E. P. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Physical Review, vol.40, issue.5, pp.749-759, 1932.
DOI : 10.1103/PhysRev.40.749

S. De-groot, La transformation de Weyl et la fonction de Wigner: une forme alternative de la mcanique quantique, 1975.

F. A. Buot, in solid-state theory, Physical Review B, vol.10, issue.8, pp.3700-3705, 1974.
DOI : 10.1103/PhysRevB.10.3700

J. H. Hannay and M. V. Berry, Quantization of linear maps on a torus-fresnel diffraction by a periodic grating, Physica D: Nonlinear Phenomena, vol.1, issue.3, p.267, 1980.
DOI : 10.1016/0167-2789(80)90026-3

K. S. Gibbons, F. J. Hoffman, and W. K. Wootters, Discrete phase space based on finite fields, Physical Review A, vol.70, issue.6, p.62101, 2004.
DOI : 10.1103/PhysRevA.70.062101

S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda et al., Wigner???Weyl correspondence in quantum mechanics for continuous and discrete systems???a Dirac-inspired view, Journal of Physics A: Mathematical and General, vol.39, issue.6, pp.1405-1423, 2006.
DOI : 10.1088/0305-4470/39/6/014

H. Havlicek and M. Saniga, Projective ring line of a specific qudit, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.43, pp.943-952, 2007.
DOI : 10.1088/1751-8113/40/43/F03

URL : https://hal.archives-ouvertes.fr/hal-00169103

H. Havlicek and M. Saniga, Projective ring line of an arbitrary single qudit, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.1, p.15302, 2008.
DOI : 10.1088/1751-8113/41/1/015302

URL : https://hal.archives-ouvertes.fr/hal-00176551

O. Albouy, Matrix reduction and Lagrangian submodules
URL : https://hal.archives-ouvertes.fr/in2p3-00319021

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, A new proof for the existence of mutually unbiased bases, Algorithmica, vol.34, pp.512-528, 2002.