version française rss feed
HAL : in2p3-00353252, version 1

Fiche détaillée  Récupérer au format
Journal of Physics A: Mathematical and Theoretical 43 (2010) 193001
Finite tight frames and some applications
N. Cotfas, J.-P. Gazeau1

A finite-dimensional Hilbert space is usually described in terms of an orthonormal basis, but in certain approaches or applications a description in terms of a finite overcomplete system of vectors, called a finite tight frame, may offer some advantages. The use of a finite tight frame may lead to a simpler description of the symmetry transformations, to a simpler and more symmetric form of invariants or to the possibility of defining new mathematical objects with physical meaning, particularly in regard with the notion of a quantization of a finite set. We present some results concerning the use of integer coefficients and frame quantization, and several examples, and suggest some possible applications.
1 :  APC - UMR 7164 - AstroParticule et Cosmologie
Mathématiques/Physique mathématique

Physique/Physique mathématique
Mathematical physics – Computational physics – Quantum information and quantum mechanics
Lien vers le texte intégral :