Front-end multi-channel PMT-associated readout chip for hodoscope application

Shiming.DENGa,b,c, Hervé.MATHEZa,b, Denis.DAUVERGNEa, Yannick.ZOCCARATOa,b, Guo-Neng.LUc

aInstitut de Physique Nucléaire de Lyon (IPNL), Université de Lyon, Université Lyon 1, CNRS/IN2P3, F-69622, Villeurbanne, France
bMICRAU pôle de Microélectronique Rhône Alpes, http://micrau.in2p3.fr
cUniversité de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Université Lyon 1, Villeurbanne, F-69622, France

Abstract

For developing a prompt gamma imaging system, we have designed a 16-channel readout chip in a BiCMOS process to be associated with multi-anode photomultipliers (MaPMTs). Each channel has one current input and two separated outputs. The input has very low impedance to minimize electrical crosstalk and effects of capacitances. The two outputs serve to, respectively, detect signal event and quantify signal charge. The channel architecture is a current-mode one, employing a current conveyor to drive both a buffered current comparator and a charge-sensitive amplifier (CSA). The current conveyor is built with super-common-base (SCB) transistor structures to obtain input impedance in the order of a few ohms. Circuit design with the use of bipolar transistor components also improves frequency and noise performances. The chip has been tested and the evaluated characteristics meet the system requirements.

Keywords: prompt gamma imaging system, super-common-base(ScB), current conveyor, charge-sensitive amplifier (CSA),

1. INTRODUCTION

1 References

- Ion therapy is an innovating technique used to treat tumors with enhanced efficiency for the dose deposition conformation as compared to conventional radiotherapy. It requires real-time control of the dose localization during ion therapy, since slight deviations relative to treatment planning may lead to severe consequences. With the aim of developing a primary beam monitor (a beam hodoscope) for such a quality control [1], we propose a prompt gamma imaging system shown in Figure 1.
- For typical proton and carbon therapeutic beams, the required hodoscope should have a count rate capability of 10⁸ pps, with an accuracy of 1%. This has led us to implement the system employing arrays of scintillating fibers with read out by MaPMTs or multi-channel plates (MCPs) [2].
- The system development requires a dedicated multi-channel readout ASIC (Application Specific Integrated Circuit) to be associated with the MaPMTs. Each channel should have very low input impedance to avoid electrical crosstalk between adjacent channels and to minimize effects of detector and wiring capacitances (Cd + Cw). Crosstalk between channels may degrade position resolution [3], while these capacitances may degrade both frequency and noise performances [3]. Each channel should also provide two separated outputs corresponding respectively to high-speed signal-event detection and low-noise signal-charge quantification at low counting rate.
- This paper presents a readout chip for this purpose. It has been designed in a 0.35μm SiGe BiCMOS process (AMS).

2. CIRCUIT DESCRIPTION

2.1. Current Conveyor

The current conveyor has a low-impedance input and two high-impedance current outputs, with a 4-bit current gain control to compensate effects of optic fiber ageing and the MaPMT’s gain dispersion. Figure 2(a) shows the structure of the current conveyor. It employs two Super Common-Base (SCB) transistors [4-5] (see Figure 2(b)) to drive complementary switched current mirrors having variable-gain output branches. The current input signal is applied to one SCB, and a referenced current is applied to the other to cancel bias offset contribution to the output signals.
The SCB transistor shown in Figure 2(b) is basically a common-base topology (Q_1) with a negative feedback loop (Q_2). The input impedance of the current conveyor, mainly determined by that of the SCB, is expressed as:

$$Z_{in} = \frac{1}{(1 + \frac{A_0}{(1+\frac{\omega_A}{\omega_B})})} \cdot g_m \cdot Q_1 + sC_1$$

where A_0 is the voltage gain of Q_2 at low frequencies; C_A is the sum of parasitic capacitances at the input node A (including the detector output capacitance C_D), ω_A and ω_B are poles related respectively to nodes A and B. At moderate frequencies, the input impedance is given by $Z_A = 1/(A_0 \cdot g_m \cdot Q_1)$. Thanks to the use of large-transconductance bipolar components in the SCB, Z_{in} can be reduced to a few ohms.

The current gain of the current conveyor is given by [6]:

$$\frac{I_{out}}{I_{in}} = \frac{g_{m,MP_2-5}}{g_{m,MP_1}} \times \frac{1}{(1 + \frac{C_1}{\omega_A})} \left(1 + \frac{C_2}{\omega_B} \right)$$

with $C_1 = C_{be,Q_1}$ and $C_2 = \sum C_{nodeG}$, g_{m,MP_2-5} is the total transconductance of the 4-bit switched transistors MP_2 to MP_5 in parallel. As $g_{m,\text{QBJT}} \gg g_{m,MP_2}$ (PMOS), and $C_1 \ll C_2$, the bandwidth is limited by g_{m,MP_2} and C_2.

2.2. Current Comparator

The current comparator following the current conveyor detects current signal events. It compares the current conveyor’s corresponding output signal (typically lasting a few nanoseconds) with a referenced threshold current and produces a pulsed output voltage response.

Figure 3 shows the current comparator mainly consisting of a signal current mirror and a 2-stage output buffer. The signal current mirror employs bipolar transistor components to reduce its input impedance and to improve the speed performance of the circuit. This current mirror performs current-to-voltage conversion at its output:
The 2-stage buffer converts ΔV_D to a logic-level pulse.

2.3. CSA (Charge Sensitive Amplifier)

The CSA consists of a buffered amplifier and a R_fC_f feedback network (Figure 4(a)). For a fast input current pulse during a time t_{pulse}, the CSA output produces a voltage swing given by:

$$\Delta V_{out,CSA} = \frac{1}{C_f} \int_{0}^{t_{\text{pulse}}} I_{in}(t) dt$$ (4)

After the input current pulse, $V_{out,CSA}$ returns exponentially to its steady level with a time constant determined by R_fC_f.

This time constant is chosen according to the maximum counting rate.

The buffered amplifier has an input part shown in Figure 4(b), which is a folded-cascode structure with R_A and C_A for feed-forward compensation [7-8]. The second cascode transistor $Q_{1,77}$ is a bipolar component for better gain, speed and/or phase margin achievements. The input transistor MP_1 has a large W/L ratio to minimize its noise contribution.

3. RESULTS AND DISCUSSION

Figure 5 shows the fabricated readout chip. The chip area including pads is $6.16\, \text{mm}^2$. Each channel occupies a surface area of $680\, \mu\text{m} \times 120\, \mu\text{m}$. The chip has been tested using a board shown in Figure 6(a).

The test board includes a structure shown in Figure 6(b), to generate an input current signal for the testing:

$$I_{in}(t) = \frac{C_f}{dV_{gen}(t)} \frac{dV_{gen}(t)}{dt}$$ (5)

The magnitude of $I_{in}(t)$ can thus be evaluated from the waveform of V_{gen}. By measuring directly the magnitude of I_{in}, the input impedance of the current conveyor can be determined by $Z_{in} = \frac{dV_{in}}{dI_{in}}$. We have obtained $Z_{in} = 12\, \Omega$.

Figure 7 shows signal waveforms of a channel. The circuit operation is verified by observing the output signal of the current conveyor $V_{out,comp}$ and that of the CSA $V_{out,CSA}$. The pulsed output of the current comparator indicates the signal event, and the output signal of the CSA gives a magnitude $\Delta V_{out,CSA}$, from which an input signal charge can be evaluated.

For signal-event detection, the detection threshold for the current comparator is set by I_{ref}, which can be adjusted from 100μA to 400μA.

For signal charge quantification, the conversion gain at the output of the CSA is $98\, \text{mV/pC}$. The evaluated noise in ENC (Equivalent input RMS Noise Charge) is $91\, \text{fC}$. The maximum measurable charge before saturation (limited by the current conveyor) is 10 pC. The dynamic range is 36 dB. The crosstalk between adjacent channels is 1.7% (i.e. 35 dB).
Figure 7: Signal waveforms of a channel: the two outputs $V_{\text{out,CsA}}$ and $V_{\text{out,comp}}$ in response to V_{Tran}

<table>
<thead>
<tr>
<th>Table 1: Summary of characteristics of the designed readout ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
</tr>
<tr>
<td>(channel under 3.3 V)</td>
</tr>
<tr>
<td>@ current gain from 0.25 to 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Input dynamic range</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Current Conveyor Bandwidth</td>
</tr>
<tr>
<td>Current comparator Bandwidth</td>
</tr>
<tr>
<td>CSA Peaking time</td>
</tr>
<tr>
<td>1-full-channel ENC</td>
</tr>
<tr>
<td>Xtalk</td>
</tr>
<tr>
<td>Chip Size (including pads)</td>
</tr>
</tbody>
</table>

Table 1 summarizes the measured characteristics of the readout chip in comparison with post-layout simulation results.

5. ACKNOWLEDGMENT

This work has been carried out in the context of the GAMHADRON project fund by the ANR (Agence Nationale pour la Recherche) and the European project ENVISION. These two projects are devoted to novel imaging systems for in-vivo monitoring and cancer therapy. This work has also been partly supported by the Rhone-Alpes Regional Program for Research in Hadrontherapy.

We would also like to thank Mr. E. Bechetoille and Mr Y. Zoccarato for their technical helps in layout optimization and ASIC design.

References

4. CONCLUSION

We have designed a 16-channel readout chip in a BiCMOS process to be associated with MaPMTs or MCPs for developing a prompt gamma imaging system. Each channel is a current-mode architecture consisting of three main building blocks: a current conveyor, a buffered current comparator and a CSA. Testing of the chip has shown improved characteristics compared to a reported chip with similar functions. The channel input has very low impedance (~12 Ω) to minimize crosstalk (~1.7%). The evaluated speed and noise performances meet the system requirements. We are undertaking a new chip design with performance optimization to reduce power consumption per channel, for high-resolution hodoscopes.