Finite tight frames and some applications

N. Cotfas J.-P. Gazeau 1
1 APC - THEORIE
Institut für theoretische Physik, APC - UMR 7164 - AstroParticule et Cosmologie
Abstract : A finite-dimensional Hilbert space is usually described in terms of an orthonormal basis, but in certain approaches or applications a description in terms of a finite overcomplete system of vectors, called a finite tight frame, may offer some advantages. The use of a finite tight frame may lead to a simpler description of the symmetry transformations, to a simpler and more symmetric form of invariants or to the possibility of defining new mathematical objects with physical meaning, particularly in regard with the notion of a quantization of a finite set. We present some results concerning the use of integer coefficients and frame quantization, and several examples, and suggest some possible applications.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2010, 43, pp.193001. <10.1088/1751-8113/43/19/193001>


http://hal.in2p3.fr/in2p3-00353252
Contributeur : Simone Lantz <>
Soumis le : jeudi 15 janvier 2009 - 11:01:34
Dernière modification le : mardi 11 octobre 2016 - 14:55:42

Identifiants

Collections

CEA | OBSPM | APC | INSMI | PSL | USPC

Citation

N. Cotfas, J.-P. Gazeau. Finite tight frames and some applications. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2010, 43, pp.193001. <10.1088/1751-8113/43/19/193001>. <in2p3-00353252>

Exporter

Partager

Métriques

Consultations de la notice

289