W. Louisell, Amplitude and phase uncertainty relations, Physics Letters, vol.7, issue.1, p.60, 1963.
DOI : 10.1016/0031-9163(63)90442-6

P. Carruthers and M. Nieto, Phase and Angle Variables in Quantum Mechanics, Reviews of Modern Physics, vol.40, issue.2, p.411, 1968.
DOI : 10.1103/RevModPhys.40.411

D. T. Pegg and S. Barnett, Phase properties of the quantized single-mode electromagnetic field, Physical Review A, vol.39, issue.4, p.1665, 1989.
DOI : 10.1103/PhysRevA.39.1665

A. Vourdas, SU(2) and SU(1,1) phase states, Physical Review A, vol.41, issue.3, p.1653, 1990.
DOI : 10.1103/PhysRevA.41.1653

A. Barut and L. Girardello, New ???Coherent??? States associated with non-compact groups, Communications in Mathematical Physics, vol.6, issue.1, p.41, 1971.
DOI : 10.1007/BF01646483

J. Gazeau and J. Klauder, Coherent states for systems with discrete and continuous spectrum, Journal of Physics A: Mathematical and General, vol.32, issue.1, p.123, 1999.
DOI : 10.1088/0305-4470/32/1/013

J. Antoine, J. Gazeau, P. Monceau, J. R. Klauder, and K. A. Penson, Temporally stable coherent states for infinite well and P??schl???Teller potentials, Journal of Mathematical Physics, vol.42, issue.6, p.2349, 2001.
DOI : 10.1063/1.1367328

E. Kinani, A. H. Daoud, and M. , Generalized intelligent states for an arbitrary quantum system, Journal of Physics A: Mathematical and General, vol.34, issue.26, p.5373, 2001.
DOI : 10.1088/0305-4470/34/26/307

M. Daoud and H. , General sets of coherent states and the Jaynes$ndash$Cummings model, Journal of Physics A: Mathematical and General, vol.35, issue.34, p.7381, 2002.
DOI : 10.1088/0305-4470/35/34/310

E. Kinani, A. H. Daoud, and M. , Generalized coherent and intelligent states for exact solvable quantum systems, Journal of Mathematical Physics, vol.43, issue.2, p.714, 2002.
DOI : 10.1063/1.1429321

M. Daoud and M. Kibler, A fractional supersymmetric oscillator and its coherent states, Proceedings of the Sixth International Wigner Symposium, 1999.
URL : https://hal.archives-ouvertes.fr/in2p3-00011585

M. Daoud and M. Kibler, ON FRACTIONAL SUPERSYMMETRIC QUANTUM MECHANICS: THE FRACTIONAL SUPERSYMMETRIC OSCILLATOR, Symmetry and Structural Properties of Condensed Matter, 2001.
DOI : 10.1142/9789812811479_0046

URL : https://hal.archives-ouvertes.fr/in2p3-00009827

M. Daoud and M. Kibler, Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics, Physics Letters A, vol.321, issue.3, p.147, 2004.
DOI : 10.1016/j.physleta.2003.12.027

URL : https://hal.archives-ouvertes.fr/hal-00000926

M. Daoud and M. Kibler, Fractional supersymmetry and hierarchy of shape invariant potentials, Journal of Mathematical Physics, vol.47, issue.12, p.122108, 2006.
DOI : 10.1063/1.2401711

URL : https://hal.archives-ouvertes.fr/in2p3-00090893

M. Kibler, ANGULAR MOMENTUM AND MUTUALLY UNBIASED BASES, International Journal of Modern Physics B, vol.20, issue.11n13, p.1792, 2006.
DOI : 10.1142/S0217979206034297

URL : https://hal.archives-ouvertes.fr/in2p3-00024887

M. Kibler and M. Planat, (2) RECIPE FOR MUTUALLY UNBIASED BASES, International Journal of Modern Physics B, vol.20, issue.11n13, p.1802, 2006.
DOI : 10.1142/S0217979206034303

URL : https://hal.archives-ouvertes.fr/in2p3-00025391

M. Kibler, Variations on a theme of Heisenberg, Pauli and Weyl, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.37, p.375302, 2008.
DOI : 10.1088/1751-8113/41/37/375302

URL : https://hal.archives-ouvertes.fr/in2p3-00300184

M. Kibler, An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.35, p.353001, 2009.
DOI : 10.1088/1751-8113/42/35/353001

C. Quesne and N. Vansteenkiste, C??-extended harmonic oscillator and (para) supersymmetric quantum mechanics, Physics Letters A, vol.240, issue.1-2, p.21, 1998.
DOI : 10.1016/S0375-9601(98)00046-2

C. Quesne, Spectrum generating algebra of the C??-extended oscillator and multiphoton coherent states, Physics Letters A, vol.272, issue.5-6, pp.313-313, 2000.
DOI : 10.1016/S0375-9601(00)00457-6

M. Reed and S. B. , Methods of modern mathematical physics, Analysis of operators vol, vol.4, 1978.

A. Vourdas, C. Brif, and A. Mann, Factorization of analytic representations in the unit disc and number-phase statistics of a quantum harmonic oscillator, Journal of Physics A: Mathematical and General, vol.29, issue.18, p.5887, 1996.
DOI : 10.1088/0305-4470/29/18/018

M. Daoud, Y. Hassouni, and M. Kibler, The k-fermions as objects interpolating between fermions and bosons Symmetries in Science, 1998.

I. Ivanovi´civanovi´c, Geometrical description of quantal state determination, Journal of Physics A: Mathematical and General, vol.14, issue.12, p.3241, 1981.
DOI : 10.1088/0305-4470/14/12/019

W. K. Wootters and B. Fields, Optimal state-determination by mutually unbiased measurements, Annals of Physics, vol.191, issue.2, p.363, 1989.
DOI : 10.1016/0003-4916(89)90322-9

B. C. Berndt and R. Evans, The determination of Gauss sums, Bulletin of the American Mathematical Society, vol.5, issue.2, p.107, 1981.
DOI : 10.1090/S0273-0979-1981-14930-2

J. H. Hannay and M. Berry, Quantization of linear maps on a torus-fresnel diffraction by a periodic grating, Physica D: Nonlinear Phenomena, vol.1, issue.3, p.267, 1980.
DOI : 10.1016/0167-2789(80)90026-3

H. C. Rosu, J. P. Treviño, H. Cabrera, and J. Murguía, TALBOT EFFECT FOR DISPERSION IN LINEAR OPTICAL FIBERS AND A WAVELET APPROACH, International Journal of Modern Physics B, vol.20, issue.11n13, p.1860, 2006.
DOI : 10.1142/S0217979206034364

W. Merkel, O. Crasser, F. Haug, E. Lutz, H. Mack et al., CHIRPED PULSES, GAUSS SUMS AND THE FACTORIZATION OF NUMBERS, International Journal of Modern Physics B, vol.20, issue.11n13, p.1893, 2006.
DOI : 10.1142/S021797920603439X

URL : https://hal.archives-ouvertes.fr/hal-00127817

E. Witten, Dynamical breaking of supersymmetry, Nuclear Physics B, vol.188, issue.3, p.513, 1981.
DOI : 10.1016/0550-3213(81)90006-7

F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Physics Reports, vol.251, issue.5-6, p.267, 1995.
DOI : 10.1016/0370-1573(94)00080-M

M. Combescure, F. Gieres, and M. Kibler, = 2 supersymmetric quantum mechanics equivalent?, Journal of Physics A: Mathematical and General, vol.37, issue.43, p.10385, 2004.
DOI : 10.1088/0305-4470/37/43/025

L. Infeld and T. Hull, The Factorization Method, Reviews of Modern Physics, vol.23, issue.1, p.21, 1951.
DOI : 10.1103/RevModPhys.23.21

B. Mielnik, Factorization method and new potentials with the oscillator spectrum, Journal of Mathematical Physics, vol.25, issue.12, p.3387, 1984.
DOI : 10.1063/1.526108

J. Negro, L. Nieto, and O. Rosas-ortiz, Refined factorizations of solvable potentials, Journal of Physics A: Mathematical and General, vol.33, issue.40, p.7207, 2000.
DOI : 10.1088/0305-4470/33/40/315

B. Mielnik and O. Rosas-ortiz, Factorization: little or great algorithm?, Journal of Physics A: Mathematical and General, vol.37, issue.43, p.10007, 2004.
DOI : 10.1088/0305-4470/37/43/001

L. Faddeev, The Inverse Problem in the Quantum Theory of Scattering, Journal of Mathematical Physics, vol.4, issue.1, p.72, 1963.
DOI : 10.1063/1.1703891

D. Pursey, Isometric operators, isospectral Hamiltonians, and supersymmetric quantum mechanics, Physical Review D, vol.33, issue.8, p.2267, 1986.
DOI : 10.1103/PhysRevD.33.2267

B. Samsonov, Coherent states for transparent potentials, Journal of Physics A: Mathematical and General, vol.33, issue.3, p.591, 2000.
DOI : 10.1088/0305-4470/33/3/312

URL : http://arxiv.org/abs/quant-ph/9904090

M. Kumar and A. Khare, Coherent states for isospectral Hamiltonians, Physics Letters A, vol.217, issue.2-3, p.73, 1996.
DOI : 10.1016/0375-9601(96)00332-5

V. G. Bagrov and B. Samsonov, Darboux transformation of the Schro??dinger equation, Physics of Particles and Nuclei, vol.28, issue.4, p.374, 1997.
DOI : 10.1134/1.953045

C. Fernandez, L. Nieto, and O. Rosas-ortiz, Distorted Heisenberg algebra and coherent states for isospectral oscillator Hamiltonians, Journal of Physics A: Mathematical and General, vol.28, issue.9, p.2693, 1995.
DOI : 10.1088/0305-4470/28/9/026

J. M. Carballo, C. Fernandez, J. Negro, and L. Nieto, Polynomial Heisenberg algebras, Journal of Physics A: Mathematical and General, vol.37, issue.43, p.10349, 2004.
DOI : 10.1088/0305-4470/37/43/022

C. Quesne, Application of nonlinear deformation algebra to a physical system with P??schl-Teller potential, Journal of Physics A: Mathematical and General, vol.32, issue.38, p.6705, 1999.
DOI : 10.1088/0305-4470/32/38/401

M. Angelova and H. , Generalized and Gaussian coherent states for the Morse potential, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.30, p.304016, 2008.
DOI : 10.1088/1751-8113/41/30/304016

V. G. Bagrov and B. Samsonov, Coherent states for anharmonic oscillator Hamiltonians with equidistant and quasi-equidistant spectra, Journal of Physics A: Mathematical and General, vol.29, issue.5, p.1011, 1996.
DOI : 10.1088/0305-4470/29/5/015

D. Walls, Squeezed states of light, Nature, vol.162, issue.5939, p.141, 1983.
DOI : 10.1038/306141a0

S. Weigert and M. Wilkinson, Mutually unbiased bases for continuous variables, Physical Review A, vol.78, issue.2, p.20303, 2008.
DOI : 10.1103/PhysRevA.78.020303