmm′ , [bm, bm′ ] = [b†m, b†m′ ] = 0. (5)

In this approximation the entire hamiltonian (1) can be rewritten as

H ≈ Ĥ ≡ ǫ b† · b̃ +
1

2

∑

F

νF [b† × b†](F ) · [̃b × b̃](F ), (6)

where the coefficients ǫ and νF are related to those in the original hamiltonian through

integration over x, viz. νF = ν ′
F

∫ |φ(~x)|4d3x. The notation × in Eq. (6) implies the

coupling to a given spin F and projection M ,

[b† × b†]
(F )
M =

∑

mm′

〈fm fm′|FM〉b†mb†m′ , (7)
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where 〈· · · · | · ·〉 is a Clebsch-Gordan coefficient [6]. Furthermore, the dot · denotes a

scalar product,

T̂ F · T̂ F ≡ (−)F
√

2F + 1[T̂ F × T̂ F ]
(0)
0 , (8)

for tensor operators T̂ F
M of rank F . The definition of the adjoint operator b̃m ≡

(−)f−mb−m ensures that b̃m is an annihilation operator with transformation properties

under rotations that are the same as those for the creation operator b†m [7]. With the

above definitions we have that b† · b̃ =
∑

m b†mbm is the number operator N̂ which counts

the total number of atoms in the condensate.

To derive the solvability properties of the hamiltonian (6), we first determine its

algebraic structure by introducing the bilinear operators b†mbm′ . From Eq. (5) one finds

the commutation relations

[bm1
b†m2

, bm3
b†m4

] = bm1
b†m4

δm2m3
− bm3

b†m2
δm1m4

, (9)

which can be identified as those of the unitary (Lie) algebra U(2f + 1) [7]. Exactly

solvable hamiltonians with rotational or SO(3) invariance are now found by the

determination of all Lie algebras G satisfying U(2f + 1) ⊃ G ⊃ SO(3). The canonical

reduction of U(2f + 1) is of the form

U(2f + 1) ⊃ SO(2f + 1) ⊃ SO(3). (10)

[For f = 3 there is an additional exceptional G2 algebra between SO(2f + 1) and

SO(3) which for the symmetric representations of U(2f + 1) considered here does not

add anything to the discussion.] The relevance of a chain of nested algebras of the

type (10) is that it defines a set of commuting operators and with it a class of solvable

hamiltonians. Consider in particular the hamiltonian

Ĥ ′ = a1Ĉ1[U(2f + 1)] + a2Ĉ2[U(2f + 1)]

+ b Ĉ2[SO(2f + 1)] + c Ĉ2[SO(3)], (11)

where a1, a2, b, and c are numerical coefficients and Ĉn[G] is the nth-order Casimir

operator of the algebra G which satisfies the property that it commutes with all

generators of G [8]. Solvability of the hamiltonian (11) follows from the fact that it

is written as a sum of commuting operators, a property which indeed is valid for the

Casimir operators associated to any chain of nested algebras such as (10). The Casimir

operators appearing in Eq. (11) are known in closed form,

Ĉ1[U(2f + 1)] = N̂,

Ĉ2[U(2f + 1)] = N̂(N̂ + 2f),

Ĉ2[SO(2f + 1)] = − (2f + 1)T̂ 0
+ · T̂ 0

− + N̂(N̂ + 2f − 1),

Ĉ2[SO(3)] =
∑

F

[

1
2
F (F + 1) − f(f + 1)

]

T̂ F
+ · T̂ F

− + f(f + 1)N̂, (12)

in terms of the operators T̂ F
+,M ≡ [b†× b†]

(F )
M and T̂ F

−,M ≡ [̃b× b̃]
(F )
M . Equations (12) show

that the solvable hamiltonian (11) is a special case of the general hamiltonian (6) with
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coefficients ǫ and νF that are linear combinations of a1, a2, b, and c according to

ǫ = a1 + (2f + 1)a2 + 2fb + f(f + 1)c,

νF = 2a2 + 2b + [F (F + 1) − 2f(f + 1)]c, F 6= 0,

ν0 = 2a2 − 4fb − 2f(f + 1)c, (13)

The eigenvalues of the hamiltonian (11) are

E ′(N, v, F ) = a1N + a2N(N + 2f) + b v(v + 2f − 1) + c F (F + 1). (14)

The allowed values of v are v = N, N − 2, . . . , 1 or 0, as can be obtained from the

U(2f + 1) ⊃ SO(2f + 1) branching rule [8]. The quantum number v corresponds

to the number of bosons not in pairs of bosons coupled to F = 0, and is known

as seniority [9, 10]. The allowed values of the total spin F are obtained from

the SO(2f + 1) ⊃ SO(3) branching rule which is rather complicated but known in

general [11]. The f = 2 example is discussed below.

The generic solvability properties of the original hamiltonian (6) now follow from a

simple counting argument. For atoms with spin f = 1 the solvable hamiltonian (11) has

three coefficients a1, a2, and c [since SO(2f+1)=SO(3)] while the general hamiltonian (6)

also contains three coefficients ǫ, ν0, and ν2. [Note that the coupling of two spins to

odd F is not allowed in the approximation (4) of a common spatial wave function, so no

ν1 term occurs.] For atoms with spin f = 2 both the solvable and general hamiltonian

contains four coefficients (a1, a2, b, and c versus ǫ, ν0, ν2, and ν4) which can be put into

one-to-one correspondence. Hence the general hamiltonian (6) is solvable for f = 2.

The same counting argument shows that it is no longer solvable for f > 2.

The case of interacting f = 1 atoms was discussed by Law et al. [3] who identified

the existence of two possible condensate ground states: one with all atoms aligned to

maximum spin F = N and a second with pairs of atoms coupled to F = 0. Whether

the condensate is aligned or paired depends on a single interaction parameter which in

our notation is c. With the technique explained above we can also derive the phase

diagram for atoms with spin f = 2. The results are exact and valid for arbitrary

N . The entire spectrum is determined by the eigenvalue expression (14) together with

the necessary branching rules. In particular, the allowed values of total spin F for

a given seniority v are derived from the SO(5) ⊃ SO(3) branching rule [4] given by

F = 2τ, 2τ − 2, 2τ − 3, . . . , τ + 1, τ with τ = v, v − 3, v − 6, . . . and τ ≥ 0.

It is now possible to determine all possible ground-state configurations of the

condensate. This problem has been considered in the study of the spectral features

of quantal systems with random interactions [12]. We note that the character of the

ground state does not depend on the coefficients ai since the first two terms in the

expression (14) give a constant contribution to the energy of all states. Although this

contribution is dominant according to our earlier assumptions, the spectrum generating

perturbation of the hamiltonian is confined to the last two terms and depends solely on

the coefficients b and c which are related to the original interactions νF according to

b =
1

70
(−7ν0 + 10ν2 − 3ν4), c =

1

14
(−ν2 + ν4), (15)
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Figure 1. Diagrams of the different phases of a Bose-Einstein condensate of atoms

with spin f = 2 characterized by a ground state (v0, F0) where v0 is the seniority of the

ground state and F0 is its total spin. The total number of atoms N is even in (a) and

odd in (b). The grey area corresponds to a ground state with (v0, F0) = (N − 3 + δ, 0)

which only occurs for δ = ±1 and disappears in the limit N → ∞.

The following exact finite-N results are found where the ground state of the condensate

is characterized by a seniority v0 and a total spin F0.

(i) N is even. We introduce N = 6k + 2δ with k integer and δ = −1, 0, +1. The

possible ground-state configurations have (v0, F0) = (0, 0), (N, 2N), (N, 2|δ|), or

(N − 3 + δ, 0), the latter existing only for δ = ±1,

(ii) N is odd. We introduce N = 6k + 3 + 2δ with k integer and δ = −1, 0, +1. The

possible ground-state configurations have (v0, F0) = (1, 2), (3, 0), (N, 2N), (N, 2|δ|),
or (N − 3 + δ, 0), the latter existing only for δ = ±1.

The phase diagram displays a richer structure than in the f = 1 case as is shown in

Fig. 1. We observe first of all the presence of the aligned phase where the seniority is

maximal, v0 = N , and all spins are aligned, F0 = 2N . Secondly, we have a low-seniority

(paired) and consequently low-spin phase. For even N this corresponds necessarily to

(v0, F0) = (0, 0). For odd N there must be at least one unpaired atom leading to the

ground-state configuration (v0, F0) = (1, 2); alternatively, however, it might consist of

a triplet of atoms which is coupled to total spin F0 = 0 leading to the ground-state

configuration (v0, F0) = (3, 0). The (1,2) and (3,0) phases are divided by the line

b = 3c/7. The paired and aligned phases are separated by the line

b = −2N(2N + 1)

N(N + 3)
c, b = −(2N − 2)(2N + 3)

(N − 1)(N + 4)
c, (16)

for N even or odd respectively, which in both cases tends to b = −4c for N → ∞.

So far we have recovered the aligned and paired phases also encountered for

interacting f = 1 atoms (although the paired phase is somewhat more intricate for

f = 2 due to the possible presence of a triplet of atoms coupled to F = 0). For f = 2

a third phase occurs for negative b and positive c characterized by high seniority (i.e.

unpaired) and low total spin, (v0, F0) = (N, 2|δ|). Finally, for δ = ±1 there exists a
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pathological region in the phase diagram characterized by (v0, F0) = (N − 3 + δ, 0) (see

Fig. 1). It is separated from the high-seniority, low-spin region by the line

b = − |δ(δ + 3)|
4(2N + δ)

c, (17)

which tends to b = 0 for N → ∞. Hence this region disappears in the large-N limit.

We conclude that the ground state of a BEC consisting of atoms with spin f = 2

can be of three different types: (i) a maximum-seniority spin-aligned, (ii) a low-seniority

low-spin, or (iii) a maximum-seniority low-spin configuration. Note that ‘seniority’ in

this context refers to number of atoms that are not in pairs coupled to F = 0.

Since the hamiltonian (11) is solvable for f = 2, all eigenstates, and in particular

the three different ground states, can determined analytically. The general expressions

given by Chacón et al. [13] reduce to

|v = N, F = M = 2N〉 ∝
(

d†
+2

)N |0〉,

|v = 0, F = M = 0〉 ∝
(

d† · d†
)N/2 |0〉,

|v = N, F = M = 0〉 ∝
(

[a† × a†](2) · a†
)N/3 |0〉, (18)

where the f = 2 atoms are denoted as d bosons. In the second of these expressions

it is assumed that N is even and in the third that N = 3k; other cases are obtained

by adding a single boson or an F = 0 pair. The a† are the so-called traceless boson

operators [13] which are defined as (see also Chapt. 8 of Ref. [14])

a†
m = d†

m − d† · d†

2N + 5
d̃m. (19)

We emphasize that (18) are the exact finite-N expressions for the eigenstates of the

hamiltonian (11). Since in the large-N limit the traceless boson operators a†
m become

identical to d†
m, we arrive at a simple interpretation of the three types of configurations:

(i) spin-aligned, (ii) condensed into pairs of atoms coupled to F = 0, and (iii) condensed

into triplets of atoms coupled to F = 0.

How will these features evolve with increasing spin f of the atoms? For arbitrary

interaction strengths νF in the different F channels the hamiltonian (6) is not solvable.

By imposing f − 2 conditions on νF it can be brought into the form (11) and this gives

an idea of the structure of the general phase diagram by constructing a two-dimensional

slice of it. For example, for atoms with spin f = 3 the elimination of a1, a2, b, and c

from Eq. (13) yields the condition 11ν2 − 18ν4 + 7ν6 = 0. For f > 3 more conditions on

νF are found. If all conditions are satisfied, the phase diagram in b and c with

b =
−7ν0 + 10ν2 − 3ν4

14(2f + 1)
, c =

1

14
(−ν2 + ν4), (20)

has properties similar to those in the f = 2 case. The analysis requires the knowledge

of the multiplicity d(f)
v (F ), (i.e., the number of spin-f atom states with seniority v

coupled to total spin F ) which can be derived from the SO(2f + 1) ⊃ SO(3) branching

rule [11]. We find that for sufficiently large even N there are four competing ground
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states with (v0, F0) = (N, fN), (N, 0), (0, 0), and (2, 2), the latter of which disappears

as a ground state in the large-N limit. For sufficiently large odd N the four competing

ground states have (v0, F0) = (N, fN), (N, 0), (1, f), and (3, f2 ≡ f mod 2), the latter

two being separated by the line b = [f(f + 1) − f2(f2 + 1)]c/(4f + 6). The results

correspond to what is found in the f = 2 case and lead to an essentially identical (b, c)

phase diagram.

Finally, we point out that the appearance of exact seniority ground states requires

weaker conditions on νF than those that have been discussed so far. In fact, the spin-

aligned configuration (N, fN) is always an eigenstate of the general hamiltonian (6)

because the F = fN state is unique. Furthermore, it can be shown [10] that seniority

is a good quantum number if the interaction strengths νF satisfy ⌊f/3⌋ conditions

only (where ⌊x⌋ is the largest integer smaller than or equal to x). For all cases

of any conceivable interest for BECs, this reduces to no condition on the strengths

νF for f = 1, 2 or just a single one for f = 3, 4, 5. So there is at most a single

condition required for all eigenstates to carry exact seniority and for the results of

this paper to be valid. Nevertheless, the determination of the complete phase diagram

for f > 2 with unconstrained interaction strengths νF remains a problem worthy of

further investigation.
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