Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments

To cite this version:

HAL Id: in2p3-00374381

http://hal.in2p3.fr/in2p3-00374381

Submitted on 31 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments

F. Monnaa, F. van Oortb, P. Hubertc, J. Dominikd, J. Boltee, J.-L. Loizeaud, J. Labanowskif, J. Lamria, C. Petita, G. Le Rouxg, C. Chateauh

aUMR 5594 CNRS-Université de Bourgogne, Centre des Sciences de la Terre, ARTe ´HIS, Bat. Gabriel, F-21000 Dijon, France
bUR 251-PESSAC, INRA, RD 10, F-78026 Versailles Cedex, France
cCentre d’Etudes Nucle´aires de Bordeaux-Gradignan, BP 120, Le Haut-Vigneau, F-33175 GRADIGNAN Cedex, France
dInstitut F.-A. Forel, Université de Genève, 10 route de Suisse, CH-1290 Versoix, Switzerland
eUMR 7090, Equipe Combinatoire et Optimisation, Université Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
fUMR 6008, CNRS – Université de Poitiers-ESIP, Laboratoire de Chimie et Microbiologie de l’Eau (ex LCEE), 40 avenue du recteur Pineau, F-86022 Poitiers, France
gURAP, Département de Géologie, B18, Sart-Tilman, Alle´e du 6 Aouˆt, B-4000 Lie`ge, Belgium
hCentre des Sciences de la Terre, Université de Bourgogne, Bat. Gabriel, F-21000 Dijon, France

A R T I C L E I N F O
Article history:
Received 2 May 2008
Received in revised form 22 September 2008
Accepted 28 September 2008
Available online 17 November 2008

Keywords:
Radioactivity
Chernobyl
Pollution
Radiocaesium

A B S T R A C T
An 80-year soil archive, the 42-plot experimental design at the INRA in Versailles (France), is used here to study long-term contamination by 137Cs atmospheric deposition and the fate of this radioisotope when associated with various agricultural practices: fallow land, KCl, NH$_4$(NO$_3$), superphosphate fertilizers, horse manure and lime amendments. The pertinence of a simple box model, where radiocaesium is supposed to move downward by convectional mechanisms, is checked using samples from control plots which had been neither amended, nor cultivated since 1928. This simple model presents the advantage of depending on only two parameters: a, a proportional factor allowing the historical atmospheric 137Cs fluxes to be reconstructed locally, and k, an annual loss coefficient from the plow horizon. Another pseudo-unknown is however necessary to run the model: the shape of historical 137Cs deposition, but this function can be easily computed by merging several curves previously established by other surveys. A loss of $\sim 1.5\%$ per year from the plow horizon, combined with appropriate fluxes, provides good concordance between simulated and measured values. In the 0–25 cm horizon, the residence half time is found to be ~ 18 yr (including both migration and radioactive decay). Migration rate constants are also calculated for some plots receiving continuous long-term agricultural treatments. Comparison with the control plots reveals significant influence of amendments on 137Cs mobility in these soils developed from a unique genoform.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of the behavior of 137Cs at terrestrial interfaces is of great environmental and/or geological interest as this radioisotope can be used as a chronostatigraphical marker in sediments (e.g. Zuo et al., 1991), and as a tool to quantify soil erosion rates (Ritchie and McHenry, 1990; Walling and He, 1999; Sanchez-Cabeza et al., 2007). In addition, the identification and quantification of parameters governing its post-depositional downward migration in soils allow long-term risks in terms of radiological impacts to be evaluated: soil via root uptake can become a source of contamination for agricultural products (Gonze and Bréchignac, 2000; Bréchignac et al., 2002); the external radiation dose from radionuclides contained in soil also depends on the vertical distribution within the soil profile (Arapis et al., 1999). Low vertical mobility extends potential resuspension of contaminated and respirable dust into the air. In contrast, downward migration represents potential risk of groundwater contamination. Radiocaesium mobility is known to depend to a large extent on the presence and nature of clay minerals, particularly illite (Cornell, 1993; Staunton and Levacic, 1999), but other parameters such as soil type, soil chemistry, organic carbon content, biological activity and climatic conditions have also been identified as acting variables. For example, it has been suggested that the sorption of 137Cs decreases with increasing organic matter content (Dumat et al., 1997; Nakamaru et al., 2007), although such relationships are not yet fully understood (Staunton and Levacic, 1999).
In addition to numerous studies focusing on the chemical availability of caesium in soils applying chemical extraction schemes (e.g., Krougl et al., 1998; Bunzl et al., 1998; Forsberg et al., 2001), downward migration in soils has been investigated by modeling 137Cs depth distributions, determined at the time of sampling, by using either convection equations alone (Palagyi and Palagyi, 2003), or a combination of convection and diffusion equations (Bossew and Kirchner, 2004). Some refinements taking into account the different states of 137Cs in the soil matrix, clay content, etc. have also been proposed (Faroussi et al., 2007). The convection model is basically rendered using a serial compartmental scheme, where the soil is split into a set of N horizontal and connected layers (Kirchner, 1998; Chibowski and Zygmunt, 2002). Each compartment is considered as a box characterized by its own downward transport rate, k_i. In other words, the amount of radionuclides reaching the underlying compartment per unit of time is proportional (k_i positive factor) to the pool present within the layer. Mobility along the soil profile is simulated by a series of differential equations of the first order, one for each compartment. Fitting the equations to the measured activities allows the different k_i values to be calculated. In such an approach, back-transmission is precluded, activities are considered uniform within each compartment, and transport rate values are presumed to be linear and time-invariant. When convection–diffusion equations are preferred, a constant diffusion factor is introduced. Whatever the model, parameter values depend on the function describing radionuclide fallout over time. If historical 137Cs deposition is not available, a single pulse into the surface soil horizon is sometimes considered. This simplification is reasonable in contaminated areas such as Central or Eastern Europe, where Chernobyl-derived fallout predominates over global nuclear bomb-derived inputs (Chibowski and Zygmunt, 2002; Hrachowitz et al., 2005). When studies integrate the complex history of 137Cs fallout, continuous deposition is approximated by a series of single depositions (Hölgye and Malý, 2000).

Despite the wide variety of approaches developed to study the vertical translocation of 137Cs in soils, predictions deduced from dynamic models are seldom validated because the opportunity to access samples covering an appropriate time-scale is rare, except for some exceptional long-term experiments operated in dedicated facilities under close-to-real controlled conditions especially designed for simulations (Forsberg et al., 2000; Bréchignac et al., 2000). In the present study, we investigated the effectiveness of a simple convective model to describe 137Cs migration in surface soil samples from the 80-year soil archive of the INRA 42-plot experimental design, located in Versailles (France). This sample-set constitutes a valuable archive to study historical atmospheric fallout, and hence, mobility-controlling parameters for various pollutants, as was recently demonstrated for common lead (Semlali et al., 2004). In addition to non-amended, non-cultivated control plots, the 42-plot design includes 16 replicate plots which are annually treated with various mineral fertilizers and agricultural amendments; all soils being developed from one unique genoform. Consequently, this scheme offers an outstanding opportunity to check the influence of agricultural practices on 137Cs migration, by eliminating the variability commonly related to soil nature.

2. Materials and methods

2.1. The site

In 1928, the French “Central Agronomy Station” and the “Soil Laboratory” of the Institute, which became INRA in 1940, created a long-term agronomic experiment in the Gardens of Versailles Palace, located about 20 km south-west of Paris. This experimental site was originally designed to study long-term effects of the main N, P, and K fertilizers as well as organic matter and lime amendments on the composition and physical properties of Neulovisiol (loamy Aquic Hapludalf) developed in eolian loess deposits, typical of the Paris Basin (Burgevin and Henin, 1939). In these soils, the clay fraction is dominated by illite–smectite mixed-layer minerals and minor amounts of illite–mica and kaolinite (Pernes-Debuyser et al., 2003). The experimental design comprises 42 plots of 2.0 m × 2.5 m, maintained as bare soils. Ten plots have never been fertilized or amended. They represent the control. The other plots have received 16 treatments: either mineral fertilizers with mono or bivalent cations (Na$^+$, K$^+$, NH$_4^+$, Ca$^{2+}$) or organic (manure, dried blood) or lime (CaCO$_3$, CaO) amendments. These treatments produced notable acidifying, neutral or basic effects on the physicochemistry of the soils (Pernes-Debuyser and Tessler, 2002a,b). From 1929 to 1970, one or more sampling campaigns were carried out each year; since the 1970s, sampling has taken place every two or three years. Sampling consists in collecting 1 kg of soil from each plot, which is then air-dried, ground to < 2 mm and stored in hermetically closed glass vials. In 1992, horizons at 25–50 cm, 50–75 cm and 75–100 cm were also sampled from selected plots.

2.2. Methods

The 137Cs activity was measured by g-spectrometry (at 661 keV) in an intrinsic high-purity germanium well detector (Ortec Ametek, Inc, USA) at the Universities of Bordeaux and Geneva. The spectrometers were installed underground, inside a heavy shielding composed of archeological lead. Counting efficiency was determined with a standard of known activity with the same geometry as for samples. Powders were counted for 3–6 days to obtain satisfactory counting statistics. Results for control and amended plots are reported in Tables 1 and 2, respectively.

Table 1

<table>
<thead>
<tr>
<th>Year of collection</th>
<th>Plot ID</th>
<th>137Cs (Bq kg$^{-1}$)</th>
<th>± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>P11</td>
<td>NM</td>
<td>–</td>
</tr>
<tr>
<td>1948</td>
<td>P32</td>
<td><0.4</td>
<td>–</td>
</tr>
<tr>
<td>1950</td>
<td>P32</td>
<td><0.4</td>
<td>–</td>
</tr>
<tr>
<td>1952</td>
<td>P11</td>
<td><1.8</td>
<td>–</td>
</tr>
<tr>
<td>1955</td>
<td>P32</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>1957</td>
<td>P32</td>
<td>2.3</td>
<td>0.2</td>
</tr>
<tr>
<td>1958</td>
<td>P32</td>
<td>2.5</td>
<td>0.4</td>
</tr>
<tr>
<td>1960</td>
<td>P11</td>
<td>7.4</td>
<td>1.9</td>
</tr>
<tr>
<td>1962</td>
<td>P32</td>
<td>6.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1963</td>
<td>P11</td>
<td>5.5</td>
<td>1.3</td>
</tr>
<tr>
<td>1964</td>
<td>P32</td>
<td>4.7</td>
<td>0.5</td>
</tr>
<tr>
<td>1966</td>
<td>P32</td>
<td>11.2</td>
<td>0.7</td>
</tr>
<tr>
<td>1968</td>
<td>P11</td>
<td>11.7</td>
<td>1.1</td>
</tr>
<tr>
<td>1972</td>
<td>P11</td>
<td>10.8</td>
<td>1.5</td>
</tr>
<tr>
<td>1977</td>
<td>P32</td>
<td>9.6</td>
<td>0.6</td>
</tr>
<tr>
<td>1980</td>
<td>P11</td>
<td>9.5</td>
<td>0.9</td>
</tr>
<tr>
<td>1981</td>
<td>P32</td>
<td>8.3</td>
<td>0.5</td>
</tr>
<tr>
<td>1982</td>
<td>P32</td>
<td>7.3</td>
<td>0.5</td>
</tr>
<tr>
<td>1987</td>
<td>P32</td>
<td>8.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1989</td>
<td>P32</td>
<td>8.9</td>
<td>0.4</td>
</tr>
<tr>
<td>1991</td>
<td>P32</td>
<td>8.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1992</td>
<td>P11</td>
<td>7.0</td>
<td>0.4</td>
</tr>
<tr>
<td>1997</td>
<td>P34</td>
<td>6.9</td>
<td>0.4</td>
</tr>
<tr>
<td>1998</td>
<td>P11</td>
<td>5.3</td>
<td>0.5</td>
</tr>
<tr>
<td>1999</td>
<td>P11</td>
<td>6.3</td>
<td>0.6</td>
</tr>
<tr>
<td>2002</td>
<td>P32</td>
<td>5.7</td>
<td>0.3</td>
</tr>
<tr>
<td>1992</td>
<td>P34</td>
<td>5.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

NM: not measurable.
3. Results and discussion

3.1. Describing the dynamic model applied to the control plots

The case of the control plots of the 42-plot experimental design is much simpler than generally observed for natural fields: (i) no amendments were applied; (ii) uptake by plants need not be considered as the plots were not cultivated during the period of sampling; (iii) lateral runoff can reasonably be ignored because the slope is negligible and because plots are isolated from one another by plastic boards. As a result, the temporal evolution of the 137Cs pool within the 0–25 cm plow horizon, P_{Cs}, is expected to depend on atmospheric flux (F_{atm}), radioactive decay (F_{desint}), and exit from the system by downward migration to the underlying horizons (F_{out}):

$$\frac{dP_{Cs}(t)}{dt} = F_{atm}(t) - F_{desint}(t) - F_{out}(t)$$ (1)

This equation becomes:

$$\frac{dP_{Cs}(t)}{dt} = F_{atm}(t) - \lambda_{Cs} \times P_{Cs}(t) - k \times P_{Cs}(t)$$ (2)

where λ_{Cs} represents the disintegration constant, and k, a positive factor expressed in yr$^{-1}$, the proportion of 137Cs leaving the plow layer by downward migration. Instead of running this first order differential model, it is much easier to discretize mechanisms at an annual step. When 137Cs deposition starts at the year t_0, the 137Cs pool per unit surface in soil corresponds to the annual atmospheric flux (A_{atm}) per surface unit:

$$P_{Cs}(t_0) = A_{atm}(t_0).$$ (3)

Each year, the 137Cs pool is augmented by new fluxes but part of the 137Cs already present in the plow layer disappears by decay and downward migration, so that at time t_n, the 137Cs pool in the plow layer becomes:

$$P_{Cs}(t_n) = A_{atm}(t_n) + P_{Cs}(t_{n-1})e^{-(k+\lambda)(t_n-t_{n-1})}$$ (4)

Since hereafter the step is considered as annual, Eq. (4) simplifies to become:

$$P_{Cs}(t_n) = A_{atm}(t_n) + P_{Cs}(t_{n-1})e^{-(k+\lambda)}$$ (5)

Instead of expressing the amount of 137Cs in terms of a pool per surface unit within the plow layer, it can be reformulated in terms of activity (A_{Cs}) within the 0–25 cm horizon:

$$A_{Cs}(t) = \frac{P_{Cs}(t)}{hd_o}$$ (6)

where h and d_o are the thickness and the bulk density of the plow horizon, respectively.

3.2. Feeding the model

If annual atmospheric fluxes of 137Cs for the last 60 years, in other words the $A_{atm}(t)$ function, were available at the INRA site, the k-factor would be the only unknown parameter of the above set of equations and its value could be directly assessed by adjusting the model to experimental data. In our case, direct monitoring of 137Cs deposition, by the Commissariat à l’Energie Atomique (CEA) located 15 km from our site, is only available from 1970 onward (Barker and Bouisset, 2001). This data set was recently complemented by Renaud and Louvat (2004), who estimated 137Cs deposition from mean air activity concentration, amount of rainfall, and deposition velocity for the station of Le Vésinet, in the Paris area, from 1961 to 1978. As the 137Cs fallout of the late 1950s is not documented, it is necessary to supplement the record by other data. This operation, however, requires great care as the magnitude of 137Cs fallout is known to be strongly related to the local annual amount of rainfall (Schuller et al., 2002; Renaud and Louvat, 2004; Huh and Su, 2004; Sigurgeirsson et al., 2005). Interestingly for our purpose, fallout resulting from the large nuclear bomb tests (>500 kt TNT equivalent) of the late 1950s and early 1960s derived almost entirely from 137Cs injected primarily into the stratosphere, transferred into the troposphere, and hence deposited to the ground. With a residence time of particles in the stratosphere of approximately 15–18 months (see reference Warneke et al., 2002 and reference therein), radioisotopes were well mixed and deposition was observed globally, though affecting mostly the mid-latitudes of the hemisphere where the tests occurred. The deposition history is therefore expected to follow approximately the same pattern everywhere (Smith et al., 1997), at least when sites are close to each other and far from the testing zones. Atmospheric deposition fluxes measured at Milford Haven (UK) from 1955 onwards (EML, 2000), 137Cs specific activity determined in about 50 grass samples harvested at the Rothamsted site (UK) from 1945 to 1990 (Warneke et al., 2002) and estimates made by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 1982) can be merged together with the Orsay and Le Vésinet documentation to produce a composite curve ($t \rightarrow f(t)$) describing the shape of historical 137Cs atmospheric fallout in Versailles (Fig. 1a). In practice, the Orsay and Rothamsted curves were adjusted to the Milford Haven flux record by using least square methods for the periods where series overlap (Fig. 1b). The year 1986 is nevertheless an exception and must be taken alone. Unlike nuclear weapon tests, the explosion and fire at the Chernobyl nuclear power plant reactor released radioactive elements into the troposphere. The heaviest particles deposited rapidly while the smallest ones were windborne over long distances. Between April 30th and May 5th, the “radioactive cloud” crossed France, mainly in the east (Roussel-Debel et al., 2007). Radioactive fallout was largely well mixed and deposition was observed globally, though affecting mostly the mid-latitudes of the hemisphere where the tests occurred. The deposition history is therefore expected to follow approximately the same pattern everywhere (Smith et al., 1997), at least when sites are close to each other and far from the testing zones. Atmospheric deposition fluxes measured at Milford Haven (UK) from 1955 onwards (EML, 2000), 137Cs specific activity determined in about 50 grass samples harvested at the Rothamsted site (UK) from 1945 to 1990 (Warneke et al., 2002) and estimates made by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 1982) can be merged together with the Orsay and Le Vésinet documentation to produce a composite curve ($t \rightarrow f(t)$) describing the shape of historical 137Cs atmospheric fallout in Versailles (Fig. 1a). In practice, the Orsay and Rothamsted curves were adjusted to the Milford Haven flux record by using least square methods for the periods where series overlap (Fig. 1b). The year 1986 is nevertheless an exception and must be taken alone. Unlike nuclear weapon tests, the explosion and fire at the Chernobyl nuclear power plant reactor released radioactive elements into the troposphere. The heaviest particles deposited rapidly while the smallest ones were windborne over long distances. Between April 30th and May 5th, the “radioactive cloud” crossed France, mainly in the east (Roussel-Debel et al., 2007). Radioactive fallout was largely controlled by the occurrence, intensity and nature of wet deposition during this short period, leading to considerable heterogeneity (Renaud et al., 2003; POURCELOT et al., 2003). Here, 137Cs flux measured at Orsay in 1986 (~355 Bq m$^{-2}$) is taken as a basis for modeling because it constitutes the most realistic value for Versailles, but the pertinence of this value must be checked later.

For $t \in [1945, 2004]$, except 1986:

$$A_{atm}(t) = axf(t).$$ (7)

For $t = 1986$ (Orsay value):

$$A_{atm}(1986) = 355 \text{ Bq m}^{-2}.$$ (8)
3.3. Running the model

To sum up, the set of equations modeling the evolution of 137Cs activity in the plow horizon of the Versailles soils from 1945 to 2004 is governed by several variables which are summarized in Table 3; two of them are unknown (a, necessary to obtain the 137Cs fluxes, and k, the annual loss from the plow horizon by downward migration). In our case, the condition of uniformity of 137Cs activity within the 0–25 cm horizon required for a convection model is reasonably respected as this layer is annually homogenized by plowing. The point is therefore to find, at least at first, a domain in which the combination of a and k matches the field data. The fitting error, FE, is computed by summing the square of the deviations between the observed, 137Csmeas (t_i), and the modeled values, 137Csmod (t_i), weighted by the inverse of the error related to activity measurements, $w(i)$:

$$FE = \sum_{i=1}^{n} w(i) \left(^{137}\text{Csmeas}(t_i) - ^{137}\text{Csmod}(t_i) \right)^2$$

(9)

where t_1, \ldots, t_n correspond to the time for which collected samples have been analyzed. This parameter, which has to be minimized, is graphically represented in a 2-D space by contour lines after multiple calculations using a (as x-axis) and k (as y-axis) varying within the intervals 0–1.5 and 0–0.027 yr$^{-1}$, respectively (Fig. 2a). The ability of the model to match the data is illustrated by the five positions shown. For each coordinate (a, k), modeled 137Cs activity has been computed through time and graphically confronted to activity observed in natural conditions (Fig. 2b–f). For the b–e close-ups, fluxes and/or losses are either too high or too low, so that significant divergences are noticed. Only position f exhibits a good concordance. It is worth noticing that 137Cs flux value assumed for 1986 on the basis of the survey carried out at Orsay (355 Bq m$^{-2}$ yr$^{-1}$) produces an increase in modeled 137Cs activity quite coherent with results from the field. Fig. 2a suggests the existence of a unique solution ($a_0.95; k_0.015$ yr$^{-1}$). However, it must be kept in mind that significant errors are associated both to 137Cs activity obtained from the field samples and to the determination of the $f(t)$ function describing the shape of the 137Cs fluxes. It is therefore more reasonable to consider at this stage a domain solution rather than a single position. This is why the 25–50 cm, 50–75 cm, and 75–100 cm horizons of the P11 control plot, sampled in 1992, were also measured, in order to better constrain a- and k-values. On the basis of the 1991 collection, the 137Cs inventory in 1992 within the 0–25 cm plow horizon was about 2200 Bq m$^{-2}$, while below there was a total activity of approximately 1000 Bq m$^{-2}$ (Table 1, Fig. 3). Below 50 cm, and more particularly below 75 cm, 137Cs was no longer measurable, suggesting that all the 137Cs that reached the ground had been inventoried by coring the experimental plot to a depth of 1 m. The ratio between the 137Cs pools below and within the plow horizon, designated b hereafter, was therefore 0.45 in 1992. This provides an
additional constraint as \(b \) values can be easily simulated with varying couples of \((a, k)\) values (Fig. 4). The value for \(k \) is around 0.015 yr\(^{-1}\), in good agreement with the assessments previously performed, on the basis of the temporal evolution of \(^{137}\)Cs activity within the plow layer. For \(a \sim 0.95 \) and \(k \sim 0.015 \) yr\(^{-1}\), calculations give 2196 Bq m\(^{-2}\) within the plow horizon and 972 Bq m\(^{-2}\) below, quite similar to measured values (cf. Fig. 3).

The residence half time in the 0–25 cm plow horizon due to migration processes only \((t = \ln 2/k)\) and the apparent migration rate to the underlying layer \((v = h/t)\) can now be estimated at 46 yr and 0.54 cm yr\(^{-1}\), respectively. It is clear that, at the INRA site, the mobility of \(^{137}\)Cs is enhanced by annual plowing, which mechanically incorporates contaminated surface soils in depth.

Despite this mixing, a value of \(k = 0.015 \) yr\(^{-1}\) indicates that the migration rate is less than that of radioactive decay \((\lambda_{^{137}\text{Cs}} = 0.023 \) yr\(^{-1}\)). By combining both constants, an overall residence half time of about 18 yr is obtained. Such an estimate falls within the range of values (3.6–29 yr, average \(\sim 10 \) yr) recently assessed on the basis of several measurements of \(^{137}\)Cs activity in agricultural and meadow topsoils monitored from 1990 to 2004 (Roussel-Debel et al., 2007). The absence of erosion and of export due to harvesting at the INRA site could explain why the overall residence half time computed at Versailles lies in the upper range of the previously reported values.

A value of \(a = 0.95 \) means that the \(^{137}\)Cs fluxes at Versailles (average annual rainfall \(\sim 650 \) mm) were just slightly lower than those monitored at Milford Haven (average annual rainfall \(\sim 750 \) mm), obviously excluding Chernobyl-derived deposition. The \(^{137}\)Cs inventory in soils from 1988 (Chernobyl excluded) is estimated at 2370 Bq m\(^{-2}\) on the basis of the mean annual precipitation using the relation empirically established by Mitchell et al. (1990). This value is lower than 3000 Bq m\(^{-2}\) computed for Versailles using \(a = 0.95 \). Our model also provides a sum of total fallout occurring between 1962 and 1969 of 3210 Bq m\(^{-2}\), which is in very good agreement with calculations made by Renaud and Louvat (2004) for the same period at the site of Le Vésinet, located at about 10 km from Versailles: 2980 Bq m\(^{-2}\). The sum of \(^{137}\)Cs deposition at Versailles for the period 1945–2004 is approximately 5750 Bq m\(^{-2}\) (uncorrected for decay); the Chernobyl deposition represents only about 350 Bq m\(^{-2}\) of this total.

Table 3

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known (measured or calculated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Plow depth</td>
<td>25 ± 2 cm</td>
</tr>
<tr>
<td>(d_a)</td>
<td>Bulk density</td>
<td>1.25 Mg m(^{-3})</td>
</tr>
<tr>
<td>(\lambda_{^{137}\text{Cs}})</td>
<td>Disintegration constant of (^{137})Cs</td>
<td>0.0229 yr(^{-1})</td>
</tr>
<tr>
<td>(f(t))</td>
<td>Shape of temporal evolution of (^{137})Cs input</td>
<td>Obtained by combining different curves</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Coefficient applied to (f(t)) to obtain annual fluxes</td>
<td>Sought value</td>
</tr>
<tr>
<td>(k)</td>
<td>Coefficient of annual loss from 0 to 25 cm</td>
<td>Sought value</td>
</tr>
<tr>
<td></td>
<td>horizon also called migration rate constant</td>
<td>in the body of the text</td>
</tr>
</tbody>
</table>

Fig. 2. (a) Fit error for \(^{137}\)Cs activity reported on a \(k \) versus \(a \) diagram. The lower the value, the better the concordance between modeled and field data. Modeled and observed \(^{137}\)Cs activity is represented by a grey line and closed circles, respectively, in five close-ups (b–f) for various combinations of \(a \) and \(k \).
3.4. Influence of fertilizers and amendments

When applying the model to plots receiving long-term fertilization and/or amendments (Table 2), the calculated k-factors differed approximately fourfold (Fig. 5), in the following order:

$$k_{\text{KCl}} > k_{\text{CaO}} > k_{\text{superphosphate}} > k_{\text{control}} > k_{\text{NH}_4\text{NO}_3} = k_{\text{manure}}$$

This wide variety of radiocaesium mobility illustrates the role of characteristic properties which developed in the soils of the 42-plot experiment over time, such as differences in clay mineralogy, organic matter content, CEC, pH and physical properties (Pernes-Debuyser and Tessier, 2002a,b, 2004). Indeed, with time, the long-term agricultural treatments have led to a wide variety of physicochemical characteristics (Table 4): pH (4.2–8.2), CEC (7.6–18.7) and organic carbon (5.1–31.8 g kg$^{-1}$). Although these long-term treatments have influenced both the chemical and physical properties in the surface layers, further insights may yet be highlighted by our results. The highest k-factor is calculated for the KCl-fertilized plot. The KCl-plot displays physicochemical characteristics rather similar to those of the control plot, but Pernes-Debuyser et al. (2003) showed an increasing illite-like behavior of the clay fraction. This mineralogical evolution was related to K-retrogression in smectitic layers, increasing the proportion of illite in the illite–smectite inter-layered phyllosilicates. Since both K and Cs displays high affinity for interfoliar exchangeable sites of illitic clay minerals (Staunton and Levacic, 1999; Seaman et al., 2001), and since these sites are predominantly occupied by K, the ^{137}Cs entering these soils migrate more easily in comparison to the control plot.

The lowest k-factors are observed for the manure-amended plot and that fertilized with NH$_4$NO$_3$. A striking difference for the manure plot was its high organic matter content and CEC value (Table 4). Although manure was shown to provide high amounts of potassium leading to an illitization of the clay fraction as in case of the KCl-plot (Pernes-Debuyser et al., 2003), the incorporation of organic matter increases the amount of negative charges, obviously favoring perennial sorption of ^{137}Cs. This result is however divergent with respect to many other studies which highlight the role of organic matter to favor Cs mobility (Staunton and Levacic, 1999; Chibowski and Zygmunt, 2002; Nakamaru et al., 2007). In case of the NH$_4$NO$_3$ plot, according to work of Giannakopoulou et al. (2007) the low pH (4.5) would be unfavorable to Cs sorption, in contradiction with the low k-factors observed in Fig. 5. In the present work, the long-term NH$_4$NO$_3$ gifts seem to produce impacts on the physical properties, rather than chemical consequences,
since NH$_4^+$ is known to have a disaggregating effect on soil structure (Bresson and Boiffin, 1990). Hence, the explanation of the low k-factor can be related to the formation of soil crustling at the surface of plots after rainfall events, particularly in acidified plots (Bresson and Boiffin, 1990). This crust formation and its duration strongly reduce both water infiltration in acid plots and drainage of 137Cs in the soil but both towards subsurface horizons.

Intermediate values of k-factors were observed for the CaO and superphosphate-amended plots. Both treatments provide large amounts of Ca and lead to nearly neutral or basic soil pH (Table 4). The predominance of Ca on the cation exchange complex ensures the soil structure favorable to rainwater infiltration, but at the same time a pH $>$ 7 was shown to be favorable to the creation of variable charges on clay minerals and organic matter (Pernes-Debuzyer and Tessier, 2002b), increasing the sorption of 137Cs (Giannakopoulou et al., 2007). Hence, as a compromise, the k-factors for these two treatments are of the same order as those calculated for the control plot (Fig. 5).

4. Conclusion

This study takes advantage of a long-term soil experiment, which allows modeled results to be verified against measured time series. Even if the model applied is simple, compared with previously published works, it appears that with a migration rate from the soil solution towards underlying layers of 1.5% per year (k = 0.015 yr$^{-1}$) and an appropriate 137Cs flux history, the data modeled almost perfectly fit both (i) the evolution of 137Cs activity in all control plots from 1945 to 2002, and (ii) the 137Cs depth distribution in 1992. This undoubtedly indicates the pertinence of the compartmental modeling approach, at least in superficial soil layers. Although plowing obviously extends downward migration, radioactive decay remains the dominant process of activity decline in the compartmental modeling approach, at least in superficial soil layers. Combining disintegration and radioactive decay, a residence half time within the topmost 25 cm of soil is approximately 18 yr is obtained. For plots with long-term fertilizations and/or amendments, interpretation is complicated by the great number of physicochemical variables subsequently affected by treatments, but significantly different k-values can be straightforwardly compared, since all plots developed from the same genoform.

Acknowledgements

The authors are grateful to Sébastien Breuil of INRA for managing the 80-year soil archive and supplying soil samples, and Philippe Renaud for providing Le Vésinet data and advice. We also thank the anonymous reviewers who improved the manuscript by their judicious comments.

References

Hölligé, Z., Malý, M., 2000. Sources, vertical distribution, and migration rates of 210Po, 210Pu, and 137Cs in grassland soil in three localities of central Bohemia. Journal of Environmental Radioactivity 47, 135–147.

Huh, C.-A., Su, C.-C., 2004. Distribution of fallout radionuclides (90Sr, 137Cs, 210Po and 210Pu) in soils of Taiwan. Journal of Environmental Radioactivity 77, 87–100.

