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Abstract 

 Fragmentation ratios have been measured for ionization and dissociative ionization for 20-150 

keV (0.9-2.4 v0) proton collisions with gas-phase uracil molecules. Through event-by-event 

determination of the post-collision projectile charge, it is possible for the first time for such a key 

biomolecule to distinguish between electron capture (EC) by the incident proton and direct ionization 

(DI) without projectile neutralization. While the same fragment ion groups are observed in the mass 

spectrum for both processes, electron capture induces dissociation with greater efficiency than direct 

ionization in the impact energy range of 35-150 keV (1.2-2.4 v0). In this range electron capture is also 

less abundant than direct ionization with a branching ratio for electron capture / total ionization of < 

50%. Moreover, whereas fragmentation ratios do not change with energy in case of electron capture, 

direct ionization mass spectra show a tendency for increased fragmentation at lower impact energies. 
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1. Introduction 

 The exposure of living tissue to ionizing radiation can kill cells and initiate mutations or cancers, 

effects which have been traced to the structural and chemical modification of DNA (deoxyribonucleic 

acid) including strand breaks and clustered lesions [von Sonntag 1987]. In the wake of the pioneering 

work directly linking specific molecular-scale interactions to DNA strand breaks [e.g. Boudaiffa et al. 

2000], the experimental and theoretical study of radiation-induced processes in isolated biomolecules 

has developed into a significant field at the borderline between physics, chemistry, and biology. A 

number of recent contributions to the subject have focused upon interactions of relevance to cancer 

therapy techniques in which beams of accelerated ions are used to deliver localized doses of energy 

to kill cells within tumors (proton and hadron therapies) [Moretto-Capelle and Le Padellec 2006]. 

These treatments exploit the Bragg peak maximum for energy deposition by incident ions at velocities 

around 2.0 v0 (100 keV for protons), this peak maximum being a product of the interplay between 

ionization, excitation, and charge exchange processes as the projectiles slow down in a medium 

[Biaggi et al. 1999, Cabrera-Trujillo et al. 2003].  

 Uracil (C4H4N2O2) is one of the four nucleobases in ribonucleic acid (RNA), the others being 

adenine, cytosine, and guanine. RNA plays a key role in the translation of genetic information and 

includes the same nucleobases as DNA except for uracil which replaces thymine; both nucleobases 

pair with adenine in the respective nucleic acids. While other tautomeric forms of uracil are possible, 

the structure shown as an insert in Fig. 1 is the only one which has been identified both in solution and 

in the gas phase [Marian et al. 2002, Becker and Kogan 1980]. The geometrical structure and 

conformational flexibility of uracil has been studied on the basis of MP2 and DFT calculations by 

Shishkin et al. [2003]. In addition to its important role in biosynthesis and radiobiology, uracil was 

chosen for the present experiments due to the relatively large volume of comparable gas-phase 

ionization data available already in the literature (discussed in section 3).  

 The present work provides for the first time fragmentation patterns (ratios) for the ionization of a 

nucleobase as a function of proton impact energy also allowing to distinguish between charge 

exchange collisions  between the projectile ion and target molecule and direct ionization events in the 

velocity range coinciding with maximum energy deposition (Bragg peak maximum). Beyond their 

relevance to the development of progressively more refined mechanistic models of ion-induced 

radiation damage in biological materials [Friedland et al. 2003], the results are of fundamental interest 
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with respect to the production of fragment ions either by electron capture or by direct ionization in the 

case of an electronically and geometrically complex target molecule such as a nucleic base. 

 

2. Experimental 

 The crossed-beam apparatus used for the present experiments is shown schematically in Fig. 2 

[Gobet et al. 2001]. Pure molecular hydrogen is ionized in a standard RF-gas discharge source (80 

MHz) typically operated at 30 W with a H2 pressure of 1 Pa. Beams of singly charged ions extracted 

from this gas discharge ion source are accelerated to energies between 20 and 150 keV with a 

resolution (∆E/E) of 0.01. The accelerator system has been described in detail elsewhere [Carré et al. 

1980]. A first magnetic sector field is used to separate protons from other ions such as H2
+, H3

+, and 

other ions originating from impurities in the source. After collimation by means of two circular apertures 

of radius 0.5 mm set 1 m apart, the proton beam is crossed at right angles with an effusive beam of 

uracil molecules. The uracil beam is formed by the sublimation of uracil powder (purchased from 

Sigma-Aldrich, minimum purity 99%) in a temperature-controlled Knudsen-type oven operated typically 

at 175 – 200 °C. Previous studies indicate that min imal thermal decomposition and isomerization of 

uracil occurs at these temperatures (Desfrançois et al. 1996). Accordingly, no evidence was observed 

for temperature-dependence in the present mass spectra for uracil ionization by proton impact. The 

exit aperture of the oven has a diameter of 1 mm and is positioned 2 mm below the incident proton 

beam in order to achieve a high-density target beam. The charge state of the projectile after a collision 

with an uracil molecule is determined using a second magnetic sector field mass analyzer with three 

channeltron detectors located at the appropriate positions to detect H+, H0, and H-. However, due to 

the low statistics for the coincident detection of an H- projectile with a product ion (e.g. less than 0.2% 

of all coincidence events at 80 keV), double electron capture results are not presented in this paper.  

 A customs-built linear time-of-flight (TOF) mass spectrometer is used to analyze the uracil 

product ions formed by the impact of a proton with an uracil molecule. The instrument comprises an 

extraction region defined by parallel plates (±150 V, 10 mm apart) on either side of the uracil beam, an 

acceleration region, a drift tube of 120 mm length, and a channeltron detector. The positive product 

ions are extracted from the interaction region perpendicularly to both the proton and uracil beam, the 

extraction and acceleration fields are set following the conditions defined by Wiley and McLaren [1955] 

in order to focus ions selected precisely at the detector entrance. 
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 It is important that the proton projectile beam does not contain fast hydrogen atoms formed by the 

neutralization of protons in collisions with surfaces or the residual gas. Thus the background vacuum 

is maintained below 10-6 Torr and the alignment of the proton beam is verified prior to each 

experiment. Furthermore, single collision conditions are necessary to guarantee the unambiguous 

identification of the ionization processes. Both was checked with 80 keV protons by varying the target 

jet density by a factor of five changing the oven temperature accordingly. As changing the oven 

temperature in this way did not affect the measured branching ratio (25.4% ± 2) for electron capture 

(electron capture events divided by the sum of EC and DI ecents), it can be concluded that 

interactions between uracil molecules and hydrogen atoms neutralized in the jet did not contaminate 

the product ion signal because it is know from earlier measurements that for instance for 80 keV 

neutral hydrogen atom collisions with water molecules [Gobet et al. 2006] about 70% of the collisons 

led to electron loss reactions. 

The time-of-flight (TOF) measurement to allow the determination of the mass-to-charge ratio (m/q 

in Thomson) of the product ions relies for its starting pulse on the detection of the corresponding 

proton projectile. As mentioned above each projectile that crosses the interaction region can be 

detected whatever its post-interaction charge state. The energy transfer during a collision with a target 

molecule is expected be less than ~ 100 eV by analogy with Cabrera-Trujillo et al.’s [2000] 

calculations for 25 keV low-impact-parameter proton collisions with nitrogen, oxygen, and fluorine 

atoms. As this is small in comparison with the incident kinetic energy of the projectiles (20-150 keV), 

the precise time at which the proton/uracil interaction takes place can be determined for each detected 

projectile, and the time difference between a pulse at the product ion channeltron detector of the TOF 

and the proton/uracil interaction equals the flight time of the product ion. Clearly, the number of 

projectiles has to be sufficiently low for each product ion signal to be correlated to exactly one 

projectile. Therefore, only one proton is allowed to cross the interaction region during a time interval 

equal to twice the flight time of the heaviest conceivable product ion, that is the uracil parent ion. For 

the present experimental arrangement, this limits the primary ion beam current to 2000 protons per 

second. 

By simultaneously determining the mass-per-charge ratio of the product ions and the post-

interaction charge of the projectile, the experiment enables direct ionization (product ion detection with 

coincident H+ detection after the secondary magnetic analyzer) to be distinguished from electron 
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capture (coincident product ion and H0 detection) for each ionization event. Thus, in the present 

terminology, direct ionization (DI) describes the removal of an electron from the uracil molecule to the 

continuum, and electron capture (EC) describes the transfer of an electron from the uracil molecule to 

the projectile. The fragmentation and branching ratios presented in section 3 correspond to single ion 

production only; events involving the detection of two or more fragment ions in coincidence with a 

single projectile (including events involving charge transfer and electron emission) are thus not 

included. At 80 keV, double ion production represents only about 5% of all observed ionization events. 

Due to the relatively poor statistics, double ion production results are not discussed further in the 

present communication. 

 

3. Results and Discussion 

 

3.1 Branching ratios for electron capture and direct ionization 

 

 Fig. 1 shows ions formed by electron capture as a percentage of the total number of ions 

produced ( that is EC/EC + DI). The errors for this branching ratio estimated on the basis of the 

variation between repeated measurements for 80-150 keV protons are approximately ±2%.. In this 

energy range, the projectile detection signals were sufficiently strong to be separated completely from 

the noise, corresponding to projectile detection efficiencies approaching 100%. The errors are larger  

for impact energies below 65 keV because the threshold had to be set closer to the noise level. 

Branching ratios for the 20 and 23 keV measurements are not included here due to large errors 

resulting from the low number of observed direct ionization events. 

Branching ratios for electron capture in ionizing collisions with protons are available for a number 

of atomic and molecular targets [e.g. Rudd et al. 1983, Gobet et al. 2001, Gobet et al. 2004, Luna et 

al. 2007]. In each case, the %EC decreases with increasing impact energy in the present energy 

range. Fig. 3 shows the present uracil results on a logarithmic impact energy scale with previous 

electron capture branching ratios measured for proton impact ionization of water [Gobet et al. 2001, 

Gobet et al. 2004, Luna et al. 2007]. It is worth noting that the branching ratios calculated (assuming 

negligible double ionization) from Luna et al.’s [2007] recent coincidence data are in good agreement 

with the water ionization results recorded using the present experimental system [Gobet et al. 2001, 
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2004]. Fig. 3 also shows %EC calculated from Rudd et al.’s [1983] absolute cross sections for electron 

emission and total ionization in proton collisions with He, CO2, CH4, and O2. 

It is interesting to consider Fig. 3 in the context of the loose trend apparent in Rudd et al.’s data 

[1983] for atoms with higher ionization energies to demonstrate greater %EC in the lower energy part 

of the present range. In a simple Bohr-type model, this trend can be rationalized on the basis of 

approximate equivalent velocities of the bound electron and the incident proton providing favorable 

conditions for electron capture. As far as we are aware, no previous data is available to derive %EC 

values for a molecule with a similarly low ionization energy to that of uracil (IE = 9.59 ± 0.08 eV [Denifl 

et al. 2004]). However, the close agreement of the uracil data with the previous H2O (IE = 12.65 ± 0.05 

eV [Snow and Thomas 1990]) and CH4 (IE = 12.61 ± 0.01 eV [Berkowitz et al. 1987]) measurements 

[Rudd et al. 1983, Gobet et al. 2004, Luna et al. 2007] indicates that the lowest ionization energy is not 

a sensitive determinant for the relative contributions of EC and DI in 20-150 keV proton collisions with 

molecules, possibly suggesting that the capture of valence electrons from orbitals other than the 

HOMO plays a significant role. This interpretation appears to be consistent with uracil+ accounting for 

less than 15% of the presently observed ions formed by electron capture (see section 3.2), while 

Denifl et al. [2004] reported uracil fragment ion appearance energies in the range 10.89 -14.77 eV. 

 

3.2 Proton impact ionization mass spectra 

 Fig. 4 shows the mass spectrum for single ion production by electron capture and direct ionization 

in 80 keV (1.8 v0) proton collisions with gas-phase uracil molecules. The histogram includes data 

which contributed to the summed mass spectrum for 20-150 keV (0.9-2.4 v0) proton impact presented 

by Coupier et al. [2002]. More recently, a mass spectrum for 100 keV (2.0 v0) proton impact ionization 

of gas-phase uracil has been reported by Le Padellec et al. [2008]. Schlathölter and co-workers 

studied uracil ionization in collisions with various ions, including multiply charged species. In particular, 

complete mass spectra were presented for He2+, C2+, N2+, and O2+ impact at 0.2 v0 [Schlathölter et al. 

2005], C1-6+ impact at 0.4 v0 [Schlathölter et al. 2005, Schlathölter et al. 2006, de Vries et al. 2004, de 

Vries et al. 2002], C6+ impact at 0.5 v0 [Schlathölter et al. 2005], O5+ impact at 0.5 v0 [Schlathölter et al. 

2006], C+ impact at 0.1-0.3 v0 [Schlathölter et al. 2005, de Vries et al. 2004], and 129Xe14+ impact at 0.2 

v0 [de Vries et al. 2003]. The same groups of singly charged product ions were observed in these 

varied ion impact conditions, with the exception of Schlathölter and co-workers’ He2+ impact result 
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(discussed below). Unlike the present work, the previously presented ion impact mass spectra did not 

separate ionization processes as a function of charge transfer between the target and the projectile. 

Recent electron impact ionization studies of gas-phase uracil have been carried out at incident 

energies of 200 eV (3.8 v0) [Coupier et al. 2002], 120 eV (3.0 v0) [Feil et al. 2004], and 70 eV (2.3 v0) 

[Denifl et al. 2004, Imhoff et al. 2007, NIST] using quadrupole mass spectrometers (QMS). Also using 

a QMS analyzer, Jochims et al. [2005] measured ion yields following 20 eV photo-ionization of uracil. 

For gas-phase uracil ionization, table 1 compares the present 80 keV (1.8 v0) proton impact mass 

spectrum with Le Padellec et al.’s [2008] 100 keV (2.0 v0) proton impact data and with the previous 

high-resolution electron impact and photo-ionization measurements [Imhoff et al. 2007, Denifl et al. 

2004, Jochims et al. 2005]. The desorbed cations observed by Imhoff et al. [2007] following 200 eV 

(0.01 v0) Ar+ impact on condensed uracil are also listed in the table. With reasonable allowance for 

differences in resolution and background noise, peaks were generally observed at the same m/q 

values for the different projectiles. Similarly, whereas the relative intensities of the different ion groups 

differed for direct ionization and electron capture and varied to some extent with impact energy (see 

section 3.3), no associated variations in peak positions were observed in the present mass spectra. 

The previous high-resolution electron impact, ion impact, and photo-ionization mass 

spectrometric studies of gas-phase uracil have shown the contributions of fragment ions of m/q close 

to uracil+ to be negligible [Denifl et al. 2004, Feil et al. 2004, Imhoff et al. 2007, Jochims et al. 2005, de 

Vries et al. 2004]. Therefore, while the m/q resolution is insufficient to confirm or discount the 

production of intact uracil ions stripped of one or more exterior hydrogen atoms, it is reasonable to 

assume that such channels have a negligible contribution to the present data. 

Fig. 4 shows that fragment ion production was significant in the m/q ranges corresponding to ions 

with 1-5 heavier (C, N, or O, as opposed to H) atoms. By contrast, ions produced by the loss of just 

one heavier atom have only been observed by 20 eV photo-ionization of gas-phase uracil (a very 

weak feature at 96 Thomson) [Jochims et al. 2005], 0.2 v0 He2+ impact on gas-phase uracil (78 and 

94-96 Thomson), and 200 eV (0.01 v0) Ar+ irradiation of condensed uracil (95-97 Thomson) [Imhoff et 

al. 2007]. Jochims et al. [2005] and Imhoff et al. [2007] attributed these weak peaks to oxygen removal 

(combined with the possible removal of one or two hydrogen atoms) from uracil or protonated uracil, 

respectively. Schlathölter et al. [2005] rationalized the unusually strong production of fragment ions in 

this range following 0.2 v0 He2+ impact on the basis of the specific interplay between target and 
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projectile electronic levels. Although no corresponding features were observed in the present 20-150 

keV (0.9-2.4 v0) proton impact mass spectra, the count rates between 75 and 90 Thomson were 

slightly higher than the background noise, suggesting very weak ion production. No evidence was 

observed for fragment ions above 90 Thomson. The weakness of any production of ions with 6 or 7 

heavier atoms suggests that the dissociative ionization of gas-phase uracil following proton impact 

occurs almost exclusively via cleavage of the central aromatic ring. Accordingly, neutral HNCO loss (a 

retro Diels-Alder reaction) has been widely recognized as the initial step in the dominant fragmentation 

pathways of (uracil+)*, leading to fragment ion production with m/q ≤ 69 Thomson. Subsequent 

production of HNCO, HCN, CO, and H production (as well as combinations of these neutrals) are 

understood to account for the lower m/q fragment ion peaks [Jochims et al. 2005]. It should be noted 

that bond rearrangements have been shown to occur prior to the fragmentation of quite similar 

metastable polyatomic cations to (uracil+)* (see, for example, Imhoff et al.’s [2005] studies of the 70 eV 

electron-impact induced dissociative ionization of thymine and deuterated thymine). 

The peak structure observed between 20 and 69 Thomson was in close agreement with the 

previous ion impact [e.g. De Vries et al. 2004], electron impact [e.g Imhoff et al. 2007] and 20 eV 

photo-ionization mass spectra [Jochims et al. 2005]. Denifl et al. [2004], Imhoff et al. [2007], and 

Jochims et al. [2005] proposed broadly consistent assignments for the various peaks, with the notable 

exception of the major peak at 42 Thomson which was respectively attributed to CNO+, C2H4N
+, and 

C2H2O
+. Jochims et al. [2005] suggested that direct CNO+ production from uracil+ is unlikely as it 

would require the rupture of 3 bonds, while CNO+ loss from (C3H3NO+)* would involve a complex 

nuclear rearrangement. However it may be countered that the C3H3NO+ - HCN → C2H2O
+ channel 

proposed by Jochims et al. [2005] would also involve a fairly complex rearrangement of the metastable 

precursor. Imhoff et al. [2005] attributed C2H4N
+ production to cleavage of the N1-C2 and C4-C5 

bonds (see Fig. 2) combined with the translation of the H atom bonded to N3 in (uracil+)*. Although the 

present work does not provide any new evidence to identify the dominant 42 Thomson fragment ion, it 

should be noted that higher energy transfer can be expected for 20-150 keV proton impact than for 70 

eV electron impact or 20 eV photo-ionization. Indeed Moretto-Capelle and Le Padellec [2006] reported 

significant emission of electrons with kinetic energies up to 50 eV following 25-100 keV proton impact 

upon gas-phase uracil, as well as weaker emission of 50 - 200 eV electrons. Therefore ionization 

pathways involving high energy deposition, increasing the likelihood of multiple bond cleavage and 
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fragmentation prior to nuclear rearrangement, are expected to be significant in the present collision 

conditions. Accordingly, we suggest that the present peak at 42 Thomson may contain a relatively 

strong contribution of CNO+ ions. 

The 12-18 Thomson group is apparent in the electron impact measurements covering this range 

[Coupier et al. 2002, Imhoff et al. 2007, NIST], in the previous ion impact data [Le Padellec et al. 2008, 

Schlathölter et al. 2005, Schlathölter et al. 2006, de Vries et al. 2004], and in Jochims et al.’s [2005] 

photo-ionization mass spectrum. In the present data, particularly strong peaks were observed at 12 

(C+) and 14 Thomson (N+ or CH2
+). For 70 eV electron impact on gas-phase uracil and 200 eV Ar+ 

impact on condensed uracil, Imhoff et al. [2007] assigned cation production in this mass range 

principally to CH2
+ and CH3

+ production. The relatively high intensity of the C+ peak in the present 

mass spectra may be due to greater energy deposition by 20-150 keV proton impact leading to 

increased multi-fragmentation. 

H+ production was observed in the present work and in all the previous ion and electron impact 

measurements which covered the full product ion mass range [de Vries et al. 2003, de Vries et al. 

2004, Schlathölter et al. 2004, Schlathölter et al. 2006, Coupier et al. 2002, Imhoff et al. 2007]. No 

evidence was observed in the present data for ion production between the strong peaks at 1 and 12 

Thomson. Conversely, H2
+ production from gas-phase uracil was observed in Imhoff et al.’s [2007] 70 

eV (2.3 v0) electron impact experiments and in diverse ion impact mass spectra reported by 

Schlathölter and co-workers [de Vries et al. 2003, de Vries et al. 2004, Schlathölter et al. 2004, 

Schlathölter et al. 2006, Coupier et al. 2002, Imhoff et al. 2007]. Indeed, the only previous mass 

spectrum showing the absence of H2
+ products from gas-phase uracil was de Vries et al.’s [2003] 

electron-ion coincidence measurement for 0.2 v0 
129Xe14+ impact. To the authors’ knowledge, no 

attempt has been made to pinpoint the dominant fragmentation pathways associated with H+ or H2
+ 

production from uracil. 

 The present lack of evidence for the production of small doubly charged ions (notably C2+, N2+, 

and O2+) is consistent with Feil et al.’s [2004] observation of no signals of appreciable intensity for 

multiply charged ions following electron impact upon gas-phase uracil at energies from the ionization 

threshold to 1 keV (8.6 v0). Accordingly, Le Padellec et al. [2008] commented that correlated fragment 

ion measurements show doubly charged nucleobase parent ions (e.g. uracil2+) produced by proton 

impact to be scarce. De Vries et al. [2002] described the ratio of doubly to singly charged product ions 
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as surprisingly low at ~0.75% for C1-6+ impact at velocities in the range 0.1-0.7 v0, while the formation 

of specific multiply charged product ions has been investigated in more detail for 129Xe5-25+ impact 

upon uracil at 0.2 v0 [de Vries et al. 2003, de Vries et al. 2004], Xe8+ impact at 0.2 v0 [Schlathölter et 

al. 2006], and 129Xe25+ impact at 0.6 v0 [Schlathölter et al. 2004]. 

 

3.3 Fragment ion production as a function of impact energy and ionization process (EC / DI) 

 The present data provides an ideal platform to compare direct ionization with electron capture in 

terms of the branching ratios for fragment ion production against total ionization and their variation with 

impact energy. Product ion branching ratios calculated separately for EC and DI (e.g. the number of 

product ions produced by EC in a given mass range / the total number of product ions produced by 

EC) are presented in Fig. 5 and table 2. The errors listed in the table are statistical (n-½) and do not 

take into account the acceptance of the time-of-flight apparatus. Fragment ions are separated into 7 

groups corresponding to the clear peaks in the mass spectra (see Fig. 4). Although the groups have 

been named after the ions associated with the maxima (see table 1), they include counts over the full 

range of each peak (e.g. 35-47 Thomson for the CNO+ / C2H4N
+ / C2H2O

+ group). The contribution of 

background noise could be removed easily as it was observed to be constant across all flight times. 

 Fig. 5 and table 2 do not show any clear evidence for impact energy-dependence in the electron 

capture product ion branching ratios following proton collisions with gas-phase uracil. It is interesting to 

contrast these results with the proton - H2O collision data recorded by Gobet et al. [2004] using the 

same apparatus. For electron capture from H2O, the branching ratio for fragment ion production 

increased from 47% at 20 keV to 67% at 150 keV∗. This coincided with an approximate 25-fold 

decrease in the total cross section for electron capture [Gobet et al. 2001, 2004]. Thus the observed 

product ion branching ratios following EC in proton - H2O collisions were broadly consistent with the 

generalized association of smaller impact parameters (more direct collisions, smaller cross sections) 

with greater energy deposition and increased fragmentation [Walch et al. 1994, Cabrera-Trujillo et al. 

2000]. The cross sections for EC in proton - uracil collisions also decrease significantly from 20 to 150 

keV (demonstrated in a forthcoming publication [Tabet et al. unpublished]). Why this does not have a 

discernable effect on the relative production of fragment ions from uracil is an open question. The 

                                                 
∗ Allowing for errors associated primarily with corrections for ion acceptance, Gobet et al.’s [2004] 
proton impact data is in good agreement with the subsequent measurements carried out by Luna et al. 
[2007] in the impact energy range 20-100 keV. 
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relatively complex electronic configuration of uracil combined with the notoriously difficult theoretical 

treatment of ion-molecule interactions at intermediate velocities means that modeling the ionization 

processes observed in the present work represents a major challenge [Wang et al. unpublished]. 

 In contrast to the electron capture results, energy dependence was observed in the relative 

production of uracil+ and fragment ions following direct ionization. In particular, at low impact energies 

(42-27 keV) table 2 shows a clear reduction in the relative production of uracil+ and of fragment ions 

belonging to the largest m/q group (the C3H3NO+ group), as well as increased relative production of 

H+. Hence an increase in direct ionization-induced dissociation was observed at lower proton impact 

energies. Between 50 and 150 keV, however, the present DI results do not provide clear evidence for 

impact energy dependence in the relative production of the different ion groups. Conversely, the 

energy dependence of the DI cross section for proton impact upon water [Gobet et al. 2001, 2004] or 

uracil [Tabet et al. unpublished] is weak in the lower energy part of the present range, whereas it 

becomes progressively more significant from 50 to 150 keV. Therefore, as with the electron capture 

data, the branching ratios shown in Fig. 5 for direct ionization cannot be explained adequately by a 

simple association of increased fragmentation with smaller impact parameters. 

 

4. Conclusions 

 The first branching ratios for electron capture and direct ionization in proton-uracil collisions are 

presented as a function of impact energy in the range 20-150 keV (0.9-2.4 v0). The impact energy 

dependence of the percentage of ionization events occurring through electron capture as opposed to 

direct ionization shows the same broad characteristics as observed for smaller molecules [Gobet et al. 

2004, Luna et al. 2007, Rudd et al. 1983]. To the authors’ knowledge, the present work provides the 

first comparison between molecular fragmentation following electron capture and direct ionization in 

proton collisions with a relatively large and electronically complex molecule; the only previous 

experiments of this kind were carried out on O2 [Luna et al. 2005] and H2O [Gobet et al. 2004, Luna et 

al. 2007]. No clear evidence was observed for energy-dependence in the relative production of uracil+ 

and fragment ions following electron capture, whereas a relative increase in fragment ion production 

was observed for direct ionization in the low impact energy part of the present range. 
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Fig. 1: Electron capture ionization of uracil as a percentage of total ionization (electron capture + 
direct ionization) following proton impact in the energy range 27-150 keV. Dark line: exponential fit. 
Insert: schematic representation of the structure of the uracil.  
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Fig. 2: Schematic diagram of the experimental system 
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Fig. 3: Electron capture ionization of uracil as a percentage of total ionization (electron capture + 
direct ionization) following proton impact in the energy range 27-150 keV. The data is compared to 
previous results for H2O [Gobet et al. 2004, Luna et al. 2007], and for He, CH4, CO2, and O2 [Rudd et 
al. 1983]. 
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Fig. 4: Mass spectrum for the proton impact ionization of uracil (C4H4N2O2, 112 amu) by electron 
capture and by direct ionization at 80 keV. The principle ions expected to account for the peaks are 
listed in table 1. 
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Figure 5: Product ion percentage branching ratios (the number of ions detected in a given mass range 
over the total number of ions detected) in 20-150 keV proton collisions with uracil. Background noise 
has been removed and ions produced by electron capture and by direct ionization are treated 
separately. Dashed lines have been added to guide the eye and statistical errors are given in table 2. 
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Table 1: Product ions observed following the ionization of gas-phase uracil (C4H4N2O2) by photons 
[Jochims et al. 2005], by fast incident protons (present work) and by electrons [Imhoff et al. 2007, 
Denifl et al. 2004]. The desorbed cations observed for slow Ar+ impact upon condensed phase uracil 
are also listed [Imhoff et al. 2007]. 
 

m / z (with previous fragment ion proposals) 

Gas-phase uracil ionization 

70 eV electron impact 

200 eV Ar+ 
impact on 

condensed uracil 
Imhoff et al. 

[2007] Imhoff et al. [2007] Denifl et al. [2004] A 

20 eV photo-
ionization 

Jochims et al. 
[2005] B 

100 keV proton 
impact 

Le Padellec et al. 
[2007] C 

Present work: 
20-150 keV 

proton impact 
D, E, F 

114      
113 (Uracil + H)+ 113     

112 (Uracil+) 112 (Uracil+) 112 (Uracil+) 112 (Uracil+) 112 
     

111-112 
(peak 112) 

97 (C4H5N2O
+)      

96 (C4H4N2O
+)   96 (C4H4N2O

+) - 
weak   

95 (C4H3N2O
+)      

71     

70 (C3H4NO+) 70 G (C3H4NO+)  70 (C3H4NO+) - 
weak  

69 (C3H3NO+) 69 (C3H3NO+) 69 (C3H3NO+) 69 (C3H3NO+) 69 
68 (C3H2NO+) 68 (C3H2NO+) 68 (C3H2NO+) 68 (C3H2NO+) 68 

 67    

67-69 
(peak 69) 

56 56 56 (C2H2NO+ / CN2O
+) 56 - weak 56* 

55 55    
54 54   54* 
53 53  53 - weak 53* 
52 52  52 - weak 52* 
51 51   51* 

     

50-56 
(peak 52) 

45     
44 (CH2NO+) 44 (CH2NO+)  44 - weak 44 

43 43 43 (CHNO+) 43 (CHNO+) 43 
42 (C2H4N

+) 42 (C2H4N
+) 42 (CNO+) 42 (C2H2O

+) 42 

41 (C2H3N
+) 41 (C2H3N

+) 41 (C2HO+ / C2H3N
+) 41 (C2HO+ / 

C2H3N
+) 41 

40 (C2H2N
+) 40 (C2H2N

+)  40 (C2H2N
+) 40 

39 39  39 - weak 39* 
38 38   38 

39-43 
(peak 42) 

30 30    

29 29  29 (CH3N
+ / HCO+) 

- weak 29 

28 (CH2N
+) 28 (CH2N

+ / CO+) 28 (CH2N
+ / CO+) 28 (CH2N

+) 28 (CH2N
+ / CO+) 

27 27 27 (CHN+) 27 (CHN+) - weak 27* 
26 (C2H2

+) 26 (C2H2
+)  26 (C2H2

+) - weak 26* 
25 25   25* 

27-28 
(peak 28) 

18 18 18 (H2O
+ impurity) - 

weak 18* 

17 17 17 (NH3
+) - weak 17 (OH+) 

16 16  16* 
15 (CH3

+) 15 (CH3
+)  15 (NH+) 

14 (CH2
+) 14 (CH2

+) 14 (N+) - weak 14 (N+) 
13 13 13 (CH+) 
12 12 12 (C+) 

12-18 
(peaks 

12 & 14) 

   
 2  

1 (H+) 1 (H+) 

Not available 

Not available 
Not available 

1 

 
A This column only includes the masses tabulated in the work of Denifl et al. [2004]; other trace ions are visible in the published 
mass spectrum. 
B The photo-ionization channels labeled weak correspond to those reported by Jochims et al. [2005] to have intensities ≤ 5% of 
the maximum peak intensity (42 amu). 
C The non-asterisked product ion masses were labeled or mentioned explicitly by Le Padellec et al. [2004]. Conversely, the 
asterisked masses have been taken from a published figure and are therefore subject to greater uncertainty. 
D The same product ion groups and peak positions were observed for both direct ionization and electron capture across the full 
proton impact energy range studied (20-150 keV). 
E With the exception of 12-18 (the full range of the group), the ranges given in the present data column correspond to the half-
maximum width of the 80 keV DI peaks. 
F The present data only includes single ion production. 
G Imhoff et al. [2007] also suggested that C3H3NO+ including a 13C isotope may contribute to this peak. 
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Table 2: Product ion fragmentation ratios (the number of ions detected in a given mass range over the 
total number of ions detected) in % for 20-150 keV proton collisions with uracil. Background noise has 
been removed and ions produced by direct ionization and by electron capture are treated separately. 
 

Fragment ion production / total ionization  (%) 

H+
 

CH2
+ 

group 
(12-18) A 

CH2N
+ 

group 
(27-28) B 

CNO+ / C2H4N
+ 

/ C2H2O
+ group 

(39-43) B 

C2H2NO+ 
group 

(50-56) B 

C3H3NO+ 
group 

(67-69) B 

uracil+ 
(111-112) B 

Impact 
energy 
(keV) 

EC DI EC DI EC DI EC DI EC DI EC DI EC DI 

20 2.1 
± 0.4 

- 4.6 
± 0.6 

- 25.0 
± 1.4 

- 39.1 
± 1.9 

- 3.6 
± 0.5 

- 13.2 
± 1.0 

- 11.9 
± 0.9 

- 

23 2.6 
± 0.5 

- 5.6 
± 0.8 

- 24.9 
± 1.8 

- 39.3 
± 2.4 

- 3.2 
± 0.6 

- 12.9 
± 1.2 

- 11.4 
± 1.1 

- 

27 2.6 
± 0.4 

6.4 
± 2.7 

6.2 
± 0.6 

9.6 
± 4.4 

24.8 
± 1.3 

29.9 
± 8.4 

39.6 
± 1.7 

34.8 
± 7.6 

2.5 
± 0.4 

4.0 
± 2.8 

13.4 
± 0.9 

5.9 
± 3.1 

10.2 
± 0.7 

5.5 
± 2.7 

35 5.0 
± 0.6 

6.4 
± 3.4 

6.9 
± 0.8 

7.7 
± 4.8 

27.3 
± 1.6 

23.3 
± 8.4 

39.0 
± 2.0 

37.2 
± 10.2 

3.0 
± 0.5 

4.5 
± 3.3 

11.0 
± 0.9 

7.4 
± 4.0 

7.7 
± 0.7 

12.9 
± 4.7 

42 2.7 
± 0.4 

2.4 
± 1.8 

7.4 
± 0.6 

6.4 
± 3.0 

24.8 
± 1.2 

22.1 
± 5.5 

41.0 
± 1.6 

36.8 
± 6.7 

3.0 
± 0.4 

2.8 
± 2.0 

11.2 
± 0.7 

13.8 
± 3.6 

9.5 
± 0.7 

16.0 
± 3.6 

50 1.8 
± 0.4 

1.9 
± 0.9 

5.5 
± 0.7 

4.5 
± 1.3 

25.6 
± 1.8 

23.1 
± 2.8 

40.4 
± 2.2 

33.5 
± 2.6 

3.1 
± 0.5 

2.5 
± 0.9 

11.2 
± 1.0 

17.1 
± 2.2 

11.9 
± 1.1 

16.5 
± 2.0 

65 2.4 
± 0.5 

2.2 
± 0.6 

6.6 
± 0.8 

3.9 
± 0.7 

27.6 
± 1.7 

21.7 
± 1.7 

39.4 
± 2.2 

37.2 
± 1.6 

2.5 
± 0.5 

3.3 
± 0.6 

11.0 
± 1.0 

15.5 
± 1.3 

9.9 
± 1.0 

15.2 
± 1.2 

80 2.7 
± 0.3 

1.5 
± 0.3 

6.9 
± 0.6 

5.0 
± 0.5 

24.9 
± 1.1 

22.3 
± 1.0 

40.2 
± 1.5 

37.5 
± 1.0 

3.6 
± 0.4 

2.9 
± 0.3 

11.2 
± 0.7 

14.2 
± 0.7 

9.6 
± 0.7 

15.5 
± 0.7 

95 1.8 
± 1.0 

1.7 
± 0.8 

4.8 
± 1.8 

4.6 
± 1.2 

27.3 
± 4.7 

21.3 
± 2.5 

43.7 
± 6.3 

38.0 
± 2.3 

4.2 
± 1.7 

2.1 
± 0.8 

9.1 
± 2.5 

16.4 
± 2.1 

7.9 
± 2.3 

15.1 
± 1.9 

110 1.9 
± 0.7 

1.3 
± 0.5 

7.0 
± 1.3 

4.5 
± 0.7 

29.3 
± 2.9 

22.3 
± 1.5 

36.7 
± 3.3 

38.3 
± 1.5 

3.8 
± 0.9 

2.7 
± 0.5 

12.3 
± 1.7 

14.6 
± 1.1 

8.7 
± 1.4 

15.2 
± 1.1 

125 3.2 
± 0.9 

1.8 
± 0.5 

7.2 
± 1.4 

3.9 
± 0.6 

23.9 
± 2.7 

20.9 
± 1.4 

41.8 
± 3.8 

39.3 
± 1.5 

2.6 
± 0.8 

3.3 
± 0.5 

8.3 
± 1.5 

14.9 
± 1.1 

12.3 
± 1.8 

15.0 
± 1.0 

140 2.8 
± 0.8 

1.4 
± 0.4 

5.6 
± 1.2 

3.6 
± 0.6 

27.6 
± 2.8 

20.4 
± 1.3 

37.8 
± 3.4 

37.5 
± 1.4 

3.6 
± 0.9 

2.9 
± 0.5 

10.9 
± 1.7 

15.7 
± 1.0 

11.3 
± 1.7 

17.7 
± 1.0 

150 2.1 
± 0.7 

1.1 
± 0.3 

9.4 
± 1.6 

4.1 
± 0.5 

20.3 
± 2.5 

21.3 
± 1.1 

41.8 
± 3.9 

39.4 
± 1.2 

2.9 
± 0.9 

2.7 
± 0.4 

11.9 
± 1.9 

15.1 
± 0.9 

11.4 
± 1.8 

15.3 
± 0.8 

 
A Unlike the other product ion groups, this group contains more than one peak. The group is named after CH2

+, associated with 
the lower mass peak in the product ion group. 12-18 Thomson is the full m/q range of the group (see also figure 4 and table 1) 
B The m/q values in brackets correspond to the half-maximum width of each product ion group. The groups are named after the 
principle ion associated with the peak [Jochims et al. 2005, Imhoff et al. 2007, Denifl et al. 2004]. 
The errors given in the table are purely statistical; variations in the detection efficiency of different ions due to the acceptance of 
the TOF mass spectrometer have not been taken into account. 


