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Spatial particle correlations in light nuclei.

II Four-particle systems

P. Mei and P. Van Isacker

GANIL, CEA/DSM–CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France

Abstract

The geometry of configurations of identical particles in a shell is extended from two
to four particles. Results are derived for a general ℓ shell and particular attention
is paid to the p shell (ℓ = 1), which is of relevance for the nucleus 8He. Expressions
are given for the angular probability density in terms of the six angles between pairs
of position vectors of the particles. The analysis of the p shell reveals the existence
of two classes of favored four-particle configurations, with three members each. The
transition from one class to the other is governed by the nuclear dynamics and
depends on the conflicting tendencies of the short-range nuclear interaction versus
the spin-orbit splitting.

Key words: few-body systems, shell model, neutron distributions
PACS: 21.45.+v, 21.60.Cs, 21.10.Gv

1 Introduction

In the first paper of this series [1], henceforth referred to as I, we argued
that the di-neutron and cigar-like configurations, commonly conjectured to
be observed in the ground state of 6He, can be understood as a consequence
of the Pauli principle acting between two identical particles in the p shell.
Although the validity of this result is widely accepted by the nuclear physics
community interested in halo phenomena [2], we pointed out in I that it could
be understood from a simple perspective using an elementary version of the
shell model. A particularly fruitful way to approach the problem proved to be
through the use of an angular correlation function, involving the angle between
the position vectors of the two particles, which lead an analytic insight into
the geometric configurations of two particles in any shell, and in the p shell in
particular.
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In this paper we venture into lesser-known territory and, with the example of
8He in mind, we tackle the problem of the geometry of four identical particles
in a single-ℓ shell. Unlike the di-neutron and cigar-like configurations for 6He,
which are well documented in the literature, to our knowledge comparatively
few theoretical studies have appeared concerning the geometric structure of
8He. There exists a fairly old paper of Zhukov et al. [3] who briefly discuss the
geometry of four identical particles in the 0p3/2 shell. More recently, Hagino et

al. [4] studied the structure of 8He through a five-body calculation (the α par-
ticle and four neutrons) in a microscopic Hartree-Fock-Bogoliubov approach.
In fact, these two studies yield a different geometry for 8He: while Zhukov et

al. [3] picture it as an α particle symmetrically surrounded by the four neu-
trons, Hagino et al. [4] find that these are grouped into two weakly interacting
di-neutrons.

The purpose of the present paper is to extend the methods introduced in I,
with the aim to obtain a geometric insight into the structure of four-particle
systems. The approach starts from a basic version of the shell model in the
framework of which it is possible to generalize the concept of the angular
correlation function from two to four particles. Applied to 8He (i.e., to four
particles in the p shell), this method leads in a natural way to the configura-
tions that were encountered by Zhukov et al. [3] and by Hagino et al. [4] and,
moreover, it establishes the conditions for one or the other configuration to be
the dominant one in the ground state of 8He.

The outline of the paper is as follows. In Sect. 2 the method is explained for the
particular and unique state with four identical particles in a p3/2 shell. These
results are then generalized in Sect. 3 to four identical particles in a single
shell with angular momentum ℓ with particular emphasis on the case ℓ = 1
(the p shell) which applies to 8He. In Sect. 4 the conclusions and perspectives
of this work are formulated.

2 The geometry of four identical particles in a p3/2 shell

We begin with a detailed study of the geometry of the case of four identi-
cal particles in the 0p3/2 shell. In the limit of strong spin-orbit coupling and
of large major-shell splittings (i.e., 0s–0p and 0p–1s0d), this would be an
adequate approximation for the ground state of 8He. The valence neutrons
completely fill the 0p3/2 shell and as a result there is only one possible state:
|0+

1 〉 ≡ |(0p3/2)
4; 0+〉. First, in Subsect. 2.1, the angular part of its probability

density is derived and subsequently, in Subsect. 2.2, the spatial configurations
that maximize this probability density are determined. The amount of detail
provided in this section will pave the way for the treatment of more compli-
cated configurations in subsequent sections.
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2.1 Angular probability density of the |(p3/2)
4; 0+〉 state

The Slater determinant for an isolated system of four identical particles in the
0p3/2 shell is written as
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with ψ3/2,m(k) the single-particle wave function of particle k. The radial part
is of the same form for all four single-particle wave functions and is equal to

√

8

3
√
πb3

(
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)

exp

(

− r2
k

2b2

)

, (2)

with b the length of the harmonic oscillator, b =
√

~/mω, where m is the mass
of the particles and ω the frequency of the oscillator. The angular and spin
parts of the single-particle wave functions are

ψ3/2,3/2(k) =Y11(Ωk)χ+1/2(k),

ψ3/2,1/2(k) =

√

1

3
Y11(Ωk)χ−1/2(k) +

√

2

3
Y10(Ωk)χ+1/2(k),

ψ3/2,−1/2(k) =
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ψ3/2,−3/2(k) =Y1−1(Ωk)χ−1/2(k), (3)

where Yℓm(Ωk) are spherical harmonics in terms of the polar angle θk and the
azimuthal angle φk (collectively denoted as Ωk) of particle k. For the p shell
the spherical harmonics assume the explicit expressions
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3
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3
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r
,
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r
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Furthermore, χ±1/2 are spinors for a spin-1/2 particle,
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As only the angular part of the probability density is of concern here, the
radial part (2) is suppressed in the following and the subsequent discussion is
therefore valid for any p shell. 1 The angular part of the wave function is ob-
tained by inserting the explicit expressions (3) into the Slater determinant (1),
leading to a sum of products of a spatial wave function for the four particles,
Φm1m2m3m4

(r̄1, r̄2, r̄3, r̄4), with a spin part χm1
(1)χm2

(2)χm3
(3)χm4

(4). There
are 24−2 = 14 such products since four particles in a p shell cannot all have the
same spin projection, which excludes the products χ+1/2(1)χ+1/2(2)χ+1/2(3)χ+1/2(4)
and χ−1/2(1)χ−1/2(2)χ−1/2(3)χ−1/2(4). The sum can be written as

Ψ0+
1
(1, 2, 3, 4)

=
f

r1r2r3r4

∑

mi

Φm1m2m3m4
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(4), (6)
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3
. (7)

In Appendix A it is shown how the expressions (4) of the spherical harmon-
ics in cartesian coordinates lead to the following angular part of the spatial
probability density associated with the wave function (6):

P0+
1
(Ω1,Ω2,Ω3,Ω4)

=
3

1024π4

1

r2
1r

2
2r

2
3r

2
4

(

(r̄12 · r̄34)2 + (r̄13 · r̄24)2 + (r̄14 · r̄23)2 +

+ |r̄12 × r̄34|2 + |r̄13 × r̄24|2 + |r̄14 × r̄23|2
)

, (8)

where the notation

r̄ij = (xij, yij, zij) = r̄i × r̄j = (yizj − yjzi, zixj − zjxi, xiyj − yixj), (9)

is used. Let θij denote the angle between r̄i and r̄j, and θij,kl the angle between
r̄ij and r̄kl. The dot product r̄ij · r̄kl and the length of the cross product r̄ij ×
r̄kl are equal to rirjrkrl sin θij sin θkl cos θij,kl and rirjrkrl sin θij sin θkl sin θij,kl,
respectively. As a result, the identity

(r̄ij · r̄kl)
2 + |r̄ij × r̄kl|2 = (rirjrkrl sin θij sin θkl)

2 , (10)

can be used to derive the final result 2

1 For this reason the radial quantum number shall be omitted henceforth, except
when specific reference is made to 6He or 8He.
2 The abbreviations sin2 θ and cos2 θ are used to denote (sin θ)2 and (cos θ)2.
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P0+
1
(θ12, θ13, θ14, θ23, θ24, θ34)

= c
(

sin2 θ13 sin2 θ24 + sin2 θ14 sin2 θ23 + sin2 θ12 sin2 θ34

)

, (11)

where the constant c = 3 · 2−10π−4 is introduced for subsequent convenience.

We conclude that the angular part of the probability density of the state with
four identical particles in a p3/2 shell has the simple geometrical structure
given by Eq. (11), a result which coincides with that of Zhukov et al. [3].
In the case of 8He, it is a function of the six relative angles formed by the
four vectors connecting the four neutrons and the α-particle core, and it is
invariant under permutation of the valence neutrons. Furthermore, it is inde-
pendent of the angles θij,kl between the planes formed by pairs of neutrons
and the α-particle core. It might seem that the geometric configurations that
maximize the probability density of the state |0+

1 〉 are trivially obtained from
Eq. (11). This is not the case, however, because only five of the six angles θij

are independent and the problem therefore needs a closer analysis which is
presented in the next subsection.

2.2 Favored geometric configurations of the |(p3/2)
4; 0+〉 state

The purpose of this subsection is to determine the geometric configurations
for which the angular probability density of the |0+

1 〉 state is maximal. As
mentioned at the end of the previous subsection, the six relative angles θij

are not independent and one of the angles can be deduced from the others.
In addition, there are constraints on the five chosen independent angles. As a
result, it is more appropriate to express the probability density (11) in terms
of the azimuthal and polar angles of the particles’ spherical coordinates. There
are eight such angles, only five of which are independent because of rotational
invariance. One can fix the position of one of the particles, say particle 4, at
θ4 = 0 and φ4 = 0, and require that another particle, say particle 1, lies in the
φ1 = 0 plane, so that five independent variables remain: θ1, θ2, θ3, φ2 and φ3.
For clarity, φ1 is kept for the moment and Eq. (11) is rewritten as

P0+
1
(θ1, θ2, θ3, φ1, φ2, φ3)

= c
{

sin2 θ1

[

1 − (cos θ2 cos θ3 + cos(φ2 − φ3) sin θ2 sin θ3)
2
]

+ sin2 θ2

[

1 − (cos θ1 cos θ3 + cos(φ1 − φ3) sin θ1 sin θ3)
2
]

+ sin2 θ3

[

1 − (cos θ1 cos θ2 + cos(φ1 − φ2) sin θ1 sin θ2)
2
]

}

, (12)
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where use is made of the property

cos θij = cos θi cos θj + cos(φi − φj) sin θi sin θj, (13)

which implies sin2 θi4 = sin2 θi. The absolute maximum of this function occurs
at a critical point where the first partial derivatives with respect to the five
variables θ1, θ2, θ3, φ2 and φ3 vanish. However, the search for the absolute
maximum will be complicated by the fact that function (12) abounds in local
extrema and saddle points where the first partial derivatives also vanish.

The condition ∂θ1
P0+

1
= 0 leads to

cos2 θ23 sin2 θ1 + cos2 θ13 sin2 θ2 + cos2 θ12 sin2 θ3

− cos θ13
cos θ3 sin2 θ2

cos θ1

− cos θ12
cos θ2 sin2 θ3

cos θ1

− sin2 θ1 = 0. (14)

Similarly, the conditions ∂θ2
P0+

1
= 0 and ∂θ3

P0+
1

= 0 lead to

cos2 θ23 sin2 θ1 + cos2 θ13 sin2 θ2 + cos2 θ12 sin2 θ3

− cos θ23
cos θ3 sin2 θ1

cos θ2

− cos θ12
cos θ1 sin2 θ3

cos θ2

− sin2 θ2 = 0, (15)

and

cos2 θ23 sin2 θ1 + cos2 θ13 sin2 θ2 + cos2 θ12 sin2 θ3

− cos θ13
cos θ1 sin2 θ2

cos θ3

− cos θ23
cos θ2 sin2 θ1

cos θ3

− sin2 θ3 = 0. (16)

The latter two equations can also be obtained by permuting particles 1 and
2, and particles 1 and 3 in Eq. (14), respectively, which is obvious given that
function (12) is invariant under permutation of any two particles. The condi-
tion ∂φ1

P0+
1

= 0 leads to

sin θ1 sin θ2 sin θ3[sin(φ1−φ3) sin θ2 cos θ13+sin(φ1−φ2) sin θ3 cos θ12] = 0, (17)

and, by permutation, the equations for the other two derivatives are

sin θ1 sin θ2 sin θ3[sin(φ2−φ3) sin θ1 cos θ23−sin(φ1−φ2) sin θ3 cos θ12] = 0, (18)

and

sin θ1 sin θ2 sin θ3[sin(φ1−φ3) sin θ2 cos θ13+sin(φ2−φ3) sin θ1 cos θ23] = 0. (19)

Equations (17), (18) and (19) are not independent. One obvious possible solu-
tion to these equations is sin θ1 = 0 or sin θ2 = 0 or sin θ3 = 0. In each of those
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cases the maximum of (12) is 2c and corresponds to one of the solutions that
will be found later. Other possible solutions, with sin θ1 6= 0 and sin θ2 6= 0
and sin θ3 6= 0, must be due to the vanishing of all three terms between square
brackets in Eqs. (17), (18) and (19). An obvious solution of that system of
three equations satisfies

sin θ1 cos θ23 = sin θ2 cos θ13 = − sin θ3 cos θ12, (20)

and
sin(φ1 − φ2) = sin(φ1 − φ3) = − sin(φ2 − φ3). (21)

Signs can be chosen differently [e.g., sin(φ1 − φ2) = sin(φ1 − φ3) = sin(φ2 −
φ3)] but this leads to essentially the same results as obtained below. Since
the probability density (11) is invariant under any permutation of the four
particles, one may choose, without loss of generality, 0 ≤ φ1 ≤ φ2 ≤ φ3 < 2π.
Furthermore, for φ1 = 0, Eq. (21) reduces to

sinφ2 = sinφ3 = sin(φ2 − φ3). (22)

Subject to the condition 0 ≤ φ2 ≤ φ3 < 2π, these equations admit the solu-
tions

(φ2, φ3) = (0, 0), (φ2, φ3) = (0, π), (φ2, φ3) = (π, π), (23)

as well as

(φ2, φ3) =
(

4π

3
,
5π

3

)

. (24)

For reasons that will become apparent in the following, solutions (23) and (24)
will be referred to as “great-circle” and “tetrahedral” configurations, respec-
tively. These will be discussed separately in the subsequent subsections.

2.2.1 Great-circle configurations

If φ1 = φ2 = φ3 = φ4 = 0 [the first solution in Eq. (23)], the four particles are
in a plane that passes through the center, that is, they are on a great circle.
As a result, expression (12) can be simplified to give

P0+
1
(θ1, θ2, θ3, 0, 0, 0)

= c[sin2 θ1 sin2(θ2 − θ3) + sin2 θ2 sin2(θ1 − θ3) + sin2 θ3 sin2(θ1 − θ2)]. (25)

Partial derivation with respect to θi leads to the following set of equations:

[sin θ1 sin(θ2 − θ3) + sin θ2 sin(θ1 − θ3)] sin(θ1 + θ2 − θ3) = 0,

[sin θ1 sin(θ2 − θ3) − sin θ3 sin(θ1 − θ2)] sin(θ2 − θ3 − θ1) = 0,

[sin θ2 sin(θ1 − θ3) + sin θ3 sin(θ1 − θ2)] sin(θ1 − θ2 − θ3) = 0. (26)
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(a) (b) (c)

Fig. 1. The great-circle configurations that correspond to a local maximum
of the probability density of the |(p3/2)

4; 0+〉 state. The configurations shown

correspond to (a) (θ1, θ2, θ3) = (1
2π, 1

2π, 0) and (φ1, φ2, φ3) = (0, 0, 0), (b)
(θ1, θ2, θ3) = (π, 1

2π, 1
2π) and (φ1, φ2, φ3) = (0, 0, 0), and (c) (θ1, θ2, θ3) = (π, 1

2π, 1
2π)

and (φ1, φ2, φ3) = (0, 0, π), always with θ4 = φ4 = 0.

Since all φi are equal and the probability density (11) is invariant under permu-
tation, one may again require, without loss of generality, 0 ≤ θ3 ≤ θ2 ≤ θ1 ≤ π.
A number of trivial solutions of Eq. (26) occur, namely, (1) θ1 = θ2 = θ3 or
(2) any two of the angles θi are equal to 0 or π. These solutions are not of
interest since they correspond to a vanishing probability density which clearly
is ruled out as a maximum. The two remaining solutions satisfy

(θ1, θ2, θ3) =
(

π

2
,
π

2
, 0
)

, (θ1, θ2, θ3) =
(

π,
π

2
,
π

2

)

, (27)

and therefore lead to the two configurations

(a) : (θ1, θ2, θ3) =
(

π

2
,
π

2
, 0
)

, (φ1, φ2, φ3) = (0, 0, 0),

(b) : (θ1, θ2, θ3) =
(

π,
π

2
,
π

2

)

, (φ1, φ2, φ3) = (0, 0, 0), (28)

always with θ4 = φ4 = 0. The probability density (12) reaches an extremum
value 2c at these two configurations which are represented in Figs. 1(a) and 1(b).
Since function (12) is inversion-invariant with respect to the origin, the coor-
dinates (θ, φ) of any particle can be changed to (π− θ, π+φ) without altering
its value. Thus, by inverting particle positions in the configurations shown in
Fig. 1(a) or 1(b), a third extremal configuration is found to be

(c) : (θ1, θ2, θ3) =
(

π,
π

2
,
π

2

)

, (φ1, φ2, φ3) = (0, 0, π), (29)

as shown in Fig. 1(c).

The maximum configurations for the second and the third solution in Eq. (23),
(φ1, φ2, φ3) = (0, 0, π) and (0, π, π), can be obtained in the same manner and

8



turn out to be equivalent to those that have just been found.

One still needs to verify the character of the different extrema, that is, to check
whether they are maxima, minima or saddle points. To do so, it is necessary
to calculate the Hessian matrix
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(30)

for each of the configurations in Fig. 1, which leads to the matrices
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(31)

A sufficient condition for a function to have a local maximum at a point where
all its first derivatives are zero is that the Hessian matrix is negative definite
at that point. However, the matrices for the great-circle configurations are all
negative semi-definite, which is inconclusive. Indeed, if one of the θi, say θ1,
equals 0 or π, function (12) reduces to 2c sin2 θ2 sin2 θ3 and is independent of
φ2 and φ3. As a consequence, if the polar angles θi are chosen as they are in
the three great-circle configurations found above, the probability density is
independent of azimuthal angles, that is, the four particles can rotate around
the z axis and retain the same probability density value 2c. As an illustration
of this particularity, some configurations with the same polar angles as in the
great-circle configurations but randomly chosen φi are shown in Fig. 2.

On the other hand, the sub-matrices comprised only of second derivatives with
respect to θ1, θ2 and θ3 in the matrices (31) are negative definite. We conclude
that the great-circle configurations in Fig. 1 are local, improper maxima of
Eq. (12). Such cannot be said of configurations in Fig. 2 with randomly chosen
φi because the submatrix of second partial derivatives with respect to the θi

may not be negative definite.
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(a) (b)

Fig. 2. Configurations with θ1 = 0 or π but with random φ2, φ3. The two dif-
ferent configurations shown correspond to (a) (θ1, θ2, θ3) = (0, 1

2π, 1
2π) and (b)

(θ1, θ2, θ3) = (π, 1
2π, 1

2π).

2.2.2 Tetrahedral configurations

Tetrahedral configurations are obtained if the second type of solution with
(φ1, φ2, φ3) = (0, 4

3
π, 5

3
π), as obtained in Eq. (24), is adopted. Conditions on

the polar angles θi can be obtained by inserting the explicit values of the
azimuthal angles φi into Eqs. (20) after use of the property (13), leading to

cos θ3 sin(θ1 − θ2) = cos θ2 sin(θ1 + θ3) = cos θ1 sin(θ2 + θ3) = 0. (32)

These equations admit three classes of solutions. In the first, all angles θi are
either 0 or π; these points can be discarded as a maxima since the probability
density (12) vanishes in them. In the second class, all angles θi (i = 1, 2, 3)
are equal to 1

2
π; the Hessian matrix (31), however, is indefinite at this point

which therefore cannot be a maximum. Finally, the last class of solutions obeys
θ1 = θ2 = π−θ3. Therefore, one arrives at the conclusion that a configuration,
which is a solution of Eqs. (17), (18) and (19) and corresponds to a local
maximum of the probability density (12), must satisfy (θ1, θ2, θ3) = (θ, θ, π−θ)
together with (φ1, φ2, φ3) = (0, 4

3
π, 5

3
π). The condition on the remaining angle

θ is obtained from Eqs. (14), (15) and (16), which all reduce to the single
equation

3 sin2 θ
(

3

2
sin2 θ − 1

)2

+ 2 sin2 θ
(

3

2
sin2 θ − 1

)

− sin2 θ = 0, (33)

of which the non-trivial (i.e., θ 6= 0 or π) solution is sin θ = 2
√

2
3

. This implies
therefore the existence of two extrema, namely

(a) : (θ1, θ2, θ3) ≈ (0.39π, 0.39π, 0.61π), (φ1, φ2, φ3) =
(

0,
4π

3
,
5π

3

)

,

(b) : (θ1, θ2, θ3) ≈ (0.61π, 0.61π, 0.39π), (φ1, φ2, φ3) =
(

0,
4π

3
,
5π

3

)

, (34)
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(a) (b) (c)

Fig. 3. The tetrahedral configurations that correspond to an absolute maximum
of the probability density of the |(p3/2)

4; 0+〉 state. The configurations shown cor-

respond to (a) (θ1, θ2, θ3) = (0.39π, 0.39π, 0.61π) and (φ1, φ2, φ3) = (0, 4
3π, 5

3π),
(b) (θ1, θ2, θ3) = (0.61π, 0.61π, 0.39π) and (φ1, φ2, φ3) = (0, 4

3π, 5
3π), and (c)

(θ1, θ2, θ3) = (0.61π, 0.61π, 0.61π) and (φ1, φ2, φ3) = (1
3π, π, 5

3π), always with
θ4 = φ4 = 0.

always with θ4 = φ4 = 0. These configurations are shown in Figs. 3(a)
and 3(b). After inversion of some of the particle positions in the configu-
ration 3(a) or 3(b), a third maximum is obtained of the form

(c) : (θ1, θ2, θ3) ≈ (0.61π, 0.61π, 0.61π), (φ1, φ2, φ3) =
(

π

3
, π,

5π

3

)

, (35)

the configuration of which is shown in Fig. 3(c). The Hessian matrix is negative
definite in these points, which confirms that they are indeed local maxima.

In all three cases, not only the polar angles θi but also the relative angles
θij are either 0.61π ≃ 109.47◦, which is the tetrahedral angle in a regular
tetrahedron, or 0.39π ≃ 70.53◦, the supplementary angle of the tetrahedral
angle. Indeed, as can be seen in Fig. 3(c), the four particles are at the vertices
of a regular tetrahedron and the other two configurations are derived from it;
hence the name “tetrahedral configurations”. Also, in all three cases, sin θij =
2
√

2
3

and the probability density (12) therefore equals 64
27
c ≃ 2.37c, which is

the largest value found so far. At the same time this shows that the great-
circle configurations (with probability density value 2c) correspond to local as
opposed to absolute maxima.

It should not be forgotten, however, that the above solutions have been ob-
tained by separating, for simplicity’s sake, the three Eqs. (17), (18) and (19)
into the set of equations given in Eqs. (20) and (21). It is therefore important
to check whether all solutions have been found by this method, and this can
be conveniently done by a Monte-Carlo simulation aimed at looking for the
maximum in the probability density of the |0+

1 〉 state. A random input is gen-
erated for each of the five variables in function (12) on the basis of a uniform
distribution. The probability density is evaluated up to 105 times for this set

11



of random inputs and only the input which yields the maximum value for
function (12) is retained. Running this simulation as many times as required,
one always finds one of the three tetrahedral configurations in Fig. 3, which
corroborates the earlier conclusion that these correspond to absolute maxima
in the probability density of the |0+

1 〉 state.

3 The geometry of four identical particles in a p shell

In the previous section the geometry was determined of a specific four-particle
state |0+

1 〉 ≡ |(p3/2)
4; 0+〉. In this section (Subsect. 3.1) this result is generalized

to an arbitrary four-particle state in the p shell, still assuming that the particles
are identical. If the particles are coupled to angular momentum J = 0, it
is obvious that, besides the state considered previously, another one exists,
namely |0+

2 〉 ≡ |(p3/2)
2(0)(p1/2)

2(0); 0+〉, that is, a state with one pair in p3/2

and another in p1/2, both coupled to angular momentum J = 0. It has been
claimed [6] that the nucleus 8He in its ground state has |0+

1 〉 as the dominant
component but that |0+

2 〉 represents a non-negligible fraction of it. In fact, the
relative importance of these components in the ground state of 8He depends
on the magnitude of the spin-orbit splitting between the 0p3/2 and 0p1/2 orbits
and on the mixing between these orbits due to the residual interaction. As a
specific application, the results derived in Subsect. 3.1 therefore enable us to
picture the geometry of the ground state of 8He as a function of the spin-orbit
splitting and the residual interaction. This is discussed in Subsect. 3.2.

3.1 Angular probability density of a |p4;LMLSMS〉 state

It is convenient to discuss the configurations of four particles in an LS-coupled
basis for which there is a clear separation between the spatial coordinates and
the spin (and, if applicable, the isospin) degrees of freedom. A four-particle
state in a single-ℓ shell in LS coupling can be written as

Ψℓ4[L′S′,L′′S′′]LMLSMS
(1, 2, 3, 4)

∝A
∑

M ′

L
M ′′

L
m1m2m3m4

(L′M ′
L L

′′M ′′
L|LML)(ℓm1 ℓm2|L′M ′

L)(ℓm3 ℓm4|L′′M ′′
L)

×
∑

M ′

S
M ′′

S
m′

1
m′

2
m′

3
m′

4

(S ′M ′
S S

′′M ′′
S |SMS)(sm′

1 sm
′
2|S ′M ′

S)(sm′
3 sm

′
4|S ′′M ′′

S)

×Yℓm1
(Ω1)Yℓm2

(Ω2)Yℓm3
(Ω3)Yℓm4

(Ω4)χm′

1
(1)χm′

2
(2)χm′

3
(3)χm′

4
(4), (36)

with s = 1/2 and where the operator A antisymmetrizes in the four particles.
Since the radial part of the wave function is the same for the four particles,
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it can be put up front and can be omitted henceforth. In accordance with
the theory of coefficients of fractional parentage (CFPs) [7], the intermediate
angular momenta (L′S ′) and (L′′S ′′), resulting from the coupling of particles
1 and 2, and 3 and 4, respectively, form a (generally overcomplete) set of
labels to characterize the antisymmetric four-particle state, besides its total
orbital angular momentum L and its total spin S, and their projections. An
alternative way of writing the state is therefore

Ψℓ4[L′S′,L′′S′′]LMLSMS
(1, 2, 3, 4)

=
∑

L′

aS′

aL′′

aS′′

a

[ℓ2(L′
aS

′
a)ℓ

2(L′′
aS

′′
a);LS|}ℓ4[L′S ′, L′′S ′′]LS]

×[Ψℓ2L′

aS′

a
(1, 2) × Ψℓ2L′′

aS′′

a
(3, 4)]

(LS)
MLMS

. (37)

The normalized state Ψℓ2L′

aS′

a
(1, 2), antisymmetric in the first two particles, is

coupled to the normalized state Ψℓ2L′′

aS′′

a
(3, 4), antisymmetric in the last two

particles, to give a four-particle state with total quantum numbers (LS) and
their projections (MLMS). A linear combination of such states, weighted with
appropriate coefficients, yields a state which is antisymmetric in all four parti-
cles. The symbol [· · · |} · · · ] is a CFP in LS coupling, with the square brackets
[L′S ′, L′′S ′′] indicating the so-called parent state from which the state has been
obtained after antisymmetrization. The CFPs appearing in Eq. (37) are known
in closed form in terms of 9j symbols and hence this expansion can be used
for the analytic derivations given below. Alternatively, an explicit antisym-
metrization of the expression (36), containing 24 permutations can be carried
out. Care should then be taken to normalize the resulting antisymmetric state
whereas the expansion (37) is normalized by definition.

The spatial probability density of the wave function (36) or (37) is an average
over all magnetic substates ML and MS,

Pℓ4[L′S′,L′′S′′]LS(r̄1, r̄2, r̄3, r̄4) =
1

(2L+ 1)(2S + 1)

×
∑

MLMS

Ψ∗
ℓ4[L′S′,L′′S′′]LMLSMS

(1, 2, 3, 4)Ψℓ4[L′S′,L′′S′′]LMLSMS
(1, 2, 3, 4), (38)

where it is understood that the spin degrees of freedom have been integrated
out with use of

χ∗
m′

i
(i)χm′′

i
(i) = δm′

i
m′′

i
, i = 1, 2, 3, 4. (39)

For four particles in a single-ℓ shell, the radial dependence can be factored out
of the spatial probability density, and one is left with an angular probability
density Pℓ4[L′S′,L′′S′′]LS(Ω1,Ω2,Ω3,Ω4). Since the spherical harmonic Yℓm′(Ω)
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can be written as

Yℓm′(Ω) =
ℓ
∑

r′=0
even

ar′

ℓm′(cos θ)ℓ−m′−r′(sin θ)m′

(cosφ+ i sinφ)m′

, (40)

in terms of certain coefficients ar′

ℓm′ , the angular probability density for four
particles acquires the generic form

Pℓ4[L′S′,L′′S′′]LS(Ω1,Ω2,Ω3,Ω4) (41)

=
∑

r̄s̄





4
∏

j=1

(cos θj)
2ℓ−rj−sj(sin θj)

sj





(

∑

n̄

ar̄s̄n̄

4
∏

i=1

(cosφi)
ni(sinφi)

si−ni

)

,

where r̄, s̄ and n̄ are short-hand notations for sets of four integers {r1r2r3r4},
{s1s2s3s4} and {n1n2n3n4}, respectively, which satisfy the restrictions 0 ≤
ri ≤ 2ℓ and ri must be even, 0 ≤ si ≤ 2ℓ − ri and 0 ≤ ni ≤ si. Furthermore,
for notational simplicity the dependence on the state’s labels ℓ4[L′S ′, L′′S ′′]LS
is suppressed in the coefficients ar̄s̄n̄.

For ℓ = 1 (the p shell) the spherical harmonics (4) lead to an angular proba-
bility density of the form

Pp4LS(Ω1,Ω2,Ω3,Ω4)

=
∑

s̄





4
∏

j=1

(cos θj)
2−sj(sin θj)

sj





(

∑

n̄

as̄n̄

4
∏

i=1

(cosφi)
ni(sinφi)

si−ni

)

. (42)

A state of four identical particles in the p shell is completely specified by its
total orbital angular momentum L and its total spin S, and no intermediate
labels [L′S ′, L′′S ′′] are needed. For ℓ = 1 all labels ri must be zero [see Eq. (40)]
and the sum over r̄ can be omitted. Furthermore, for the p shell the possible
sets for s̄ are: {2222} (1), {2211} (6), {2220} (4), {1111} (1), {2200} (6),
{2110} (12), {2000} (4), {1100} (6) and {0000} (1), where the number in
brackets after each set indicates the number of possible permutations. For
example, the six permutations associated with {2211} are: {2211}, {2121},
{2112}, {1221}, {1212} and {1122}. Thus, the sum over s̄ contains in fact 41
terms.

The question is now whether the expression (41) can be converted to one
which depends on the relative angles θij only. This, of course, is not always
possible for general coefficients ar̄s̄n̄ but, from symmetry arguments, it should
be possible to do so for the ar̄s̄n̄ associated with an angular probability density.
In Appendix B an algorithm is given, based on trigonometric identities, for the
symbolic reduction of the angular probability density (41) into an expression
depending on cos θij only.
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Table 1
The coefficients aLS , bLS , cLS and dLS in the angular probability density (43) of
four identical particles in the p shell.

L S aLS bLS cLS dLS

0 0 — — 9
512π4 − 9

512π4

1 1 27
2048π4 − 9

2048π4 − 9
2048π4

9
1024π4

2 0 81
10240π4 − 27

10240π4
9

2048π4 − 9
5120π4

Application of the algorithm of Appendix B to the angular probability den-
sity (42) of four particles in the p shell leads to the following expression of this
quantity in terms of the relative angles θij:

Pp4;LS(θ12, θ13, θ14, θ23, θ24, θ34)

= aLS + bLS

∑

(ij)

cos2 θij + cLS

∑

(ij) 6=(kl)

cos2 θij cos2 θkl

+dLS

∑

(ij) 6=(kl) 6=(mn) 6=(pq)

cos θij cos θkl cos θmn cos θpq, (43)

where the summations are over all possible pairs (ij), (kl),. . . with i 6= j,
k 6= l,. . . , such that a particle index occurs at most twice in each term of
the sum. Furthermore, if the summation is over several pairs, they should be
distinct. Therefore, the first summation contains six terms [(12), (13), (14),
(23), (24) and (34)] and the second and third summation have three terms
each [(12)(34), (13)(24) and (14)(23), and (12)(13)(24)(34), (12)(14)(23)(34)
and (13)(14)(23)(24), respectively]. The coefficients aLS, bLS, cLS and dLS are
determined by the geometry of the p shell and are given in Table 1.

In the case of two particles, the angular probability density was written as
a sum over Legendre polynomials in the cosine of the relative angle θij [see
Eq. (23) of I]. The expression (43) is a generalization of this result to four
particles. Equation (43) is valid for the p shell but, since the algorithm of
Appendix B can be applied to any shell, the present results constitute a gen-
eralization of the angular probability density in terms of relative angles from
two to four particles.

For the states with L = S the p-shell results can be further simplified. For
L = S = 0, one finds 3

Pp4;00 =
9

1024π4

∑

(ij) 6=(kl)

(cos θik cos θjl − cos θil cos θjk)
2

3 For notational simplicity the arguments θij in the angular probability densities
Pα are suppressed in the following.
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=
9

1024π4

∑

(ij) 6=(kl)

sin2 θij sin2 θkl cos2 θij,kl, (44)

where use is made of an identity which relates the angles θij to θij,kl (the angle
between r̄ij and r̄kl),

sin θij sin θkl cos θij,kl = cos θik cos θjl − cos θjk cos θil. (45)

Similarly, for L = S = 1, one finds from the coefficients given in Table 1 the
following expression:

Pp4;11 =
9

2048π4

∑

(ij) 6=(kl)

sin2 θij sin2 θkl sin
2 θij,kl. (46)

The angular probability density of a state with J = 0 (which necessarily must
be a linear combination of the two states L = 0, S = 0 and L = 1, S = 1) can
therefore be expressed as a three-termed sum over pairs of particles (ij)(kl)
with (ij)(kl) = (12)(34), (13)(24) and (14)(23).

For J = 0 these results can be converted to the more familiar jj-coupled basis
by noting that the states |0+

1 〉 and |0+
2 〉 can be written as linear combinations

of the states with L = 0, S = 0 and L = 1, S = 1. Consequently, the angular
probability densities of the jj-coupled states are

P0+
1

=
1

3
Pp4;00 +

2

3
Pp4;11, P0+

2
=

2

3
Pp4;00 +

1

3
Pp4;11. (47)

This leads to the expressions

P0+
1

=
3

1024π4

∑

(ij) 6=(kl)

sin2 θij sin2 θkl, (48)

which coincides with the result (11), and

P0+
2

=
3

2048π4

∑

(ij) 6=(kl)

sin2 θij sin2 θkl

(

1 + 3 cos2 θij,kl

)

, (49)

a result which can also be derived in cartesian coordinates.

A study of the angular probability density (49), in the same way as is done in
Subsect. 2.2 for the |0+

1 〉 state, reveals the same geometric configurations for
the |0+

2 〉 state, the only difference being that the great-circle configurations
are the absolute maxima in this case with the value 4c while the tetrahedral
configurations are local maxima with the value 32

27
c.
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3.2 The geometry of the ground state of 8He

Under the assumption of the confinement of the four outer neutrons in 8He to
the 0p shell, its ground state |0+

gs〉 can be written as the linear combination

|0+
gs〉 = α|(0p)4;L = 0, S = 0〉 + β|(0p)4;L = 1, S = 1〉, (50)

with α2 + β2 = 1. How the angular probability density as well as its maxima
evolve with the mixing of the two states is studied in this subsection.

With the expressions derived earlier it is a simple matter to find the angular
probability density for the admixed state (50),

P0+
gs

= (1 − η)Pp4;00 + ηPp4;11

=
9

2048π4

∑

(ij) 6=(kl)

sin2 θij sin2 θkl

[

η + (2 − 3η) cos2 θij,kl

]

, (51)

where 1−η = α2 and η = β2, so that η varies between 0 and 1. The properties
of P0+

gs
depend on the parameter η, which controls the competition between

the terms sin2 θij sin2 θkl which favor the tetrahedral configurations and the
terms sin2 θij sin2 θkl cos2 θij,kl which favor the great-circle configurations.

Obviously, for η = 0 the angular probability density associated with the
|(0p)4;L = 0, S = 0〉 state is recovered while η = 1 corresponds to |(0p)4;L =
1, S = 1〉. The jj-coupled states |0+

1 〉 and |0+
2 〉 are obtained for η = 2

3
and

η = 1
3
, respectively. The critical points where the probability density peaks

(locally or globally) for the |0+
1 〉 state (see Subsect. 2.2), also have vanishing

first partial derivatives for an arbitrary admixed state. They are thus good
candidates for maxima and it is therefore natural to examine the character of
the great-circle and tetrahedral configurations in admixed states.

For any of the great-circle configurations, the angular probability density P0+
gs

has the value

Pgcc

0+
gs

=
9

512π4
(1 − η) = 6(1 − η)c, (52)

where c is the constant introduced earlier, c = 3 · 2−10π−4. To determine
the nature of the angular probability density at this point (i.e., maximum,
minimum or saddle point), the Hessian matrix needs to be constructed for
general η. Take as an example the configuration (θ1, θ2, θ3) = (1

2
π, 1

2
π, 0) and

(φ1, φ2, φ3) = (0, 0, 0) [see Fig. 1(a)]. The Hessian matrix at this point takes
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1�3 2�3 1
Η

-20

-10

10

Λgcc

Fig. 4. The eigenvalues of the Hessian matrix at any of the great-circle configura-
tions. The eigenvalues are expressed in units c = 3 · 2−10π−4.

the form

c





























−12η1,−1 0 6η1,−1 0 0

0 −12η1,−1 6η1,−1 0 0

6η1,−1 6η1,−1 −12η1,−1 0 0

0 0 0 −6η2,−3 0

0 0 0 0 0





























, (53)

where ηk,l ≡ k + lη. The upper 3 × 3 part of the matrix has the eigenvalues
−12(1− η)c and −6(2±

√
2)(1− η)c which are all negative for 0 ≤ η < 1. The

character of the critical point is determined by the remaining eigenvalues, 0
and −6(2− 3η)c. Because of the former, the Hessian matrix is never negative
definite; the latter eigenvalue changes sign at η = 2

3
.

The same eigenvalues are obtained for the other great-circle configurations
and they are plotted in Fig. 4. In Subsect. 2.2 it is shown that at η = 2

3
(i.e.,

for the |0+
1 〉 state) the great-circle configurations are local maxima. For η > 2

3
,

the Hessian matrix is indefinite, indicating that the great-circle configurations
no longer correspond to a maximum. For η < 2

3
, the Hessian matrix is always

negative semi-definite with one vanishing eigenvalue. Yet, since the submatrix
associated with the second derivatives with respect to θi is negative definite,
one concludes, as in Subsect. 2.2, that any of the great-circle configurations
yields an improper (either local or global) maximum of the angular probability
density.

For any of the tetrahedral configurations, the angular probability density P0+
gs

18



1�2 1
Η

-5

5

Λtetra

Fig. 5. The eigenvalues of the Hessian matrix at any of the tetrahedral configura-
tions. The eigenvalues are expressed in units c = 3 · 2−10π−4.

has the value

Ptetra
0+
gs

=
1

96π4
η =

32

9
ηc. (54)

To examine the character of the extremum at these configurations, take as an
example the configuration (θ1, θ2, θ3) = (0.39π, 0.39π, 0.61π) and (φ1, φ2, φ3) =
(0, 4

3
π, 5

3
π) [see Fig. 3(a)]. The Hessian matrix at this point takes the form

c





























4
3
η2,−5 −2

9
η6,7

2
9
η6,7 −4

9

√

2
3
η6,−11

4
9

√

2
3
η6,−11

−2
9
η6,7

4
3
η2,−5

2
9
η6,7 0 −4

9

√

2
3
η6,−11

2
9
η6,7

2
9
η6,7

4
3
η2,−5 −4

9

√

2
3
η6,−11 0

−4
9

√

2
3
η6,−11 0 −4

9

√

2
3
η6,−11

32
27
η2,−5 −16

27
η2,−5

4
9

√

2
3
η6,−11 −4

9

√

2
3
η6,−11 0 −16

27
η2,−5

32
27
η2,−5





























.

(55)
This matrix has the eigenvalues

−32

9
ηc,

1

9

(

34 − 77η ±
√

1156 − 4212η + 3881η2

)

c,

1

27

(

70 − 151η ±
√

4900 − 18068η + 16657η2

)

c. (56)

The same eigenvalues are obtained for the other tetrahedral configurations
and they are plotted in Fig. 5. Two eigenvalues vanish at η = 1

2
. For η > 1

2
,

all the eigenvalues are negative, the Hessian matrix is negative definite and
the tetrahedral configurations are maxima. For η < 1

2
, some of the eigenvalues
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Fig. 6. The evolution of the value of the angular probability density at its maxi-
mum associated with the |0+

gs〉 ground state of four identical particles in the p shell,

as a function of the parameter η. The region 0 ≤ η ≤ 27
43 has great-circle config-

urations as global maxima while in the zone 27
43 ≤ η ≤ 1 the angular probability

density associated with the tetrahedral configurations attains a global maximum.
The boundaries of existence of local maxima are indicated with the dashed lines and
the coexistence region where the angular probability density peaks for the great-cir-
cle and for the tetrahedral configurations is shown in gray. The angular probability
density is expressed in units c = 3 · 2−10π−4.

are positive and some are negative, that is, the matrix is indefinite which is
indicative of a saddle point. Left unsolved is the tricky point η = 1

2
itself where

two of the eigenvalues of the Hessian matrix are zero. The splitting lemma of
Thom’s catastrophe theory [8] provides a way of transforming a function in
a neighborhood of a degenerate critical point (i.e., a critical point where the
determinant of the Hessian matrix vanishes) to a canonical form through a
series of changes of variables. The local properties at the degenerate critical
point can then be studied via the catastrophe germ that is left over in the
Taylor expansion of the function after the transformation. An analysis of this
type shows that the catastrophe germ is cubic at η = 1

2
and that a tetrahedral

configuration is not a local maximum at this point. One concludes that for
η > 1

2
tetrahedral configurations are (local or global) maxima but they are no

longer for η ≤ 1
2
.

The preceding results can be summarized with Fig. 6 which shows a diagram
for the geometry of four identical particles in the p shell. The control param-
eter η along the x axis is related to the structure of the ground state and
incorporates information on the spin-orbit splitting and the character of the
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residual interaction. As a function of η is plotted the maximum value of the
angular probability density which varies between 6c and 92

43
c. To the right of

the dashed line at η = 1
2

(excluding 1
2
), the tetrahedral configurations are local

maxima; to the right of the dotted line at η = 27
43

is the region where the tetra-
hedral configurations are absolute maxima. The great-circle configurations are
maxima to the left of the dashed line η = 2

3
(including 2

3
), and absolute max-

ima in the zone η ≤ 27
43

. In the language of phase transitions, the area in gray
can be viewed as a region of coexistence where the angular probability density
peaks for the great-circle and for the tetrahedral configurations. This area is
bounded by the spinodal points η = 1

2
and η = 2

3
. It is separated in two dis-

tinct regions by the Maxwell point η = 27
43

where the maximum values of the
angular probability density are the same for the two configurations.

It should be pointed out that this analysis does not differentiate between the
three great-circle configurations nor between the three tetrahedral configura-
tions, discussed in Subsect. 2.2. In other words, the diagram in Fig. 6 is valid
for any of the three great-circle configurations and for any of the three tetrahe-
dral configurations. This is a property of the p shell akin to the equiprobability
of the di-neutron and cigar-like configurations if a pure p-shell configuration
is adopted for two particles. As was shown in part I, admixtures from higher
shells lead to a predominance of the di-neutron over the cigar-like configura-
tion. It would be of interest to study similarly the effect of excitations into
higher shells on the spatial correlations of a four-particle system and, specifi-
cally, to determine which of the three great-circle configurations becomes the
dominant one as a result of such excitations.

While one cannot at this point select a favorite among the three great-circle or
the three tetrahedral configurations, the present results indicate that the for-
mer rather than the latter yield a more accurate intuitive picture of the geom-
etry of 8He. Although the spin-orbit splitting between the 0p3/2 and the 0p1/2

orbits favors the formation of a |(0p3/2)
4; 0+〉 ground state in 8He, this tendency

is counterbalanced by the short-range, attractive character of the residual in-
teraction which lowers the energy of states with spatial symmetry and hence
prefers a ground state with L = S = 0. Empirical shell-model interactions,
fitted to the observed spectroscopy of 0p-shell nuclei, arguably are the best
way to decide on the outcome of this competition. For example, the Cohen-
Kurath interaction [9] yields a ground state for 8He which is predominantly
spatially symmetric with only a small admixture of the |(0p)4;L = S = 1〉
state, β2 = η = 0.01. For such a small value of η, the appropriate geometry is
one of the three great-circle configurations.
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4 Conclusions

In part I of this series, the existence of the two well-known geometric configu-
rations of 6He, commonly referred to as di-neutron and cigar-like, were shown
to be an inescapable consequence of the geometry of the 0p shell. In this pa-
per, with the example of the halo nucleus 8He in mind, this geometric view
of the shell model was extended from two to four particles. It was found that
a fruitful way to approach this problem consists of converting the probability
density of an arbitrary four-particle state into an expression that depends on
the six angles θij between pairs of position vectors of the particles i and j.
This conversion was achieved explicitly for four identical particles in a p shell
on the basis of an algorithm valid for any shell. This work, therefore, extends
the knowledge of the angular correlation function, which was established for
two particles, to four particles.

While two configurations, di-neutron and cigar-like, arise naturally for two
particles in a p shell, a system of four identical particles exhibits a richer ge-
ometry. Six favored four-particle configurations are found in the p shell which
fall into two classes, great-circle and tetrahedral, with three members each. In
each class the three configurations are equiprobable as long as the particles are
confined to the p shell. Whether the great-circle or the tetrahedral configura-
tions are dominant depends on the dynamics of the problem and, specifically,
on the competition between the spin-orbit splitting and the strength of the
short-range residual interaction. This work, therefore, establishes a “phase di-
agram” for the geometry of four particles in the p shell. In addition, it appears
from the present study that, for a realistic interaction in the p shell, great-
circle configurations are favored. But it remains to be studied which of the
three great-circle configurations will turn out dominant if excitations out of
the p shell are allowed.

The present study was motivated by the ongoing experimental work on 8He
and was therefore concerned with four identical particles in a p shell. An ob-
vious generalization is to attempt to construct similar geometries for three
particles and/or for different shells. Nuclear examples of such systems do not
spring to mind but we believe that theoretical studies of this kind have an
intrinsic interest by themselves. Of more immediate relevance to nuclear struc-
ture would be the generalization of the present formalism to include isospin,
which, probably, can be achieved without too much effort for particles in the p
shell. A study of this kind would provide us with information on the geometric
structure of mixed systems of neutrons and protons, and possibly on the role
played by neutron-neutron, neutron-proton and proton-proton pairs in such
systems.

22



Acknowledgments

We wish to thank Navin Alahari, Kris Heyde and Peter Schuck for fruitful
discussions at various stages of this work. This work was partially supported by
the Agence Nationale de Recherche, France, under contract ANR-07-BLAN-
0256-03.

A The angular probability density in relative angles θij. Derivation

in cartesian coordinates

In this appendix we express the angular probability density associated with
the |0+

1 〉 ≡ |(p3/2)
4; 0+〉 state with the wave function (6), in terms of the

relative angles θij. Use is made of cartesian coordinates. The starting point
is the sum (6) in which the spatial dependence is specified by the following
expressions:

Φ−−++(r̄1, r̄2, r̄3, r̄4) = Φ∗
++−−(r̄1, r̄2, r̄3, r̄4)

=x2x4y1y3 − x1x4y2y3 − x2x3y1y4 + x1x3y2y4 + x2x4z1z3 + y2y4z1z3

−x1x4z2z3 − y1y4z2z3 − x2x3z1z4 − y2y3z1z4 + x1x3z2z4 + y1y3z2z4

−i(x4y2z1z3 − x2y4z1z3 − x4y1z2z3 + x1y4z2z3 − x3y2z1z4 + x2y3z1z4

+x3y1z2z4 − x1y3z2z4),

Φ−+−+(r̄1, r̄2, r̄3, r̄4) = Φ∗
+−+−(r̄1, r̄2, r̄3, r̄4)

=−x3x4y1y2 + x1x4y2y3 + x2x3y1y4 − x1x2y3y4 − x3x4z1z2 − y3y4z1z2

+x1x4z2z3 + y1y4z2z3 + x2x3z1z4 + y2y3z1z4 − x1x2z3z4 − y1y2z3z4

+i(x4y3z1z2 − x3y4z1z2 − x4y1z2z3 + x1y4z2z3 + x3y2z1z4 − x2y3z1z4

+x2y1z3z4 − x1y2z3z4),

Φ−++−(r̄1, r̄2, r̄3, r̄4) = Φ∗
+−−+(r̄1, r̄2, r̄3, r̄4)

=x3x4y1y2 − x2x4y1y3 − x1x3y2y4 + x1x2y3y4 + x3x4z1z2 + y3y4z1z2

−x2x4z1z3 − y2y4z1z3 − x1x3z2z4 − y1y3z2z4 + x1x2z3z4 + y1y2z3z4

+i(x4y3z1z2 − x3y4z1z2 − x4y2z1z3 + x2y4z1z3 + x3y1z2z4 − x1y3z2z4

−x2y1z3z4 + x1y2z3z4),

Φ−−−+(r̄1, r̄2, r̄3, r̄4) = −Φ∗
+++−(r̄1, r̄2, r̄3, r̄4)

=−x3y2y4z1 + x2y3y4z1 + x3y1y4z2 − x1y3y4z2 − x2y1y4z3 + x1y2y4z3

+i(x3x4y2z1 − x2x4y3z1 − x3x4y1z2 + x1x4y3z2 + x2x4y1z3 − x1x4y2z3),

Φ−−+−(r̄1, r̄2, r̄3, r̄4) = −Φ∗
++−+(r̄1, r̄2, r̄3, r̄4)

=x4y2y3z1 − x2y3y4z1 − x4y1y3z2 + x1y3y4z2 + x2y1y3z4 − x1y2y3z4

−i(x3x4y2z1 − x2x3y4z1 − x3x4y1z2 + x1x3y4z2 + x2x3y1z4 − x1x3y2z4),

Φ−+−−(r̄1, r̄2, r̄3, r̄4) = −Φ∗
+−++(r̄1, r̄2, r̄3, r̄4)

=−x4y2y3z1 + x3y2y4z1 + x4y1y2z3 − x1y2y4z3 − x3y1y2z4 + x1y2y3z4
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+i(x2x4y3z1 − x2x3y4z1 − x2x4y1z3 + x1x2y4z3 + x2x3y1z4 − x1x2y3z4),

Φ+−−−(r̄1, r̄2, r̄3, r̄4) = −Φ∗
−+++(r̄1, r̄2, r̄3, r̄4)

=x4y1y3z2 − x3y1y4z2 − x4y1y2z3 + x2y1y4z3 + x3y1y2z4 − x2y1y3z4

−i(x1x4y3z2 − x1x3y4z2 − x1x4y2z3 + x1x2y4z3 + x1x3y2z4 − x1x2y3z4),

(A.1)

where the superscripts mi = ±1/2 are abbreviated to ±. The above expres-
sions are grouped into pairs. In the first three pairs, two spins are up and
two down, and the spatial wave functions associated with a given spin state
and the one obtained by flipping all spins are conjugate to each other. In
the remaining four pairs, one spin is up and three are down, and the spatial
wave function associated with a given spin state is minus the conjugate of the
spatial wave function of the state with flipped spins.

With the notations

r̄ij = (xij, yij, zij) = r̄i × r̄j = (yizj − yjzi, zixj − zjxi, xiyj − yixj), (A.2)

and
r̄ij,kl = (xij,kl, yij,kl, zij,kl) = r̄ij × r̄kl, (A.3)

the two types of expressions can be reduced to

Φ−−++(r̄1, r̄2, r̄3, r̄4) = Φ∗
++−−(r̄1, r̄2, r̄3, r̄4) = r̄12 · r̄34 + i z12,34,

−Φ−+−+(r̄1, r̄2, r̄3, r̄4) = −Φ∗
+−+−(r̄1, r̄2, r̄3, r̄4) = r̄13 · r̄24 + i z13,24,

Φ−++−(r̄1, r̄2, r̄3, r̄4) = Φ∗
+−−+(r̄1, r̄2, r̄3, r̄4) = r̄14 · r̄23 + i z14,23, (A.4)

and

Φ−−−+(r̄1, r̄2, r̄3, r̄4) = −Φ∗
+++−(r̄1, r̄2, r̄3, r̄4) = (r̄1 · r̄23)(y4 − i x4),

−Φ−−+−(r̄1, r̄2, r̄3, r̄4) = Φ∗
++−+(r̄1, r̄2, r̄3, r̄4) = (r̄1 · r̄24)(y3 − i x3),

Φ−+−−(r̄1, r̄2, r̄3, r̄4) = −Φ∗
+−++(r̄1, r̄2, r̄3, r̄4) = (r̄1 · r̄34)(y2 − i x2),

−Φ+−−−(r̄1, r̄2, r̄3, r̄4) = Φ∗
−+++(r̄1, r̄2, r̄3, r̄4) = (r̄2 · r̄34)(y1 − i x1). (A.5)

Therefore, the spatial probability density of the wave function (6), obtained
by summing over the different possible spin configurations, is equal to

P0+
1
(r̄1, r̄2, r̄3, r̄4)

=

(

f

r1r2r3r4

)2
∑

mi

Φm1m2m3m4
(r̄1, r̄2, r̄3, r̄4)Φ

∗
m1m2m3m4

(r̄1, r̄2, r̄3, r̄4)

=
3

1024π4

1

r2
1r

2
2r

2
3r

2
4
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×
(

(r̄12 · r̄34)2 + (r̄13 · r̄24)2 + (r̄14 · r̄23)2 + z2
12,34 + z2

13,24 + z2
14,23

+ (x2
1 + y2

1)(r̄2 · r̄34)2 + (x2
2 + y2

2)(r̄1 · r̄34)2

+ (x2
3 + y2

3)(r̄1 · r̄24)2 + (x2
4 + y2

4)(r̄1 · r̄23)2
)

. (A.6)

This expression can be reduced further. From the identities

ā× b̄=−b̄× ā,

ā · (b̄× c̄) = b̄ · (c̄× ā) = c̄ · (ā× b̄),

(ā× b̄) × (c̄× d̄) =−(ā · (b̄× c̄))d̄+ (ā · (b̄× d̄))c̄, (A.7)

it follows that

x12,34 =−(r̄1 · r̄23)x4 + (r̄1 · r̄24)x3 = −x34,12 = (r̄1 · r̄34)x2 − (r̄2 · r̄34)x1,

x13,24 = +(r̄1 · r̄23)x4 + (r̄1 · r̄34)x2 = −x24,13 = (r̄1 · r̄24)x3 + (r̄2 · r̄34)x1,

x14,23 = +(r̄1 · r̄24)x3 − (r̄1 · r̄34)x2 = −x23,14 = (r̄1 · r̄23)x4 − (r̄2 · r̄34)x1.

(A.8)

Similar properties are valid for the y and z components. Furthermore, the
following relation holds:

r̄1(r̄2 · r̄34) − r̄2(r̄1 · r̄34) + r̄3(r̄1 · r̄24) − r̄4(r̄1 · r̄23) = 0. (A.9)

By combining the squares of the x and y components of this identity with the
squares of the expressions (A.8) (and their equivalent expressions for the y
components), one obtains the relations

x2
12,34 + x2

13,24 + x2
14,23

=x2
1(r̄2 · r̄34)2 + x2

2(r̄1 · r̄34)2 + x2
3(r̄1 · r̄24)2 + x2

4(r̄1 · r̄23)2,

y2
12,34 + y2

13,24 + y2
14,23

= y2
1(r̄2 · r̄34)2 + y2

2(r̄1 · r̄34)2 + y2
3(r̄1 · r̄24)2 + y2

4(r̄1 · r̄23)2. (A.10)

With use of these identities in the expression (A.6), the latter can be further
simplified to give

P0+
1
(r̄1, r̄2, r̄3, r̄4)

=
3

1024π4

1

r2
1r

2
2r

2
3r

2
4

(

(r̄12 · r̄34)2 + (r̄13 · r̄24)2 + (r̄14 · r̄23)2

+ |r̄12 × r̄34|2 + |r̄13 × r̄24|2 + |r̄14 × r̄23|2
)

, (A.11)

25



which coincides with Eq. (11).

B The angular probability density in relative angles θij. Derivation

in spherical coordinates

In this appendix we give the algorithm for the symbolic conversion of the angu-
lar probability density associated with the wave function (36) of four identical
particles in a single-ℓ shell into an expression depending on the relative angles
θij only. Use is made of spherical coordinates. The starting point is the generic
expression (41) which can be rewritten as

Pℓ4[L′S′,L′′S′′]LS(Ω1,Ω2,Ω3,Ω4)

=
∑

r̄s̄

fr̄s̄(φ1, φ2, φ3, φ4)
4
∏

j=1

(cos θj)
2ℓ−rj−sj(sin θj)

sj , (B.1)

with

fr̄s̄(φ1, φ2, φ3, φ4) =
∑

n̄

ar̄s̄n̄

4
∏

i=1

(cosφi)
ni(sinφi)

si−ni , (B.2)

where the coefficients ar̄s̄n̄ can be obtained from the spatial probability den-
sity (38) after insertion of the explicit wave-function expression (36). The first
step in the algorithm is to rewrite the functions fr̄s̄(φ1, φ2, φ3, φ4) in terms of
cosφij ≡ cos(φi − φj). In general, one can propose an expansion of the form

fr̄s̄(φ1, φ2, φ3, φ4) ≡ gr̄s̄(φ12, φ13, φ14, φ23, φ24, φ34)

= ar̄s̄ +
∑

(ij)

aij
r̄s̄ cosφij +

∑

(ij)(kl)

aij,kl
r̄s̄ cosφij cosφkl

+
∑

(ij)(kl)(mn)

aij,kl,mn
r̄s̄ cosφij cosφkl cosφmn

+
∑

(ij)(kl)(mn)(pq)

aij,kl,mn,pq
r̄s̄ cosφij cosφkl cosφmn cosφpq + · · · , (B.3)

where the summations are over pairs (ij), (kl),. . . with i 6= j, k 6= l,. . . The co-
efficients ar̄s̄, a

ij
r̄s̄,. . . obviously depend on the coefficients ar̄s̄n̄ in the definition

of fr̄s̄(φ1, φ2, φ3, φ4) but the structure of the expansion is also determined by
the set s̄ from general arguments. The number of times φi occurs in Eq. (B.1)
is si and it may not occur the same number of times in Eq. (B.3). The expan-
sion (B.3) should be such, however, that in each term φi occurs si − 2k times
(with k = 0, 1, . . . , 1

2
si) and the exponents can then be matched by multiplying

this term with (sin2 φi + cos2 φi)
k. For example, if s̄ = {2222}, the expansion

acquires the form 4

4 The subscript r̄ is dropped since it does not enter into this discussion.
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g{2222}(φ12, φ13, φ14, φ23, φ24, φ34)

= a{2222} +
∑

(ij)

aij,ij
{2222} cos2 φij +

∑

(ij)(kl)(mn)

aij,kl,mn
{2222} cosφij cosφkl cosφmn

+
∑

(ij)(kl)(mn)(pq)

aij,kl,mn,pq
{2222} cosφij cosφkl cosφmn cosφpq, (B.4)

where the first sum has six terms [(12), (13), (14), (23), (24) and (34)], the sec-
ond sum has three terms [(12)(13)(23), (12)(14)(24) and (23)(24)(34)] and the
third sum has six terms [(12)(12)(34)(34), (12)(13)(24)(34), (12)(14)(23)(34),
(13)(13)(24)(24), (13)(14)(23)(24) and (14)(14)(23)(23)]. From general argu-
ments certain coefficients (like aij

{2222}) must vanish. To give another example,
if s̄ = {2211}, the expansion becomes

g{2211}(φ12, φ13, φ14, φ23, φ24, φ34)

= a34
{2211} cosφ34 +

∑

(ij)(kl)

aij,kl
{2211} cosφij cosφkl

+
∑

(ij)(kl)(mn)

aij,kl,mn
{2211} cosφij cosφkl cosφmn, (B.5)

where the first sum has two terms [(13)(14) and (23)(24)] and the second sum
has three terms [(12)(12)(34), (12)(13)(24) and (12)(14)(23)]. For each of the
functions fr̄s̄(φ1, φ2, φ3, φ4) in the sum (B.1)—they are 41 in number in the p
shell—an equivalent function gr̄s̄(φ12, φ13, φ14, φ23, φ24, φ34) can be determined
by writing cosφij in Eq. (B.3) in terms of the cosine and the sine of the
individual angles φi and φj, and equating the result to Eq. (B.1). Given a set of
coefficients ar̄s̄n̄, these equations can be solved for the unknowns ar̄s̄, a

ij
r̄s̄,. . . and

this determines the function gr̄s̄(φ12, φ13, φ14, φ23, φ24, φ34). In fact, in general
there are several possible forms gα

r̄s̄(φ12, φ13, φ14, φ23, φ24, φ34), α = 1, 2, . . .
for the function and it is imperative that all possibilities are found for the
subsequent step (the conversion to the angles θij) to work. It is always feasible
to find all possibilities since the relation between the coefficients ar̄s̄n̄ and ar̄s̄,
aij

r̄s̄,. . . is linear. As a result of the first step, the substitution

fr̄s̄(φ1, φ2, φ3, φ4) 7→
∑

α

uα
r̄s̄ g

α
r̄s̄(φ12, φ13, φ14, φ23, φ24, φ34), (B.6)

is made in the angular probability density (B.1), where uα
r̄s̄ are unknowns, to

be determined later, that satisfy
∑

α u
α
r̄s̄ = 1.

In the second step of the algorithm, the dependence on the azimuthal angles
φi is eliminated with use of the identity

cosφij =
cos θij − cos θi cos θj

sin θi sin θj

. (B.7)

The resulting expression for the angular probability density depends on the
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relative angles θij, which is what we want to achieve, but still also on the
polar angles θi, which should be avoided. After this substitution, the following
generic expression is obtained for the angular probability density:

∑

q̄p̄

bq̄p̄





∏

(ij)∈q̄−p̄

cos θij





(

4
∏

k=1

(cos θk)
qk−pk

)

, (B.8)

where q̄ and p̄ are short-hand notations for sets of four integers {q1q2q3q4}
and {p1p2p3p4}, respectively. For the p shell the possible sets for q̄ are: {2222}
(1), {2220} (4), {2200} (6), {2000} (4) and {0000} (1), where the number in
brackets after each set indicates the number of possible permutations, so that
the sum over q̄ contains in fact 16 terms. Furthermore, the values of pi are
obtained by taking 1, 2,. . . pairs out of the set q̄. For example, if q̄ = {2222},
the possible sets for p̄ are: {2222} (1 × 1), {2211} (1 × 6), {2200} (1 × 6),
{2110} (1 × 12), {1111} (3 × 1), {2000} (1 × 4), {1100} (2 × 6) and {0000}
(6× 1). The brackets after each set contain products of two numbers; the first
gives the number of ways the pairs can be selected and the second indicates
the number of possible permutations. So, for example, to obtain p̄ = {2211}
from q̄ = 2222 one necessarily must select the pair (34) and there are six
possible permutations ({2211}, {2121}, {1221}, {2112}, {1212} and {1122}).
As another example, there is only one permutation of p̄ = {1111} but it can
be obtained from q̄ = {2222} by taking out the pairs (12)(34), (13)(24) or
(14)(23). The expression for the angular probability density is now obtained
by requiring that all coefficients bq̄p̄ with p̄ 6= q̄ vanish. This leads to a set of
equations in the unknowns uα

r̄s̄ introduced earlier, which generally is woefully
overcomplete. For arbitrary coefficients ar̄s̄n̄ in the original expression (B.1),
it allows no solution but for a genuine angular probability density it should.
In fact, it was found in the p shell that the equations bq̄p̄ = 0 always leave one
unknown uα

r̄s̄ unspecified which can be chosen at will.

This algorithm can be implemented in a symbolic computer language such
as Mathematica, enabling the automatic conversion of a probability density
depending on the polar and azimuthal angles Ωi to one which depends on the
relative angles θij.
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