Skip to Main content Skip to Navigation
Journal articles

Statistical description of complex nuclear phases in supernovae and proto-neutron stars

Abstract : We develop a phenomenological statistical model for dilute star matter at finite temperature, in which free nucleons are treated within a mean-field approximation and nuclei are considered to form a loosely interacting cluster gas. Its domain of applicability, that is baryonic densities ranging from about $\rho>10^8$ g $\cdot$ cm$^{-3}$ to normal nuclear density, temperatures between 1 and 20 MeV and proton fractions between 0.5 and 0, make it suitable for the description of baryonic matter produced in supernovae explosions and proto-neutron stars. The first finding is that, contrary to the common belief, the crust-core transition is not first order, and for all subsaturation densities matter can be viewed as a continuous fluid mixture between free nucleons and massive nuclei. As a consequence, the equations of state and the associated observables do not present any discontinuity over the whole thermodynamic range. We further investigate the nuclear matter composition over a wide range of densities and temperatures. At high density and temperature our model accounts for a much larger mass fraction bound in medium nuclei with respect to traditional approaches as Lattimer-Swesty, with sizeable consequences on the thermodynamic quantities. The equations of state agree well with the presently used EOS only at low temperatures and in the homogeneous matter phase, while important differences are present in the crust-core transition region. The correlation among the composition of baryonic matter and neutrino opacity is finally discussed, and we show that the two problems can be effectively decoupled.
Document type :
Journal articles
Complete list of metadata
Contributor : Sandrine Guesnon <>
Submitted on : Thursday, November 25, 2010 - 2:14:53 PM
Last modification on : Tuesday, February 19, 2019 - 10:02:03 AM

Links full text



Ad.R. Raduta, F. Gulminelli. Statistical description of complex nuclear phases in supernovae and proto-neutron stars. Physical Review C, American Physical Society, 2010, 82, pp.065801. ⟨10.1103/PhysRevC.82.065801⟩. ⟨in2p3-00539882⟩



Record views