Bases for qudits from a nonstandard approach to SU(2)

Abstract : Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.
Type de document :
Communication dans un congrès
13th International Conference on Symmetry Methods in Physics (SYMPHYS XIII), Jul 2009, Dubna, Russia. 74, pp.923-929, 2011
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

http://hal.in2p3.fr/in2p3-00470424
Contributeur : Maurice Robert Kibler <>
Soumis le : mardi 6 avril 2010 - 15:13:59
Dernière modification le : mercredi 29 novembre 2017 - 16:12:57
Document(s) archivé(s) le : mercredi 7 juillet 2010 - 20:28:20

Fichiers

Kibler2_Symphys13_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : in2p3-00470424, version 1
  • ARXIV : 1004.0929

Collections

Citation

Maurice Robert Kibler. Bases for qudits from a nonstandard approach to SU(2). 13th International Conference on Symmetry Methods in Physics (SYMPHYS XIII), Jul 2009, Dubna, Russia. 74, pp.923-929, 2011. 〈in2p3-00470424〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

65