Skip to Main content Skip to Navigation
Conference papers

Macroscopic dynamical description of rotating Au+Au system

Abstract : Events with more than two heavy fragments have been abundantly observed in heavy-ion semi-peripheral (fission-like) reaction Au-197+Au-197 at 15 MeV/nucleon. This raised interesting questions about their origin and about the time-scale at which they occur. As a possible explanation of this process, the surface instability of the cylindrical neck that is formed along the path from contact to reseparation of the rotating Au+Au system is investigated in the present paper. For this purpose the Los Alamos finite-range macroscopic dynamical model was used. The calculations were performed at relatively high angular momenta, L = 100 to 300 h, for two types of dissipation mechanisms: two-body viscosity and one-body dissipation. Various initial nuclear deformations and initial kinetic energies in the fission direction were considered. The resulting dynamical evolution in the multidimensional deformation space always led to multifragment scission configurations suggesting that ternary and quaternary break-up can occur during the heavy-ion reaction studied.
Document type :
Conference papers
Complete list of metadatas
Contributor : Ludovic Le Noan <>
Submitted on : Monday, September 22, 2008 - 11:30:12 AM
Last modification on : Thursday, January 11, 2018 - 6:12:50 AM




N. Carjan. Macroscopic dynamical description of rotating Au+Au system. 14th WORKSHOP ON NUCLEAR PHYSICS "MARIE AND PIERRE CURIE", Sep 2007, Kazimierz, Poland. pp.53-59, ⟨10.1142/S0218301308009549⟩. ⟨in2p3-00323459⟩



Record views