A. D. Guerra and N. Belcari, State-of-the-art of PET, SPECT and CT for small animal imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.583, issue.1, pp.119-124, 2007.
DOI : 10.1016/j.nima.2007.08.187

A. Constantinesco, C. Goetz, V. Israel-jost, and P. Choquet, Quel avenir pour l'imagerie TEMP du petit animal ? = What does the future hold for small animal SPECT imaging?, pp.31-183, 2007.

L. Smith, D. He, G. Wehe, S. Knoll, and . Wilderman, Design and modelling of the Hybrid Portable Gamma Camera system, IEEE Tr. Nucl. Sci, pp.45-963, 1998.

J. Berthot, V. Breton, P. Brette, S. Crespin, N. Giokaris et al., Monte Carlo simulation of gamma cameras using GEANT, Proceedings of the third IEEE Nucl. Sci. Symposium and Medical Imaging Conference, pp.110-130, 2000.
URL : https://hal.archives-ouvertes.fr/in2p3-00013760

F. Garibaldi, Optimization of compact gamma cameras for breast imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.471, issue.1-2, pp.471-222, 2001.
DOI : 10.1016/S0168-9002(01)00975-5

D. Lazaro, Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging, Physics in Medicine and Biology, vol.49, issue.2, pp.49-271, 2004.
DOI : 10.1088/0031-9155/49/2/007

URL : https://hal.archives-ouvertes.fr/in2p3-00023196

F. J. Beekman and B. Vastenhouw, Design and simulation of a high-resolution stationary SPECT system for small animals, Physics in Medicine and Biology, vol.49, issue.19, pp.4579-4592, 2004.
DOI : 10.1088/0031-9155/49/19/009

C. Merheb, Y. Petegnief, and J. N. Talbot, Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code, Physics in Medicine and Biology, vol.52, issue.3, pp.52-563, 2007.
DOI : 10.1088/0031-9155/52/3/002

E. Vandervoort, M. Camborde, S. Jan, and V. Sossi, Monte Carlo modelling of singles-mode transmission data for small animal PET scanners, Physics in Medicine and Biology, vol.52, issue.11, pp.52-3169, 2007.
DOI : 10.1088/0031-9155/52/11/016

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford et al., Attenuation scatter and spatial resolution compensation in SPECT Emission Tomography: The Fundamentals of PET and SPECT, pp.473-498, 2004.

A. B. Hwang, B. L. Franc, G. T. Gullberg, and B. H. Hasegawa, Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals, Physics in Medicine and Biology, vol.53, issue.9, pp.53-2233, 2008.
DOI : 10.1088/0031-9155/53/9/002

I. Buvat and I. Castiglioni, Monte-Carlo methods in PET and SPECT, Quarterly J. Nucl. Med, vol.46, pp.48-61, 2002.

T. A. Riauka, R. H. Hooper, and Z. W. , Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media, Physics in Medicine and Biology, vol.41, issue.7, pp.41-1167, 1996.
DOI : 10.1088/0031-9155/41/7/007

R. G. Wells, A. Celler, and R. Harrop, Analytical calculation of photon distributions in SPECT projections, IEEE Transactions on Nuclear Science, vol.45, issue.6, pp.3202-3214, 1997.
DOI : 10.1109/23.736199

D. Lazaro, Z. Bitar, V. Breton, D. Hill, and I. Buvat, Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study, Physics in Medicine and Biology, vol.50, issue.16, pp.50-3739, 2005.
DOI : 10.1088/0031-9155/50/16/006

URL : https://hal.archives-ouvertes.fr/in2p3-00104871

Z. Bitar, D. Lazaro, V. Breton, D. Hill, and I. Buvat, Fully 3D Monte Carlo image reconstruction in SPECT using functional regions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.569, issue.2, pp.399-403, 2006.
DOI : 10.1016/j.nima.2006.08.055

URL : https://hal.archives-ouvertes.fr/in2p3-00024935

I. Buvat and D. Lazaro, Monte Carlo simulations in emission tomography and GATE: An overview, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.569, issue.2, pp.323-329, 2006.
DOI : 10.1016/j.nima.2006.08.039

V. Breton, R. Medina, and J. Montagnat, DataGrid Prototype of a Biomedical Grid, Meth, Inf. Med, vol.42, pp.143-147, 2003.

M. Mascagni and A. Srinivasan, Parameterizing parallel multiplicative lagged-Fibonacci generators, Parallel Computing, vol.30, issue.7, pp.899-916, 2004.
DOI : 10.1016/j.parco.2004.06.001

B. Nitzberg, J. M. Schopf, J. P. Jones, and . Pro, Grid computing and scheduling attributes Grid resource management: state of art and future trends, pp.183-190, 2004.

A. B. Yoo, M. A. Jette, and M. Grondona, SLURM: Simple Linux Utility for Resource Management, Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing, pp.2862-2906, 2003.
DOI : 10.1007/10968987_3

N. Capit, A batch scheduler with high level components, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005., pp.776-783, 2005.
DOI : 10.1109/CCGRID.2005.1558641

URL : https://hal.archives-ouvertes.fr/hal-00005106

W. Gentzsch, Sun Grid Engine: towards creating a compute power grid, Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.35-36, 2001.
DOI : 10.1109/CCGRID.2001.923173

I. Foster and C. Kesselman, Globus: a Metacomputing Infrastructure Toolkit, International Journal of High Performance Computing Applications, vol.11, issue.2, pp.115-128, 1997.
DOI : 10.1177/109434209701100205

W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade et al., Labs of the World, Unite!!!, Journal of Grid Computing, vol.17, issue.2???4, pp.225-246, 2006.
DOI : 10.1007/s10723-006-9040-x

A. R. Butt, R. Zhang, and Y. C. Hu, A self-organizing flock of condors, Journal of parallel and distributed computing, pp.66-145, 2006.

Y. Georgiou, O. Richard, and N. Capit, Evaluations of the Lightweight Grid CIGRI upon the Grid5000 Platform, Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007), pp.279-286, 2007.
DOI : 10.1109/E-SCIENCE.2007.32

URL : https://hal.archives-ouvertes.fr/hal-00687520

Y. Georgiou, N. Capit, B. Bzeznik, and O. Richard, Simple, fault tolerant, lightweight grid computing approach for bag-of-tasks applications, 2008.

F. Dupros, F. Boulahya, J. Vairon, P. Lombard, N. Capit et al., IGGI, a computing framework for large scale parametric simulations: Application to uncertainty analysis with toughreact, TOUGH Symposium, 2006.

S. Jan, GATE: a simulation toolkit for PET and SPECT, Physics in Medicine and Biology, vol.49, issue.19, pp.4543-4561, 2004.
DOI : 10.1088/0031-9155/49/19/007

URL : https://hal.archives-ouvertes.fr/in2p3-00021834

S. Agostinelli, Geant4???a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.506, issue.3, pp.250-3003, 2003.
DOI : 10.1016/S0168-9002(03)01368-8

URL : https://hal.archives-ouvertes.fr/in2p3-00020246

S. Staelens, D. Strul, G. Santin, S. Vandenberghe, M. Koole et al., Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling, Physics in Medicine and Biology, vol.48, issue.18, pp.48-3021, 2003.
DOI : 10.1088/0031-9155/48/18/305

N. Sakellios, J. L. Rubio, N. Karakatsanis, G. Kontaxakis, G. Loudos et al., GATE simulations for small animal SPECT/PET using voxelized phantoms and rotating-head detectors, 2006 IEEE Nuclear Science Symposium Conference Record, 2000.
DOI : 10.1109/NSSMIC.2006.354305

R. Taschereau and A. F. Chatziioannou, Compressed Voxels for High-Resolution Phantom Simulations in GATE, Molecular Imaging and Biology, vol.569, issue.1, pp.40-47, 2007.
DOI : 10.1007/s11307-007-0110-7

J. De-beenhouwer, S. Staelens, Y. D-'asseler, and I. Lemahieu, Optimizing the Scalability of Parallelized GATE Simulations, 2006 IEEE Nuclear Science Symposium Conference Record, pp.3904-3908, 2006.
DOI : 10.1109/NSSMIC.2006.353842

L. Maigne, D. Hill, V. Breton, R. Reuillon, P. Calvat et al., Parallelization of Monte Carlo simulations and submission to a grid environment, Parallel Process, Lett, pp.14-177, 2004.

R. Reuillon, D. R. Hill, Z. Bitar, and V. Breton, Rigorous Distribution of Stochastic Simulations Using the DistMe Toolkit, IEEE Transactions on Nuclear Science, vol.55, issue.1, pp.55-595, 2008.
DOI : 10.1109/TNS.2007.914026

URL : https://hal.archives-ouvertes.fr/in2p3-00258304

J. Aoun, V. Breton, L. Desbat, B. Bzeznik, M. Leabad et al., Validation of the Small Animal Biospace Gamma Imager Model Using GATE Monte Carlo Simulations on the Grid Medical imaging on grids: achievements and perspectives, Proceedings MICCAI-Grid Workshop, pp.75-84, 2008.

K. Assié, I. Gardin, P. Véra, and I. Buvat, Validation of the Monte Carlo simulator GATE for indium-111 imaging, Physics in Medicine and Biology, vol.50, issue.13, pp.50-3113, 2005.
DOI : 10.1088/0031-9155/50/13/010

F. Lamare, A. Turzo, Y. Bizais, and C. , Cheze Le Rest, D. Visvikis, Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, Phys. Med. Biol, pp.51-943, 2006.

P. H. Hargrove and J. C. , Berkeley lab checkpoint/restart (BLCR) for Linux clusters, Journal of Physics: Conference Series, vol.46, pp.494-499, 2006.
DOI : 10.1088/1742-6596/46/1/067

N. Jacq, J. Salzemann, F. Jacq, Y. Legré, E. Medernach et al., Grid-enabled Virtual Screening Against Malaria, Journal of Grid Computing, vol.45, issue.1, pp.29-43, 2008.
DOI : 10.1007/s10723-007-9085-5

URL : https://hal.archives-ouvertes.fr/in2p3-00114120