The effect of high power ultrasound on an aqueous suspension of graphite
Fabrice Guittonneau, Abdesselam Abdelouas, Bernd Grambow, Sandrine Huclier

To cite this version:

HAL Id: in2p3-00433527
http://hal.in2p3.fr/in2p3-00433527
Submitted on 19 Nov 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Figure 1: Decrease of the particle size by ultrasonic treatment on graphite powder

![Graph showing the decrease of particle size by ultrasonic treatment]
Figure 2: Particle size vs. energy density

Energy density (10^5 J.g$^{-1}$)

Particle size x16, x50, x84 (µm)

- 10 W/cm²
- 20 W/cm²
- 30 W/cm²
Figure 3: HRTEM photographs showing the graphite crystallites before and after ultrasound treatment (with probe A)

Sample not treated

Sample treated at 20 W/cm²

Sample treated at 30 W/cm²
Figure 4: pH and H$_2$O$_2$ curves during graphite sonolysis (powder A, probe A, m = 1 g, V = 1 L, T = 20 °C, Argon saturated, I = 20 W/cm2)

Time (min)

H$_2$O$_2$ consumed: 338 µmol

H$_2$O$_2$ with graphite
H$_2$O$_2$ without graphite

pH with graphite
pH without graphite

0,85 µmol/min
1,58 µmol/min
Figure 5: Mass spectrum in the range [68-102] in APCI+ Fourier Transform mode

eau sonifique HR #10 RT: 0.09 AV: 1 NL: 3.41E6
T: FTMS + p APCI corona Full ms [50.00-214.00]
Figure 6: Scheme of the graphite degradation by ultrasound treatment in water

12.5 mm

Compact
Grains
Cristallites
Fragments

Grafted damaged sheets

Aromatic compounds

10 μm - 1 mm
10 nm - 1 μm
1 Å - 100 nm
a few nm
a few Å

H·
HO·
H·
HO·
H·

Acids,
CO₂

A few nm
A few Å

1 Å - 100 nm