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Self-consistent dynamical mean-field investigation of
exotic structures in isospin-asymmetric nuclear

matter

F. Sébille, S. Figerou and V. de la Mota
SUBATECH, Ecole des Mines, Université de Nantes, CNRS/IN2P3, Nantes, France

Abstract

The exotic structures expected in the outermost layer of neutron stars are
investigated in a new approach. It is based on the DYnamical WAvelets in
Nuclei (DYWAN) model of nuclear collisions. This microscopic dynamical
approach is an Extended Time-Dependent Hartree-Fock description based on
a wavelet representation. The model addresses the dynamical exploration of
complex nuclear structures, beyond the Wigner-Seitz (WS) approximation and
without any assumption on their final shapes. The present study focuses on
exotic phases of cold matter evidenced dynamically at sub-saturation densi-
ties, currently within a pure mean field framework, before tackling the effects
of the multi-particle correlations in a forthcoming study. Starting from inho-
mogeneous initial conditions provided by nuclei located on an initial crystalline
lattice, the exotic structures result from a dynamical self-consistent treatment
where, in principle, the nuclear system can freely self-organize, modify the
lattice structure or even break the lattice and the initial matter distribution
symmetries. In this work nuclei are initially slightly excited with low-lying col-
lective modes. The system can then explore geometrical configurations with
similar energies, without being trapped in the vicinity of a local minimum.
In this quantum framework, different effects are analyzed, among them the

sensitivity to the Equation of State and to the proton fraction.



1 Introduction

Neutron stars have fascinated physicists since their prediction [1] in the early years
of the XX century. They have been conceived as the remnant, composed of essen-
tially densely-packed neutrons, which is left behind the explosion of a massive star.
A considerable effort has been done by different theoretical models in order to un-
derstand the properties of this extreme state of matter and to describe the observed
phenomena. The mechanisms involved in the build up of a neutron star from the
explosion of a supernova is not yet well understood and constitutes an active field
of research [2] [3].

Theoretical models agree in the fact that after the formation of the neutron star
its temperature is around 10 MeV and falls rapidly compared with its life-time to 0.1
MeV [4]. It is usual to divide the neutron star into three different density regions [3].
The outermost layer, which has been extensively studied, extends up to around 10*!
g/cm? and is supposed to be composed of essentially a crystalline lattice of neutron-
rich nuclei immersed in a degenerate electron gas. The second region extends from
there up to a density of nearly 10 g/cm? and in addition to the neutron-rich nuclei
it is composed by both degenerate electron and neutron gases. In the last region, at
still higher densities the matter consists of a uniform liquid of neutrons, protons and
electrons and other elementary particles start to appear as density increases. For a
review we refer the reader to Ref. [5].

We will focus ourselves on the study of the crust, which corresponds to roughly
the two first mentioned regions. In this range of densities, matter may be correctly
described in terms of interacting nucleons, while at higher densities other degrees
of freedom will play an important role. Even if the crust region is relatively thin
(less than 10% of the radius) it constitutes the interface between the star and the
observer, in consequence the knowledge of the properties of the outer parts of the

star is important for the understanding of different internal phenomena .

In this region the existence of nuclei with exotic shapes has been predicted in-
dependently by Refs. [6] and [7] both based on a liquid-drop description. These
structures, referred to as “pasta” phases, are expected to occur at sub-nuclear den-
sities. They are the result of the delicate interplay between Coulomb and nuclear
forces |6, 7, 8, 9]. The appearance of these phases may have important astrophysical

consequences. Their presence are expected to influence the cooling process of the



neutron star and can modify the interaction between matter and neutrinos [10, 11].
The pioneer prediction of pasta phases has been confirmed by other models. Among
them let us mention the works in the domain of the Thomas-Fermi (TF) theory
[12, 13, 14], or in the extended-TF approach [15], those in the framework of the
Compressible Liquid-Drop model |16, 17, 18|, those in Molecular Dynamics (MD)
approaches [10, 11, 19|, those in self-consistent Hartree-Fock (HF) models [20]-[24]
and those in Relativistic Mean field approaches [25, 26]. Thermodynamical proper-
ties of the crust matter have been studied by these models. In TF and in liquid-drop
models, the different structural phases are prepared and equilibrium conditions de-
termined through energy considerations. In several works, there are also attempts
to address the formation of exotic structures without assuming possible shapes or
symmetries [27, 25].

In this work we present a new dynamical approach, the DYWAN model, to inves-
tigate the expected development of complex structures with many possible nuclear
shapes in neutron star crust. These structures are related to the existence of a large
number of low-energy configurations. Different frameworks could examine these con-
figurations, among which simulated annealing type techniques. Nevertheless, in the
present work we are interested in a dynamical exploration of these multiple low-lying
energy minima. Therefore, concerning the neutron star crust properties the induced
excitations are not realistic but rather they are probes of matter configurations. The
final objective will be to address the question of structural configurations both be-
yond a mean-field approximation and the Wigner-Seitz approximation. But before
tackling these aspects and keeping in mind that at low-energy excitations a leading
contribution is provided by the mean-field, the aim of this work is two folded. On
hand we will investigate the role of a pure mean field at zero temperature. On the
other hand we will check the accessible numerical accuracy in order to be able in
future simulations to disentangle physical fluctuations from numerical ones. Fur-
thermore, a main goal is to let the nuclear system freely self-organize in a given
region (super-cell) of space as large as possible. Wigner-Seitz cells are used to pre-
pare initial conditions with initial lattices, later on in the evolution, the numerical
treatment will be able to modify the lattice structure, or to break the lattice and
initial matter distribution symmetries. The only constraint kept during the dynam-
ics is the periodic boundary conditions on the super-cell, those on WS cells having
been completely released. Nuclei and simple cubic lattices currently define the initial
seed of the self-consistent treatment, but only the final results are relevant in the

discussion of neutron star crust configurations. Concerning the mean field evolu-



tion, and from a numerical point of view, the present starting conditions provide the
most compelling constraints. Indeed, from simple cubic lattice the system can be
driven to meta-stable equilibrium since other lattices, like body centred lattices, are
expected to be more stable. These meta-stable equilibrium states are very sensitive
and can be quickly destroyed by numerical inaccuracies. The fact that they survive
over time periods longer than some thousands Fm /¢ evidences the efficiency of the
mean-field treatment. Forthcoming investigations relevant to neutron star crusts,
will include the sensitivity to the initial inputs of the self-consistent treatment (like
nuclei species, heterogeneities, crystal lattice structures, and scaling laws) as well as

to collective, thermal excitations and fluctuations.

This work is organized as follows. In Section 2 we present the basis of our theoret-
ical approach, where the initial conditions, the static properties and the dynamical
evolution of the system are described. In Section 3 we present the numerical treat-
ment of the Coulomb interaction. In Section 4 the morphological analysis techniques
applied to the structures are briefly described. In Section 5 the results of the dy-
namical investigation of structure formation are presented and discussed. Finally

our conclusions are given in Section 6.

2 The model

We have recently developed a model which describes the behaviour of the nuclear
matter at sub-nuclear densities and low temperatures characterizing the crust of a
neutron star. It has been built in the framework of the DYWAN model [28| which
was proven to correctly reproduce the main features of nuclear reactions |28, 29, 30].
The DYWAN model, based on the principles of projection methods [31], is given in
terms of the projection of the complete density operator onto the subspace associ-
ated with the available information. In this sense, a hierarchy of approximations can
be built according to the level of complexity of the description. Concerning the nu-
clear dynamics at intermediate energies, these different levels are connected with the
treatment of multi-particle correlations. At the lowest level, the description is given
by the projection of the space of states onto the one-body subspace, neglecting all
couplings with other degrees of freedom. This is the Time-Dependent Hartree-Fock
(TDHF) approximation where the dynamics is completely ruled by the mean-field,
without particle correlations others than averaged two-body ones. In a second level

stands the Extended-TDHF description, where a coupling with two-particle correla-



tions is kept in order to include dissipative effects. At this level, the mean-field [32]
is still playing a preponderant role. Going beyond the ETDHEF level would need to
introduce higher order particle correlations, to complete the description of density
fluctuations and the dispersions of dynamical observables. Nevertheless, the number
of degrees of freedom is so high that the problem becomes intractable. In a previous
work [30] we proposed a simplified procedure for the treatment of dynamical multi-

particle correlations according to a random phase approximation.

In this work we will remain at the lowest level of the mentioned hierarchy of ap-
proximations since we are mainly interested in the study of the mean-field influence
on a cold nuclear system. As a matter of fact, it has been shown [20] that if the
temperature of the star is below 108 K and the density below 2.8x10 g/cm3, the
conditions for the validity of mean-field theories are satisfied. At neutron star densi-
ties and temperatures nuclear matter can be modeled by a neutral mixture of nuclei,
electrons and, eventually, free neutrons. Nuclei are expected to form a crystalline
lattice and electrons are considered as a degenerate relativistic gas [3, 33]. In our
approach electrons are modelled by a uniform charge density background in which

nuclei are immersed, and which ensures the neutrality of the system.

The general structure of the model is the following: first of all a static Hartree-
Fock (HF) self-consistent procedure is implemented in order to get nuclear compos-
ites either at their ground states or in excited states induced according to mechanical
or thermal constraints. These nuclei are used to construct the initial nuclear lat-
tice surrounded by the degenerate electron gas. Afterwards, nuclei are led to evolve
according to TDHF-type equations of motion, allowing the crust matter to self-
organize in a dynamical way. Accordingly, our description can be separated into two
main parts, one of them concerning the preparation of initial state of the system,
the other one concerning its subsequent evolution. These aspects will be presented

separately in the following Sections.

2.1 Initial configuration

The solid phase of the outermost layer of a neutron star is assumed to be composed
by an orderly arrangement of neutron rich nuclei in a crystal-like structure. An
initial guess of such a solid crystal can be constructed from a three-dimensional lat-

tice with periodic boundary conditions. This lattice is built by stacking up a cubic



super-cell in three spatial directions. The characteristics of this cell, as the length
and the type (simple cubic, body centred, face centred) can be arbitrarily chosen.
The super-cell is composed by a fixed number of WS cells (see Fig. 1) in which sin-
gle nuclei are self-consistently prepared, beyond the WS approximation [34]. These
initial conditions, by construction, involve implicitly periodic boundary conditions
for the WS cells. During the subsequent dynamical self-consistent evolution, the
periodic boundary conditions are only strictly imposed to the super-cell all along
the calculation, without Bloch periodic boundary conditions [35] on the WS cells.

In the WS cell the HF equation for each nucleus is solved as follows. An iterative
procedure is implemented to work out the single particle (s.p.) eigenvalue equations
hl@n >= €,|pn >, the one-body hamiltonian h taking the following form:

h = —h—QA + VHE
2m
We have chosen a density-dependent zero-range effective interaction, of the Zamick

type [36], with the following self-consistent field:

7 o, c 4qc
V(0 &) = Lp+ 250 + =& + 5t + (1)
Poo o0 P Poo
Q 5, 499 c
+ - +V
3,00026 3,0002 (p poo)g q
with:  p = pp + pp
§ = Pu— Pp

where p, and p, stand for neutron and proton densities, ¢=1/2 for neutrons and
-1/2 for protons, and p,,=0.145 fm~3 is the saturation density of infinite nuclear
matter [37].

If we call %y, t3, o and z3 the usual Skyrme effective interaction parameters

[38] we have the following relationships: ¢, = 3”T‘”to and ty = %tg with
zo = z3 = —1/2. In Eq. (1) V¥, the Coulomb potential associated with the

proton distribution, has been calculated in the initial state within a Haar wavelet
approximation. The spin-orbit term was not included in this first version, as well as
the momentum-dependent contributions. These terms deserve further investigations
since their influence is the matter of active research and different interpretations
[22, 32, 39]. In Table 1 we present the coefficients of the force for two different
values of the compressibility modulus: K,= 200 MeV and 380 MeV for the soft and
hard equations of state (EOS), respectively.

The current values of ¢ and €2 were chosen in order to reproduce the typical values of
baryon density energies in infinite matter [40]. They are initially fixed at ¢=20 MeV
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Figure 1: Density profiles of an initial crystal lattice. The Wigner-Seitz cell is
displayed as well as the supercell where the matter can freely self-organize. Infinite

matter is simulated by periodic boundary conditions.

Table 1: Parameters of the local Zamick interaction

t6/pw(Mev fmg) té/pVJrl(Mev fm3(u+1)) y

o0

Soft -356 303 1/6
Hard -123 70 1

and 2=-100 MeV. The principal static characteristics of nuclei, as binding energies,
radii and equilibrium densities are correctly reproduced with this simplified force.
They constitute a good approximation even in the case where the isospin-dependent
part of the potential is neglected [28, 29, 30]. As stated in recent works [41], EOS
parameters are still uncertain because they are not completely constrained from nu-

clear data, then a study of their influence on the overall dynamics seems necessary.

At each iteration the different s.p. energy levels, for each value of ¢, are calculated
according to a potential well discretization on a 3-dimensional lattice. The step of
the lattice is typically of 0.5 fm. According to the numerical resolution scheme of the

DYWAN model describing nuclear collisions the corresponding s.p. wave-functions



are expanded in an orthogonal wavelet basis {|1} >} :
or >=) Wl > (2)
i

A

1

tions from which Hilbert space bases can be built up. A family of wavelets is

where w;' are their corresponding weights. Wavelets are non-stationary wave func-

constructed by translating and expanding the generating function, called mother
wavelet:

L z—>b

Yuo(®) = 7o)

where a and b are, respectively, the compression and translation parameters. At a

given scale, any signal can be analyzed in terms of these functions in an optimal way
for a convenient choice of a discrete basis which relies on entropy criteria.

Among the different families of wavelets we have favored in (2) spline bases [42]
which either are compactly supported or respect the symmetries of the analyzed
s.p. functions. Even if splines are not analytic functions, they can be accurately ap-
proximated by a linear combination of analytic functions. For physical convenience
and interpretation, wavelets are split in progressive and regressive wavelets through
Hilbert transforms. These progressive wavelets are generalized coherent states which
can be efficiently fitted by Gabor generalized coherent states as emphasized in [43].

These coherent states are complex valued functions having the following form :

ozz(x) — Mef'yl(w7<w>¢)26772(w7<w>i) (3)

Here, N; is a normalization factor and the complex coefficients y; and 7, are related
to the first and second moments in configuration and momentum space (see Ref.
[28]):

<z >= ga: < (‘,L' - ga:)Z >= Xz < Py >=Tg < (px - 7Tav)2 >= ¢:v

1
o =< 5[($ - f:v): (pm - ’/Tm)]-}- >
where [, |, represents the anticommutation operation. The momentum-position

correlation o satisfies the generalized uncertainty relationship:

h2
A=xp—o 2= q (4)
Similar expressions can be written for y and z components. The preceding analysis
provides for each s.p. level an ensemble of 12 correlated coordinates {5, X, 7, qz?} rep-

resenting the centroids and widths of wavelets in phase space.



The one-body density matrix p = Zf\vzo | >< )| can be then written in terms of
wavelets in the following way:

N
=33 Bld >< 5)

A=0 i,j

2 = wjw}*. Following Ref. [28], where the role of the different contributions

to p has been discussed, only the diagonal terms will contribute efficiently to mean-

where

field evaluation, since they provide the relevant information to our (mean-field)
description. As a matter of fact, the off-diagonal terms are shown to oscillate very
rapidly and interfere destructively providing vanishing mean values. An analytical
phase space representation of a progressive wavelet contribution to the one body

density matrix is given by the Wigner transform of the analytical fit mentioned in
Eq. (3):

1 h(da—<>) tx(p—<p>)? ~20(a—<a>)(p—<p>))

wmm=%ﬂ§ (6)

Once the one body density matrix p and the corresponding one-body potential VqH E

are calculated the iterative process proceeds until the convergence of the Fermi en-
ergy level is reached. The W.S. nucleus can also be prepared initially in a slightly

excited state with a given deformation or at a finite temperature.

2.2 Nuclear matter behaviour at sub-nuclear densities

We proceed to show the results in equilibrium nuclear matter configuration at zero
temperature extracted from the DYWAN model. The properties of matter at sub-
nuclear densities are affected by the behaviour of nuclei resulting from the nuclear
interaction and it is important to check whether the effective nuclear force given by
Eq. (1) yields realistic values of these quantities. As pointed out by other authors
|41, 44], one of the principal physical quantities reflecting the characteristics of the
force is the energy per baryon of pure neutron matter. This quantity is defined as:
e [ VqHF dp

Ww=— =" + Wpin
p p

where Wy, is the corresponding kinetic contribution. If V.7¥ is given by Eq. (1)



then w takes the following form :

! !

t c
w ’5 — 0 3 v+1 + _52 2 7
+ 30u0? (P — Poo) P6” + Win
with 6 = (pn—pp)/p

Calculated in uniform matter, wg;, leads to an analytic formulation depending on
the density p and on the asymmetry ¢ as follows:

) 1—-0\3 14+0\3
A CURTC OV
Wkin 277’7,5( Q0 ) P 2 + 2 ( )
201
18+ x Q=—75 MeV x=0.0 c=20 MeV
16l %3 Q=—100 MeV & o
o Q--120 MeV _ o -®-
14r Q=-150 MeV T e

0 0.05 0,1 0.15
p (fm™™)

Figure 2: Energy density per baryon in cold neutron matter as a function of the
density at different values of the asymmetry parameter ). The results of Ref. [40]
are in triangles.

In Fig. 2 we represent the values of w(p) in pure neutron matter for different values
of the asymmetry constant €2 and with ¢=20 MeV. Together with these values are
plotted the results of Ref. [40] in triangles. In all these cases the constant ¢ has
been fixed in order to obtain similar values of w in pure neutron matter to those of
Ref. [40] when, in each case, the densities reach their respective saturation values in

symmetric nuclear matter. We observe a global agreement between both calculations
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Figure 3: Energy density per baryon in cold nuclear matter as a function of the

density at different proton fractions.

for the given set of (2 values. This fact is extremely interesting considering the
simplicity of the implemented effective force.

In Fig. (3) we represent the values of w(p,d) at zero temperature for asymmetric
nuclear matter at different proton fractions x. The parameters {2 and ¢ have been
fixed at 100 and 20 MeV, respectively. In our approach we have determined phe-
nomenologically the density dependence of the symmetry energy according to its
current estimate at the saturation value in pure neutron matter. This differs from
other models [45, 46, 23| where several complex requirements have been imposed
on the energy per baryon, at different proton fractions, and on different physical
quantities related with its derivatives. In fact, the scope of this work was not to
perform an exhaustive study of the equilibrium properties of nuclear matter. We
rather looked to establish the bases of the present model describing the dynamical
behaviour of nuclear matter at sub-nuclear densities. In this case a simple effective
force has been implemented, but in future calculations more sophisticated forces will
be introduced. Recent improvements in the treatment of the EOS have been done,

in particular in astrophysical applications [47, 48] .

Other physical quantities of interest in the characterization of the effective inter-
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action are nucleon chemical potentials:

o Os
=g

1=n,p.

In Fig. (4) is depicted the neutron density dependence of the proton chemical

201 A O=—125 MeV c=20 MeV
o Q=-100 MeV c=20 MeV 0.0
* Q=—100 MeV c=25 MeV X=0.
Or o Q=-75 MeV c=20 MeV
o FP
-20}
= -40f
=
o
= —60+
-80¢}
—-100¢+
-120 ; ' ;
0 0.05 03.1 0.15
p (fm™™)

Figure 4: Proton chemical potential in cold neutron matter as a function of the
neutron density for different EOS. Diamonds correspond to the results of Ref. [40].

potential in pure neutron matter. Our calculations correspond to different choices
of the interaction parameters. As can be seen from this figure the results are little
dependent on the force parameters and are in good agreement with the results of
Ref.[40], represented in diamonds.

In Fig. (5) is represented the neutron chemical potential as a function of the
density in pure neutron matter. These calculations are also performed at zero tem-
perature and for different values of €2, for a fixed ¢ value. The results of References
[40], [49] and [50] are in diamonds, squares and dots, respectively. The calculations
for the EOS with €2 = —100 MeV are close to the SKM ones, those for the two other
values of )2 show important differences at high density. Compared to the reference
EOS at €2 = —100 MeV, the results for 2 = —75 MeV overestimate the neutron
chemical potential at high density, while those for 2 = —125 MeV underestimate it.
These differences will affect the dynamical evolution.
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Figure 5: Neutron chemical potential in cold neutron matter as a function of the neu-
tron density for different EOS. Diamonds, squares and dots correspond, respectively,
to the results of Ref. [40], Ref. [49] and Ref. [50].

In the nuclear liquid drop model, the energy per baryon is written according to

its expansion near saturation density as follows [41]:

K, , L )
- 20— pe T+ —""(p—p )6 9
W w0+18p§0(p Poo)” + | +3poo(p Poo)] 9)

where wy and K, are, respectively, the coefficients related to the energy at the
saturation density and the incompressibility modulus of symmetric nuclear matter.
The coefficients J and L correspond, respectively, to the symmetry energy and to
the density-dependent symmetry energy. If p,, and the two first coefficients are
well determined by the experimental observations, the two last ones may have a
wide region of uncertainty. In order to compare with other models, we give the
relationships between different macroscopic properties of nuclear matter and the

parameter set we used in the DYWAN modelization. According to Ref. [51] we

have: >
w
Wi =5 I o5 (10)
J = w;(poo) (11)
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L=3p— 12
P 6,0 P=Pxo ( )
82605
Koy = 99 ‘ 13
Y Y apg p=peo ( )

where K, represents the incompressibility of asymmetric nuclear matter, therefore
it is related to Ky by: Ky = Kgm(d = 0), and can also have a wide region of
uncertainty. These definitions give the following relationship between the parameters
Q, cand L:

L =6c¢c+ Q+ Ly, (14)

In Eq. (14) Ly, is the contribution of the kinetic energy density to L. From Fig. 2,
when (2 increases (or equivalently, L) the energy of pure neutron matter decreases
at low density (gas phase) and increases at high density (liquid phase). This be-
haviour may have an effect on the structures occurring in the simulations, as will be

discussed later on in this paper.

In Fig. 6 we have plotted the values of L and of Ky, as a function of J. The
squares A, B and C are the results of the DYWAN model for Q= -75, -100 and
-120 MeV, respectively. The remaining symbols are extracted from Skyrme Hartree-
Fock (SHF) calculations from Ref. [51] and references therein. In this picture the
equations of state A and B are close to the reference theoretical models, while the
soft one C is too low for both quantities. We recall that we implemented here a
simple effective force, with a small number of parameters, thus providing efficient
computational formulae. Nevertheless, in spite of the simplicity of the force, the
global trends of the calculated physical quantities displayed in this section are in
good accordance with other theoretical approaches.

2.3 Dynamical evolution

At the reference level of our description, the dynamical evolution of the crystalline
structure simulating the baryonic matter in a neutron star is given by a TDHF treat-
ment of the supercell. At the densities and excitation energies involved in the star
crust the mean free path of a single nucleon in nuclear matter remains relatively long
[52, 53, 54]. In this case the dominant processes are two-body interactions in which
small scale microscopic aspects, concerning quark and mesonic degrees of freedom,

are averaged into the phenomenological self-consistent potential.
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Figure 6: Correlations between macroscopic properties of asymmetric nuclear matter
Ky vs J (right) and L vs J (left). Full dots are Skyrme Hartree-Fock (SHF)
calculations form Ref. [51] and squares are DYWAN results with Q= -75 MeV (A),
-100 MeV (B) and -120 MeV (C). The numbers denote the different parameter sets
for SHF:1 for SI, 2 for SIII, 3 for SIV, 4 for SVI, 5 for Skya, 6 for SkM, 7 for SkM*,
8 for SLy4, 9 for MSkA, 10 for SkI3, 11 for SkI4, 12 for SkX, 13 for SGIIL

The TDHF equations can been derived by different formalisms, in particular,
from a time-dependent variational principle [55] based on the stationarity of the

action:

Sz/dt <0l _hw >
o

Here < U|ih2 — h|¥ > is the Lagrangian and |¥ > is the complete N-body wave
function. The assumption here is that |¥ > is a Slater determinant of the s.p.
wave functions |, > and h a one-body Hamiltonian in which the potential is the
density-dependent effective interaction V#¥. In our model the s.p. wave-functions

are projected on a discrete basis in Hilbert space :
ox > (1) = Y ctlad > (#)
i

where the wave functions o) (z,t) are governed by time-dependent parameters and
the ¢} are constant coefficients at zero temperature, determined by the initial con-
ditions:

|0A(0) >= [} >
The |} > are the solutions of the stationary case (which is a particular solution
of the TDHF equations). In this Lagrangian representation, it is straightforward to
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show [28] that the elements of the moving basis evolve according to the following

equations:

. d

Zh&|a >= h(p)|a > (15)
Owing to the wave function decomposition, from the variational principle we obtain

a system of coupled differential equations for the first and second moments in phase

space coordinates:

.om 0
=1 4 = 1
¢ m + 37rv (16)
) 0
dx 4yx 0OV
A _ A 77 1
dt m oy (18)
2 2 2
dy W27 9, (19)

dt  8mx2 m  Ox
with the phase space correlation accounted for:

o
= — 20
7= 5y (20)

and with the wavelet transform of the effective nuclear potential:
V=< alV¥|a > (21)

In consequence, equations (16)-(19), which are Hamilton type equations for the
centroids and widths of the moving basis, solve the TDHF equations for the s.p.
wave-functions. This result can be obtained in general in the framework of general-
ized coherent states theory [56].

Let us remark that in Eq. (21) the self-consistent mean-field is a function of
the density extended to the overall supercell and not to a single WS cell. Then, as
wavelets evolve in position and widths, they are able to interact with other wavelets
belonging to different WS cells. Even more, the supercell is sensitive to its neigh-
bours according to the periodic constraints since the wave function can freely spread
and contribute to multiple super-cells, which are replicas of the central supercell .
This is underlined in Fig. 7 where the density profile corresponding to a initial lat-
tice of oxygen nuclei is represented as the function of time. The supercell is drawn
in full line, it is built with 27 WS cells, each one containing one single nucleus.
The system has been initially perturbed by introducing a slight variation on nuclei
positions, and then released to evolve under the influence of the mean-field.
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Figure 7: Time evolution of the two-dimensional density starting from an initial
oxygen cubic lattice, in which the position of nuclei have been slightly shifted with

respect their equilibrium positions.
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3 Numerical treatment of the Coulomb interaction

The electron and nuclei Coulomb energies are important ingredients in the lattice
global energy, with crucial consequences for the equilibrium sizes and shapes of nu-
clear matter in the inner crust. In our description periodic boundary conditions have
been employed and the calculation of long range interactions as the Coulomb force
requires a special care. The Ewald summation has been introduced [57] as a tech-
nique to sum efficiently the long-range interactions between particles and all their
infinite periodic images. The basic idea of this method is to recast the Coulomb po-
tential V¢, into two convenient terms which can be calculated in a fast and efficient

way.

Taking into account the expansion of the density in terms of the Gabor coherent

states (6), the Coulomb potential can be written as:
Vc(’l‘_') = 252 < V¢ >y (’F) + Va (22)

where V,; is the constant potential in space due to electrons and < v¢ >; the contri-

bution to the Coulomb potential due to an isotropic proton Gaussian state i:

c q; 3 19% (F’ — g;)
< > = d Q= 23
V> (7) 47?60/ " 29)
Here g,,(7) has the following form:
L o= 1 _(m=§)?
gXi(T —&) = We xi
K3

Following Ewald’s method, the potential generated by a single charge is accounted
for by the superposition of two contributions, on one hand the potential of the initial
charge distribution complemented by a screening Gaussian charge distribution of
equal magnitude and opposite sign, and on the other hand the potential of the
screen with the same sign as the initial charge (Fig. 8).
According to this decomposition Eq. (22) can be written as the sum of two terms
V4(7) and V,.(7), which take into account, respectively, the short and the long range
contributions. The short range contribution due to the screened charges is given in
position space by:

; ]

1 q;
Vy(r) = U
0= Jm 27 g

— |

-7

2x!

<

) —erf ( )} (24)

Here x/ is the width of isotropic Gaussian screening functions with charge —¢; and
erf is the error function. On the other side V,.(7) is the potential generated by both
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Figure 8: Components of a single charge contribution to the overall Coulomb po-
tential, in full line the charge itself, in dotted line the screening charge.

the electron and the positive screening Gaussian distributions, which is calculated

in momentum space by solving numerically the corresponding Poisson equation:

AVT(F) = (pscreen(ﬁ) + pel(f')) (25)

€0
From a computational point of view we have solved Eq. (25) on a grid using fast
Fourier transforms techniques. In the above decomposition, the long range contri-
butions of the direct term vanish and only the screened charges inside the supercell
effectively contribute. In the external cells the potential is given by the reciprocal
term, which is periodic. The choice of the width x’ permits to optimize the conver-
gence of both V; and V. and at the same time to control the precision of the method
since the overall potential must be independent of this parameter. The Ewald sum-
mation technique is widely investigated by different authors, for a recent review of

these works we refer the reader to Ref. [58|.

4 Morphological analysis of structural phases

In this section we give a brief description of a general method to characterize the
morphology of two- and three-dimensional structures, which is based on concepts
of integral geometry [59| developed in image analysis techniques. In the integral-
geometry morphological image analysis (MIA) [60] numerical functions, called image
functionals, assign numbers to the shape and connectivity of image patterns. The
number of different functionals is equal to the dimension of the pattern plus one.
In two or three dimensions these functionals are called Minkowski functionals and
represent the surface, the mean convexity, the volume and the connectivity or Euler

characteristics of the image. The last one is defined as:
XE = Ne — Ny + N

where n, is the number of elements, n; the number of tunnels and n, the number of

cavities. We remark that this quantity is not normalized and depends on the size of
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the lattice. In order to implement these functionals we map our density distributions
onto a collection of black-and-white picture elements. We assign a black pixel to
every point of the grid where the density is higher than a threshold value p;. The
variation of p; allows to study different phases of the system.

Some of the basic structures occurring in our simulation are depicted in Fig. 9.
We have also included on it the corresponding value of xg. It can be noticed that
this quantity alone does not defines unambiguously the structures. In general one
needs to give in addition another functional value, as for instance the mean convexity,
which is always negative for bubble-like patterns. Table 2 summarizes the elementary
structures we can obtain, and their corresponding Euler characteristic, according to

a convenient choice of p;.

Zinfm

XE =27 X =29

Figure 9: Various structural phases and their corresponding Euler characteristics.

5 Dynamical transitions of structural phases

In this section we show some results in the framework of the DYWAN model de-
scribed in Sec. 2. Firstly, as an illustrative example, we have considered an initial
cubic lattice of size L=24.6 fm, composed of 27 oxygen isotopes, with a proton frac-

tion x=0.1 and at zero temperature. The resulting neutron distribution is plotted
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Table 2: Summary of Euler characteristic values.

XE structure

27 spheres
rods/spherical bubbles

slabs

-3 cylindrical bubbles

-9 slabs with holes

-15 connected slabs

=27 sponge

in Fig. 10 where the corresponding isodensity surfaces are represented as a function
of time for the supercell. In this picture the threshold density is p;—0.065 fm~3

while the average density is < p >=0.0725 fm=3.

This cell is of the same type
as that of Fig. 7 but with a different initial condition in which nuclei are slightly
deformed. In this case, starting from a lattice of nuclei under a quadrupole defor-
mation, the system evolves passing through different structures, and remains rather
stable, oscillating between different arrangements which keep a memory of the initial
configuration. In Figures 7 and 10 we stress on the fact that meta-stable equilibrium
states can be attained dynamically by the system in a pure mean-field evolution. In
the example of Fig. 7 one observes that a very small variation of the initial posi-
tion of some clusters in the lattice induces a reorganization of matter favouring the
formation of heavier nuclei with different atomic number, as expected in realistic

neutron star crusts.

We observe from this picture that in addition to (quasi) spherical nuclei, are pro-
duced phases with rod-like and slab-like nuclei, slabs with holes and bubbles. This
result shows that the exotic phases are built dynamically from the initial lattice.
The mechanical energy initially deposited in the lattice clusters permits the system
to surf over different energy minima of similar values, without being trapped in one
of them. Let us emphasize the fact that the numerical accuracy achieved in this
framework is able to preserve the initial symmetries all along the dynamics, whose
characteristic time duration are greater than 1000 fm/c. Therefore, one expects
that relevant future investigations of dissipative as well as fluctuating effects will be

performed without interfering with numerical defects or seeds.
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Figure 10: Time evolution of the neutron density for the 0.065 fm =2 threshold density

corresponding to a proton fraction x—0.1 and mean density < p >=0.0725 fm~3.
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In order to characterize the preceding structures we have calculated the corre-
sponding Euler characteristics as a function of time. In Fig. 11 are plotted xg(t)

values versus t corresponding to the dynamical evolution in Fig. 10. According

10 =
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al e p,=0.065 fm >
f o
of : :
, 1
2 1
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Figure 11: Euler characteristics as a function of time for the structures of Fig. 10

to Table 2 the system passes successively through sponge-like, slabs (with holes),
rods, slabs and back to sponge-like phases, after which it oscillates between slabs
and sponge phases. These results are strongly dependent on the threshold density
pi- Indeed, if for a given time we consider different values of this quantity, different
structures are shown to appear. As a matter of example, we can consider the same
system of Fig. 10 at =201 fm/c, which corresponds to a sponge-like structure for
the threshold density p;—0.065 fm~3. In this case, as shown in Fig. 12 for a density

p:=0.09 fm 3 the structure corresponds to an arrangement of spherical nuclei, while
for p;=0.05 fm™ to cylindrical bubbles.

The previous discussions indicate that the formation of non-spherical phases and
the transitions between them are processes of dynamical nature, in accordance with
the suggestion of Ref. [27], where the same aspect has been observed despite different

initial configurations. Even more, different morphological structures corresponding

to different threshold densities can exist at a given time and for a given average
density. The occurrence of these embedded structures makes their characterization

not trivial. In order to get a better understanding about the interplay between the
different physical quantities entering in the dynamics we extracted the asymptotic

Euler characteristics corresponding to different bins of the threshold density, for a
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pe = 0.05fm=3

Figure 12: Neutron density for the same system as in Fig. 10 at t=201 fm/c for two
values of the threshold denstity p;.

variety of systems characterized by their mean densities and proton fractions.

Typical plots for the neutron distributions of density threshold p; versus the nu-
cleon average density < p > are represented in Fig. 13 where the different zones
correspond to well defined structures (or xpg values). For simplicity’s sake, we have
considered a coarse-grained classification of phases: spherical (black), cylindrical
(light grey), planar (dark grey), sponge-like structures (white) and bubbles (grey).
In these calculations we have implemented three versions of the asymmetry param-
eter () in order to analyze the sensitivity of the results to the EOS, while keeping
fixed the other parameters of the force.

As before, we observe in these pictures that for a fixed mean density different
structures are present. Conversely, for a given value of threshold density p; and for
growing values of the average density the system takes successively different struc-
tures. For £=0.2 (on the left) the system passes through all the above mentioned
structures, in that order. This behaviour follows the typical picture of phases sort-
ing suggested by the pioneer works of Ref. [6, 7] and with recent works, where the
authors of Ref. [10, 44] found complex structures like the sponge-like ones, which
they called “intermediate” phases. The phase diagrams in these works are given in a
one dimension representation. Our structure diagrams being two-dimensional plots,

in Fig. 13 equivalent structures can be observed along the density axis, for a bin in
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Figure 13: Neutron threshold density versus the neutron mean density normalized
to the saturation value for different values of 2 and for two proton fractions : x=0.2

(left) and x=0.5 (right). The different structures are in grey scales.
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the threshold density of around 0.05 fm 3.

Let us first address the case of symmetric matter (on the right). A global obser-
vation can be done, the structure diagram is weakly dependent on the EOS. With a
proton fraction x=0.5 neutron and proton distribution functions may differ locally,
in particular, due to the Coulomb interaction. Nevertheless, the isospin fingerprints
of the effective force for this proton fraction are washed out. In any case there is not
formation of slabs, we just observe a slight increase of the rod structure region with

) = =75 MeV, which is the "stiff" force with respect to the isospin asymmetry.

In the case of proton fraction z=0.2 (on the left) the structure diagram is dif-
ferent, indeed more distinct structures can exist at low mean densities and more
complex structures appear on a larger region of neutron threshold densities. It must
also be kept in mind that we are not dealing with homogenous matter, the system
can freely self-organize inside the supercell, therefore locally the nucleon density can
strongly differ from the average one. This is specially expected with strong isospin
asymmetries (low proton fractions) owing to the fact that the proton chemical po-
tential becomes strongly negative along with increasing positive neutron chemical
potential. In this case the influence of the EOS is more perceptible. Indeed, one
observes that as the force softens (for increasing ) values), the region concerning the
slab formation increases and the one corresponding to sponge-like phases decreases.
The region with bubbles tends also to decrease with increasing €2 for the higher
average densities.

A qualitative interpretation of the conspicuous EOS fingerprints on the structure
diagram is provided by the sensitivity of neutron chemical potential to the isospin
stiffness. According to Fig. 5, the density variation of the neutron chemical potential
in pure neutron matter is stronger for the stiffest effective interaction. Therefore,
the emission of neutrons located near the surface will be favoured, or equivalently,
the probability that neutron wave functions spread in all directions will increase.
This is emphasized by a clear increase of sponge-like structures, in correlation with
a greater spatial extension of the neutron liquid, linking the residual clusters. For
this reason, the minimum threshold density for the onset of spherical structures is
lowered.

In Fig. 14 we have displayed neutron (top) and proton (bottom) two-dimensional
density distributions for two proton fractions: = 0.5 (right) and z = 0.2 (left). We
considered the effective force with the standard value of 2= -100 MeV. In symmet-
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Figure 14: Density distributions of neutrons (top) and of protons (bottom) at t=401

fm/c in the plane z = 0, for two values of the proton fraction : = 0.2 (left), z = 0.5
(right) and with Q=-100 MeV.
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ric matter neutron and proton profiles have similar shapes involving small density
variations. For asymmetric matter (x = 0.2) protons are localized inside cluster
structures. These results can be put in parallel with Figs. 4 and 5 where proton
and neutron chemical potentials in pure neutron matter (respectively p, and p,) are
displayed as a function of the average density. We observe that the minima of p, are
at high density, whereas u, experiences its minima for the lowest densities. Conse-
quently, a neutron excess in high density spots leads to emission processes towards
vacuum regions, with a correlated inhibition of the proton emission. Finally, consid-
ering the energy density per baryon (Fig. 3), one also observes a strong sensitivity
to the proton fraction at high nucleon density, which compels the protons to remain

in cluster structures while delocalizes neutrons contributing to build the neutron gas.

6 Conclusions

In this article we have presented a dynamical investigation of the outermost layer in
neutron stars. The foundations of the dynamical description are based on the DY-
WAN approach of heavy-ion collisions, which has been successfully confronted with
experimental data [29, 30]. In this framework, the stellar crust is self-consistently
determined starting from an infinite periodic crystal of nuclei immersed in a de-
generate electron gas. The principal static properties of nuclear matter have been
compared with other theoretical calculations. Despite the implementation of a sim-
plified effective force, the main nuclear properties like energy densities and chemical
potentials are shown to be in close agreement with the commonly accepted theoret-
ical trends. In the current version of the model the evolution of the system is ruled
by the nuclear mean-field, owing to the fact that we focus the investigation on the

crust matter at zero temperature .

A variety of structural phases, the so-called “pasta phases”, are shown to be built
self-consistently from the microscopic nuclear motion. The morphology of these
structures has been analyzed using integral geometry techniques, revealing their
complexity. Beyond spherical nuclei, rod-like, slabs, cylindrical bubbles, slabs with
holes, connected slabs and sponges have been found. These phases are formed dy-
namically allowing the transitions between different kind of structures having ground

state energies close to each others.

We have also evidenced that, at variance with common macroscopic interpre-
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tations, the spreadings of the wave functions induce the imbrications of different
geometrical structures each one appearing for well defined bins of the threshold den-
sity p;. Structure diagrams in the plane defined by p; and the overall mean density
< p > have been plotted for two proton fractions (0.2 and 0.5) and different versions
of the force at asymptotic times. A clear sensitivity to the EOS has been evidenced
for the low proton fraction, while in symmetric nuclear matter the results are al-
most independent of it. These plots exhibit a conspicuous increase of the regions
of spherical and sponge-like structures against those of slabs and cylinders as the
effective force is stiffer. In this case, the neutrons are dripped preferentially in three-

dimensional geometries rather than in linear or in planar structures.

The energy level densities of bound particles depend on the effective interaction.
It will therefore be possible to investigate in this framework the influence of different
aspects as the non-locality of the force and shell effects. This investigation will
provide the opportunity to probe the different dynamical paths of the system on a
complex energy manifold and to analyze the lattice fingerprints on different phases
as well as the existence of various lattice geometries. A special attention has been
devoted to the numerical treatment in order to avoid unphysical symmetries breaking
due to uncontrolled numerical fluctuations. The good dynamical response to initial
excitations is evidenced by the fact that symmetries are preserved during long time
intervals in the current simulations. The problem of handling unwanted numerical
errors is crucial in order to tackle afterwards the study of physical correlations and
fluctuations. The study of hot and excited matter behaviour, dissipation as well as
fluctuation effects will therefore be reachable in this context.
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