Abstract : This lecture deals with the consistency check of the Standard Model (SM) hypothesis driven by the electroweak precision measurements performed at the Z boson pole (LEP and SLC experiments) and at high energy hadronic machines (Tevatron experiments). Together with the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters t, the Z-pole observables consistency check is a pillar of the SM. Following A. Korshin's lecture on SM, we will rst describe the free parameters of the SM and introduce the necessity to go beyond the Born approximation. We will hence review the relevant radiative corrections which must be considered as far as the processes at the Z pole are concerned and de ne which observables can be used to constrain the yet unknown parameters of the SM in the gauge sector. Eventually, we will interpret the global quantum consistency check in terms of the top quark and Higgs masses constraint. The comparison of the predicted and measured top quark mass is a tremendous success of the SM. The prediction of the Higgs mass is driving to a large extent the physics case of the LHC machine.