Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case

Abstract : In our previous paper \cite{co1} we have shown that the theory of circulant matrices allows to recover the result that there exists $p+1$ Mutually Unbiased Bases in dimension $p$, $p$ being an arbitrary prime number. Two orthonormal bases $\mathcal B,\ \mathcal B'$ of $\mathbb C^d$ are said mutually unbiased if $\forall b\in \mathcal B, \ \forall b' \in \mathcal B'$ one has that $$\vert b\cdot b'\vert = \frac{1}{\sqrt d}$$ ($b\cdot b'$ hermitian scalar product in $\mathbb C^d$). In this paper we show that the theory of block-circulant matrices with circulant blocks allows to show very simply the known result that if $d=p^n$ ($p$ a prime number, $n$ any integer) there exists $d+1$ mutually Unbiased Bases in $\mathbb C^d$. Our result relies heavily on an idea of Klimov, Munoz, Romero \cite{klimuro}. As a subproduct we recover properties of quadratic Weil sums for $p\ge 3$, which generalizes the fact that in the prime case the quadratic Gauss sums properties follow from our results.
Type de document :
Article dans une revue
Journal of Mathematical Physics, American Institute of Physics (AIP), 2009, 50, pp.032104. <10.1063/1.3078420>


http://hal.in2p3.fr/in2p3-00184037
Contributeur : Sylvie Flores <>
Soumis le : mardi 30 octobre 2007 - 13:18:22
Dernière modification le : vendredi 24 avril 2009 - 11:37:04
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:59:52

Fichiers

powerofprime.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

M. Combescure. Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case. Journal of Mathematical Physics, American Institute of Physics (AIP), 2009, 50, pp.032104. <10.1063/1.3078420>. <in2p3-00184037>

Exporter

Partager

Métriques

Consultations de
la notice

149

Téléchargements du document

174