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Abstract 

Vapor jets of DNA and RNA bases (adenine, cytosine, thymine, and uracil) from an oven with a 

capillary exit have been studied in the intermediate regime between molecular and viscous flow 

corresponding to Knudsen numbers in the range 0.1 < Kn < 10. The temperature control method 

ensured stationary flow. Assuming the Knudsen hypothesis, the pressure of sublimated molecules in 

the oven was determined as a function of temperature and the transmission probability of the capillary 

(Clausing factor).  Thus it was possible to relate the oven temperature and pressure to the total flux 

through the capillary, determined by measuring the total mass of DNA / RNA base molecules 

condensed on a cold surface intersecting the jet. The angular distribution of molecules in the jet has 

been also studied experimentally using an optical interference method. The measured profiles are in 

good agreement with Troïtskii’s [Sov. Phys. JETP 7 (1962) 353] analytical law for (cosθ)3/2 angular 

dependence in the intermediate regime with error functions associated with the mean free path 

between intermolecular collisions. 
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1. Introduction 

The experimental study of biomolecular ionization can provide insights to further our 

understanding of radiation damage mechanisms in living material. Indeed a significant goal in 

radiobiology is to characterize the ionization events which can damage key biomolecules (e.g. DNA, 

RNA, and their constituents) [1]. This represents an important step towards an elucidation of the 

physical interactions which can initiate the sequences of chemical, biochemical, and cellular processes 

associated with harmful physiological effects. From this perspective, Monte Carlo track structure 

codes provide a valuable framework to study initial radiation damage mechanisms on the molecular 

scale [2]. Such programs require a complete set of cross sections for particle-biomolecule collisions in 

order to simulate localized energy deposition and the transport of primary (incident energetic species) 

and secondary particles (products of ionization and fragmentation events) in a representative cellular 

environment. However, absolute cross section measurements are rare for biomolecules which require 

heating (or another technique such as laser desorption or MALDI) to produce suitable gas-phase 

targets. The scarcity of reliable absolute cross sections for interactions with sublimated biomolecules 

is primarily due to the difficulty in determining the target thickness traversed by a projectile beam 

intersecting a vapor jet from an oven. This parameter depends on (i) the respective positions of the 

oven and the incident beam, (ii) the total flux of target molecules as a function of the oven 

temperature, and (iii) the angular distribution of molecules in the jet. Accordingly the present work 

provides new experimental measurements of the total flux and angular profiles of DNA and RNA base 

jets (adenine, cytosine, thymine, and uracil) from a Knudsen-type oven. Sublimation enthalpies 

calculated using the total flux measurements are in good agreement with the literature and the 

observed angular profiles are consistent with theoretical calculations based on the dimensions of the 

oven’s capillary exit. The Lyon oven design has been used in a wide range of crossed-beam 

experiments on sublimated DNA / RNA bases [3-5] so the present jet characterization may be applied 

to normalize previous relative measurements. More generally, a full description is provided of the 
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procedure to calculate the thickness of a DNA / RNA target jet intersected by an incident projectile 

beam. 

 

2. Theoretical description of a DNA / RNA base vapor jet 

2.1. Equilibrium vapor pressure and total flux 

The oven system comprises a cylindrical reservoir with a capillary exit to produce a jet with high 

directivity (see section 3). As the orifice cross section is ~1% of the reservoir cross section, the rate at 

which molecules escape through the capillary is very low compared to the frequency of collisions with 

the oven walls. Therefore, at a temperature T, the evaporative system reaches an equilibrium state 

characterized by a vapor pressure Pe which is close to the saturation pressure Ps. In these conditions, 

the thermodynamic properties of the vapor flow can be described using the Knudsen [6] method based 

on the kinetic theory of rarefied gas valid at equilibrium pressures < 10 Pa. Accordingly, in a closed 

container with a gas pressure Ps, the flow of molecules per unit area can be determined using the 

equation: 

     

 (eq. 1)   

 

where n is the number of molecules per unit volume and the velocity of the evaporated molecules is 

given by: 

                                       

         (eq. 2) 

 

where kB is the Boltzmann constant and m is the molecular mass. The vapor flow emerging from an 

ideal orifice of area A0 can then be calculated as follows: 

 

  (eq. 3) 
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If we consider the capillary effect, the expression for the vapor flow must take into account the 

transmission probability given by the Clausing factor C of the tube capillary [7, 8]. At a given 

temperature, the equilibrium vapor pressure can then be determined indirectly by measuring the total 

mass flow from the oven.   

Vapor pressure and consequently temperature are the key parameters for the study of jet 

properties. Accordingly, we can distinguish three flow regimes characterized by the Knudsen number 

Kn = λ0/L which is related to the capillary tube dimensions (L, d) and the molecular mean free path λ0 

as follows:  

     

(eq. 4) 

 

 

where σ is the effective diameter of the molecule (~ 6 - 7 Å for a DNA / RNA base [9]); πσ2  represents 

the collision cross section for the given DNA/RNA base molecule.  

 The molecular regime for Kn > 10 or Pe ≤ 0.26 Pa, dominated by molecules traversing the 

capillary without intermolecular collisions 

 The intermediate regime for Kn > 0.1 or Pe ≤ 100 Pa 

 The viscous regime for Kn > 0.001 or 100 Pa ≤ Pe ≤ 2600 Pa, dominated by intermolecular 

collisions along the capillary 

 

The transition from molecular to viscous flow is defined as the intermediate regime with a mean 

free path which is similar to or smaller than the capillary dimensions: λ0 ≤ d < L. In this case, the flow 

is characterized by the competition between intermolecular collisions and collisions with the oven 

walls. The description of this regime is based on the introduction of an effective length:  
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Thus it is possible to take into account both the capillary dimensions and the molecular density. 

Following Troitskii’s formula [9, 10], the angular distribution is given by: 

 

(eq. 6) 

 

        

  (eq. 7)     

  

Where f(u) and f(τ) are error functions:      

 

(eq. 8) 

 

 

 (eq. 9) 

 

The original theoretical contribution of this work is to combine Troïtskii’s [10] description of the 

angular distribution with the Knudsen [6] method for calculating the total flow. 

 

3. Experimental methods  

3.1. Total flow measurements 

The gas-phase DNA / RNA bases which have been studied in the present experiments are uracil, 

adenine, thymine, and cytosine. Previous studies indicate that minimal thermal decomposition or 

isomerization of these DNA / RNA bases occurs between 375 and 475 K [11], thus we expected 

negligible effects in  the temperature range 400-500 studied in the present work. Guanine, the 

remaining DNA base, was not studied in this work due to the reported difficulty of sublimating to a 

high vapor pressure without significant isomerization and / or thermal decomposition [12]. The DNA / 

RNA base powder samples were purchased from Sigma-Aldrich (minimum purity 99%). 
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The vapor jets studied were obtained by heating the DNA / RNA base powder in a custom-made 

oven. As mentioned above, this oven consists of a closed cylindrical powder reservoir (copper; 

internal diameter 10 mm) with a capillary exit (copper; length L = 35 mm, orifice diameter d = 1 mm). 

The reservoir cylinder was heated by a resistive filament ribbon and mounted in a ceramic outer casing 

for insulation. A thermocouple was inserted tightly in a hole in the base of the insulated reservoir 

cylinder. The DNA / RNA powder was heated progressively, with fine tuning of the heating power 

supply, until a stable sublimation temperature T  was reached. The stabilization of the temperature was 

necessary to work in equilibrium state evaporation conditions. The DNA / RNA base vapor pressure 

was sufficiently high to form an intense neutral molecular beam at an oven temperature of 400 - 

500 K. 

The total vapor flux emerging from the capillary was determined indirectly by measuring the 

weight loss Δm of the oven for a given evaporated base powder during a time interval Δt. Figure 1 

shows the system used to measure the mass flow from the oven at equilibrium temperature. The 

evaporated DNA bases were condensed onto a cold plate target during an exposure time of several 

hours. The evaporative system and the collecting target were mounted in a vacuum chamber 

maintained at approximately 10-6 mbar. Each deposit was carried out in stable temperature and steady-

state evaporation conditions. The weight of deposit was deduced from the difference between the 

weights of the collecting plate target before and after vapor exposure.   

 

Because of the limited acceptance of the collecting system, we have measured systematically the 

percentage of the collected weight relative to the initial powder weight in the oven. The mean value of 

this percentage was Ψ = 69.4 ± 1.6 % (the uncertainty is the standard deviation of all the 

measurements). 

   

3.2. Angular flux measurements 

Knowledge of the angular distribution of the jet is essential in order to determine the target 

thickness in a crossed-beam experiment. In our previous study of a gas jet target [13] we have 

demonstrated that in the viscous flow regime the angular jet profile is independent of the pressure. 
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Similarly, the angular distribution depends only on the geometry of the capillary in the molecular flow 

regime [8, 10, 14-16]. In the case of intermediate flow (equations 6-9), however, the angular 

dependence is included in the error functions which depends on the effective length (Leff).  Therefore, 

it is necessary to study the effect of this angular dependence as a function of the oven temperature. 

Figure 2 shows photographs corresponding to a thin and thick deposit of uracil obtained at the 

same sublimation temperature and for two exposure times, respectively 1h30 and 8 mn. The 

wavelength and order of interference rings visible in the photograph of the thin deposit are directly 

related to the thickness of condensed DNA / RNA bases. Thus the angular vapor flux pattern can be 

extracted from the optical profile. Photographs were taken with using CCD camera in order to store 

the interference pattern digitally. Using an image processing program developed in MATLAB, each 

tint was decomposed into its red, green, and blue (RGB) components so that pixels could be identified 

by a virtual matrix in the RGB space. 

Figure 3 represents the intensity variation of the green (G) component along the interference ring 

diameter. Naturally, the interference is constructive if the optical path difference δ is an integer 

multiple of the wavelength λ (equation 10) and destructive if the path difference δ is a half-odd integer 

multiple of λ (equation 11). 

(eq. 10) 

  (eq. 11)  

where n represents the optical index and e(x) represents the local thickness.  

In order to determine the wavelength of the G component used in the camera, the well-known 

black cross calibration method was applied. An interference pattern was generated using a spath plate 

mounted between two crossed polarizers. The precise wavelength of the camera G component could 

then be calculated by plotting the optical path difference induced by the spath plate against the 

interference order k. The linear fit gives a wavelength λ(G) of 550.15 ± 0.15 nm. 

 

4. Results and discussion 

4.1. Total flow as a function of temperature  
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The measured mass deposition rates are plotted in Figure 4 as a function of the sublimation 

temperature T for the four DNA/or RNA bases studied. Two distinct regimes are identified for lower 

and higher temperature corresponding to molecular and viscous flow, respectively (see Table 1).  

According to Table 1, we can verify that a large part of our measurements are in the intermediate 

regime except the case of uracil molecules where the measurements concern the three flow regimes. 

Figure 5 presents the same data on a log-log scale. In the present conditions the thermo-dynamical 

properties of vapor flow are determined by the Knudsen method based on the kinetic theory 

of rarefied gas and applicable for equilibrium pressure Pe < 0.1 mbar. 
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Where A0 is the surface area of the effusion orifice, C the Clausing coefficient of the 

capillary, T the temperature of the measurements, R the gas constant, Mb the molar mass of 

the nucleobase, and Dt = m/t (mass evaporation rate where m the mass of nucleobase 

sublimated over time t). Thus the present Dt(T) data has been used to determine the 

nucleobase temperatures which correspond to the vapor pressure ranges associated with 

molecular and viscous flow (Table 1). The present total mass flow measurements were carried out in 

the following temperature ranges: 390-454 K for thymine, 400-493 K for uracil, 414-452 K for 

adenine, and 428-478 K for cytosine. The Table 1 shows that these ranges correspond principally to 

the intermediate flow regime. However the uracil and thymine data also overlap with the viscous 

regime (above 471 and 446 K, respectively). 

 

 

The molar enthalpy of sublimation ∆Hsub can be extracted from the vapor pressure and 

temperature using the Clausius-Clapeyron equations. 
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Thus ∆Hsub was determined by generating a least-squares-fit to the Clausius-Clapeyron 

relation expressed in terms of the quantities measured in the present experiments:  
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Table 2 compares the present ∆Hsub (based on the absolute mass measurements, AMM) for 

uracil, cytosine, thymine, and adenine with previous values determined using 

caloric (C), gas saturation (GS), Langmuir vaporization (LE), Mass Effusion (ME), Quartz 

Resonator (QR), Head Space Analysis (HSA), and Torsion Effusion (TE) methods. The 

uncertainties are also derived from the least-squares-fit and are mainly due to the 

experimental method of determination of the evaporated mass rate Dt. The agreement of our 

measurements with available data is a validation test for our method of extracting vapor 

pressure from the mass loss rate Dt using the Knudsen method. 

 

4.2. Target thickness determination from theoretical profiles  
 

In order to determine the absolute target thickness and thus derive absolute cross sections in a 

crossed beam experiment, both total and local vapor flux measurements are required. The target 

thickness ε at temperature T is given by the integral density n(x,y,z) over the incident beam - vapor jet 

overlap distance (x): 

 

(eq. 15) 

 

where I(x,y,z) is the normalized beam profile which is assumed to be Gaussian, or uniform when the 

width of the incident beam is smaller than that of the vapor jet. Figure 6 shows a schematic view of the 

geometrical parameters used to define the vapor jet and thence derive its thickness along the trajectory 

of an incident beam. The flux density is the number of molecules entering the elementary surface dS 

per second at a given position. 

 

∫= dxzyxIyxnyT ),,(),,(),( 0ε

Ω= drdS 2



10 
 

vrn

r
r

dtdS
Ndrj

),,(

²),,(

ϕθ

ϕθ

=

=
    (eq. 16) 

is the density of  vapor molecules (number of molecules per unit volume dr.dS) and  

        is the molecular velocity (equation 2). 

In order to obtain a high target thickness in recent proton impact experiments using the present 

oven system [3, 35], the incident beam axis was located at a similar distance (y ~ 1 mm) above the 

capillary to the diameter of the orifice. Taking into account the results of the total flux measurements 

and the angular distributions, the target density can be approximated by the combination of a uniform 

density directly above the capillary orifice (cross sectional area A0) with the angular distribution law 

of intermediate regime flow (equation 7).  

 

4.3. Target thickness determination from the optical interference profile 

As mentioned above, the present measurements concern two complementary parameters: the total 

flux (dN/dt)total  and the angular flux (dN/dΩ dt). The total flux is determined by measuring the oven 

weight loss ∆m during the time ∆t by weighing the target plate before and after exposure to vapor. The 

angular flux distribution and consequently the density n(R,ϕ,z) are expressed in cylindrical 

coordinates. Consider an elementary surface (dS = dRdϕ) of the interference pattern (Figure 6), where 

j(R) denotes the vapor flux density. The number of molecules deposited on this surface element, dNd, 

is given by: 

  

         (eq. 17) 

 

This can be also expressed as a function of the deposit thickness ed (R): 

 

(eq. 18)  

 

v

),,( ϕθrn

ϕddRRtRjdN d ∆= )(

ϕρ ddRRRe
M
NdN d

A
dd )(=



11 
 

Equations 17 and 18 express the linear dependence between the angular flux density and the deposit 

local thickness. The following expression can thus be deduced: 

     (eq. 19) 

 and     e(R) = ed(R) / ∆t with 

 

The angular flux distribution is derived directly from the optical analysis of the interference rings. The 

total flow (dN/dt)total is determined from the measured mass deposition rate during steady-state 

evaporation. 

 

          (eq. 20) 

 

where η is the geometrical factor related to the fraction of collected vapor compared to the total 

flowing from the capillary: η = 0.694 ± 0.014 (see section 3.1). The relation between the measured 

deposit Dt and the local thickness deposit e(R) for a given position R is given by:  

           

(eq. 21) 

 

Thus equations 16 - 20 provide a complete description of the total flux deduced from Dt and the 

angular flux related to the optically measured local thickness e(R). Figure 7(a) shows the profile of the 

deposit thickness e(R) for uracil evaporated at ~425 K obtained by interference rings analysis (Section 

3.2). Figure 7(b) shows the same profiles obtained by varying the sublimation temperature and 

normalizing to the maximum thickness. It should be noted that the width of the profile increases with 

the sublimation temperature. Indeed this behavior has been observed previously [14, 16, 36] in the 

intermediate regime. The comparison with the theoretical profiles demonstrates that this effect is 

related to the Leff parameter and the competition between molecular and viscous flow. 

Figures 8 and 9 include also theoretical profiles calculated using equations 6 and 7 for the present 

experimental conditions at various sublimation temperatures. In the upper part of Figure 8, both and 
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experimental and theoretical profiles are compared to the theoretical upper limit where intermolecular 

collisions in the capillary are neglected (f(u) = 1 and f(τ) = 1). These profiles have been obtained when 

the capillary is at 26 mm from the deposit surface (see Figure 1). 

The lower part of Figure 8 shows the experimental and the theoretical profiles F0c when the error 

functions f(u) and f(τ) are taken into account.  The error function depends on the length and diameter 

of the capillary. The theoretical profiles IF0c reported in the lower part of Figure 8 are obtained by 

integrating F0c over the capillary dimensions in Cartesian coordinates. Naturally, the calculated upper 

limits of F0 and IF0 are equal in the upper and lower parts of the figure since F0 does not depend on the 

capillary geometry. Figure 9 shows the same results plotted for six uracil sublimation temperatures 

corresponding to the intermediate flow regime. 

The experimental results and the theoretical model are in good agreement both quantitatively and 

qualitatively. The dependence on the temperature is also described well. This indicates that the 

analytical expression of the theoretical model used in this study can be applied for absolute 

determination of both the total flux and angular distribution of DNA / RNA base jets with good 

accuracy. 

 

6. Conclusion. 

 
 

The DNA – base vapor-jet has been studied in the intermediate flow regime, corresponding to 

Knudsen number 0, 1 < Kn <10. The heat of the oven containing DNA – base powder has been 

adjusted in such manner to obtain stationary flow for all the studied temperature intervals. At a given 

temperature the corresponding pressure is determined assuming Knudsen hypothesis and knowing the 

transmission probability of associated capillary Clausing factor. This allows to relate temperature and 

pressure to total flux which is directly measured by a weighing method of the evaporated base powder 

quantity. The absolute flux density depending on the angular distribution of vapor molecules has been 

also studied experimentally using a method of optical interference. The measured profiles are in good 

agreement with analytical law given by Troïtskii in the intermediate regime, taking into account both 
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(cosθ)3/2 angular dependence and the error function dependence on the free path of vapor molecule 

collisions. The absolute target thickness of the jet could be extracted with an accuracy of 10% 

resulting mainly from errors in the relative positions of the beam axes. 
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Figure 1: Schematic view of the DNA / RNA base vapor deposit set-up 
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Thin deposit      Thick deposit 

Figure 2: Photographs of a thin and a thick deposit of the uracil sublimated at ~ 433 K (respective 

exposure times: 1h30 and 8 h) 
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Figure 3: (i) Uracil deposit thickness profile derived from (ii) intensity measurements of the green (G) 

component of (iii) the photographed interference ring pattern 

(iv) MATLAB analysis the color intensities (RGB) of (v) the “black cross” interference pattern 

generated using a spath plate between two crossed polarizers 
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Figure 4: Mass deposition rates of DNA / RNA bases as a function of sublimation temperature 
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Figure 5: DNA / RNA base mass deposition rates plotted against sublimation temperature on a log-log 

scale. The dashed lines indicate the approximate boundaries between the flow regimes, as defined in 

Table 1.  

 
Thymine = 390-454K = intermediate + overlap with viscous 
Uracil = 400-493K = intermediate + overlap with viscous 
Adenine = 414-452K = intermediate only 
Cytosine = 428-478K = intermediate only 
 

Flow regime Uracil Cytosine Thymine Adenine 
Molecular regime 
Pe ≤ 0.26 Pa T < 391 K T < 428 K T < 388 K T < 411 K 

Intermediate regime 
Pe ≤ 100 Pa 391 K < T< 471 K 428 K < T < 563 K 388 K < T < 446 K 411 K < T < 474 K 

Viscous regime 
100 Pa ≤ Pe ≤ 2600 Pa T > 471 K T > 563 K T > 446 K T > 474 K 

Viscous 
Flow 
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Figure 6: Schematic view of the oven showing the key geometrical parameters used to describe 

the nucleobase jet in equations 6-9, 15-18, and 21. The surface element dS at (r,θ,ϕ) from the capillary 

exit has normal direction R and solid angle dΩ. The surface element dS' and distance r' are projection 

onto the xz plane of dS and r, respectively.  
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Figure 7  

 a) Uracil deposit thickness e(R) profiles (sublimation temperature ~ 425 K) obtained by interference 

pattern analysis  

b) Experimental profiles obtained for different uracil sublimation temperatures and normalized to the 

maximum thickness 
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Figure 8: Comparison between theoretical and experimental profiles for various uracil sublimation 

temperatures. The theoretical profiles are calculated from equations 6 and 7 for the present 

experimental conditions (capillary 26 mm from the deposit surface, see Figure 1). 

A: The experimental profiles are compared to the theoretical upper limits (IF0) where the error 

functions f(u) and f(τ) are equal to 1 (i.e. intermolecular collisions in the capillary are neglected). 

B: The experimental profiles are compared with the theoretical profiles IF0c, taking into account f(u) 

and f(τ) for the present capillary dimensions.   
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Figure 9: Comparison between theoretical and experimental profiles for each temperature of 
sublimated uracil. 
 
 



26 
 

 

Flow regime 
and pressure 

range (Pa) 

Temperature ranges (K) for each flow regime 

Uracil Cytosine Thymine Adenine 

Molecular regime 
Pe ≤ 0.26 T ≤ 391 T ≤ 428 T ≤ 388 T ≤ 411 

Intermediate regime 
0.26 ≤ Pe ≤ 100 391 ≤ T ≤ 471 428 ≤ T ≤ 563 388 ≤ T ≤ 446 411 ≤ T ≤ 474 

Viscous regime 
100 ≤ Pe ≤ 2600 T ≥ 471 T ≥ 563 T ≥ 446 T ≥ 474 

 

Table 1: The vapor pressure ranges for molecular, intermediate, and viscous regimes presented with 

the corresponding sublimation temperature ranges of DNA / RNA bases in a Knudsen-type oven 
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Nucleobase Tmin – Tmax ∆Hsub 
(kJ/mol) 

Tm (°K) Method Reference 

 
 
 
 
 

Uracil 

400 – 493 
315 – 435 
394 – 494 
452 – 587 
452 – 587 
378 – 428 

– 
500 – 545 

– 
393 – 458 

– 
– 

114,3 ± 5,8 
125,3 ± 0,2 
127,0 ± 2 
130,6 ± 4 
131 ± 5 
120,5 ± 1,3 
121, 7 
133,9 ± 8 
126,5 ± 2,2 
120,5 ± 5,2 
115,5 ± 2,1 
83,7 

– 
425 
439 
519 
298 
403 
425 
523 
440 
426 

– 
485 

AMM 
QR,ME 

TE 
ME,TE 
TE,GS 

QR 
MS 

HSA 
C 

LE 
ME 
MS 

Present results 
[18] 
[19] 
[20] 
[20] 
[21] 
[22] 
[23] 
[25] 
[26] 
[26] 
[27] 

 
 
 

Cytosine 

390 – 454 
320 – 410 
505 – 525 
423 – 483 

– 
– 

450 – 470 

150,2 ± 8,3 
167,7 ± 0,5 
151,7 ± 0,7 
147,2 ± 2,6 
155,0 ± 3 
167 ± 10 
176 ± 10 

– 
365 

– 
453 
298 
298 
298 

AMM 
QR,ME 

GS 
ME 
– 

TE 
C 

Present results 
[18] 
[28] 
[29] 
[29] 
[30] 
[24] 

 
 
 
 

Thymine 

414 – 452 
305 – 355 
383 – 438 

– 
378 – 428 

– 
– 
– 

141,6 ± 6,4 
135,8 ± 0,4 
125,7 ± 3,6 
131,3 ± 4 
124 ± 1,3 
138 ± 10 
134,1 ± 4,2 
124,3 

– 
330 
411 
298 
403 
298 
298 

– 

AMM 
QR,ME 

ME 
– 

QR 
TE 
C 

LE 

Present results 
[18] 
[29] 
[29] 
[21] 
[30] 
[24] 
[25] 

 
 
 

Adenine 

428 – 478 
305 – 360 
400 – 438 
448 – 473 

– 
– 
– 

153,1 ± 6,9 
130 ± 2 
140,4 
109,2 
126,3 
127,2 
108,7 

– 
130 

– 
460,5 

– 
– 
– 

AMM 
QR,ME 

ME 
– 

LE 
QR 
ME 

Present results 
[18] 
[31] 
[32] 
[25] 

[31, 33] 
[27, 34] 

 
 

Table 2: Enthalpy of sublimation for nucleobases: our results are compared to data compiled 

by Chikos and Acree [17]. 

 
 
 


