G. Celeux, Bayesian Inference for Mixture: The Label Switching Problem, COMPSTAT 98. Physica-Verlag, 1998.
DOI : 10.1007/978-3-662-01131-7_26

P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-732, 1995.
DOI : 10.1093/biomet/82.4.711

H. Haario, E. Saksman, and J. Tamminen, An Adaptive Metropolis Algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.
DOI : 10.2307/3318737

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8948

A. Jasra, C. C. Holmes, and D. A. Stephens, Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling, Statistical Science, vol.20, issue.1, pp.50-67, 2005.
DOI : 10.1214/088342305000000016

J. M. Marin, K. Mengersen, and C. P. Robert, Bayesian Modelling and Inference on Mixtures of Distributions, Handbook of Statisics, vol.25, 2004.
DOI : 10.1016/S0169-7161(05)25016-2

S. Richardson and P. J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.4, pp.731-792, 1997.
DOI : 10.1111/1467-9868.00095

E. Saksman and M. Vihola, On the ergodicity of the adaptive Metropolis algorithm on unbounded domains, The Annals of Applied Probability, vol.20, issue.6, pp.2178-2203, 2010.
DOI : 10.1214/10-AAP682

M. Stephens, Dealing with label switching in mixture models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.62, issue.4, pp.795-809, 2000.
DOI : 10.1111/1467-9868.00265