version française rss feed
HAL : in2p3-00510015, version 1

Fiche détaillée  Récupérer au format
Symmetry 2 (2010) 1461
SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms
Natig M. Atakishiyev, Maurice Robert Kibler1, Kurt Bernardo Wolf

We propose a group-theoretical approach to the generalized oscillator algebra Ak recently investigated in J. Phys. A: Math. Theor. 43 (2010) 115303. The case k > or 0 corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the Poeschl-Teller systems) while the case k < 0 is described by the compact group SU(2) (as for the Morse system). We construct the phase operators and the corresponding temporally stable phase eigenstates for Ak in this group-theoretical context. The SU(2) case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.
1 :  IPNL - Institut de Physique Nucléaire de Lyon
Physique/Physique Quantique

Physique/Physique mathématique

Mathématiques/Physique mathématique
phase operators – phase states – mutually unbiased bases – discrete Fourier transform
Liste des fichiers attachés à ce document : 
Symmetry-reg-03-Kibler-fr-sym2031461.pdf(226.5 KB)
Symmetry-reg-03-Kibler-fr-sym2031461.ps(448.5 KB)