Skip to Main content Skip to Navigation
Journal articles

Further developments for the auxiliary field method

Abstract : The auxiliary field method is a technique to obtain approximate closed formulae for the solutions of both nonrelativistic and semirelativistic eigenequations in quantum mechanics. For a many-body Hamiltonian describing identical particles, it is shown that the approximate eigenvalues can be written as the sum of the kinetic operator evaluated at a mean momentum $p_0$ and of the potential energy computed at a mean distance $r_0$. The quantities $p_0$ and $r_0$ are linked by a simple relation depending on the quantum numbers of the state considered and are determined by an equation which is linked to the generalized virial theorem. The (anti)variational character of the method is discussed, as well as its connection with the perturbation theory. For a nonrelativistic kinematics, general results are obtained for the structure of critical coupling constants for potentials with a finite number of bound states.
Document type :
Journal articles
Complete list of metadatas

http://hal.in2p3.fr/in2p3-00605695
Contributor : Emmanuelle Vernay <>
Submitted on : Monday, July 4, 2011 - 8:13:52 AM
Last modification on : Thursday, November 19, 2020 - 12:58:27 PM

Links full text

Identifiers

Collections

IN2P3 | LPSC | CNRS | GEPI | UGA

Citation

C. Semay, F. Buisseret, B. Silvestre-Brac. Further developments for the auxiliary field method. Journal of Physical Mathematics, Ashdin Publishing, 2011, 3, pp.P111101. ⟨10.4303/jpm/P111101⟩. ⟨in2p3-00605695⟩

Share

Metrics

Record views

347