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Abstract.

The determination of the CP-violating phase in B0
s → J/ψφ decays is one of the key goals

of the LHCb experiment. Its value is predicted to be very small in the Standard Model but
can be significantly enhanced in many models of New Physics. The steps towards a precise
determination of this phase with a flavour-tagged, time-dependent, angular analysis of the
decay B0

s → J/ψφ will be reviewed and first studies performed with data collected at LHC in
pp collisions at 7TeV center-of-mass energy will be presented. Prospects are also given for the
measurement of the flavour specific asymmetry using semileptonic B0

d,s decays.

1. Introduction

The phenomenology of CP violation in B0
s decays is described in many articles [1]. Here we just

recall the main aspects. The time evolution of the B0
s (∼ b̄s) and B0

s (∼ bs̄) mass eigenstates is
described by a Schrödinger equation:

i
∂

∂t

(

|B0
s (t)〉

|B0
s (t)〉

)

=

(

M − i
Γ

2

) (

|B0
s (t)〉

|B0
s (t)〉

)

,

where M and Γ are the mass and decay matrices. We can define three parameters describing
the phenomenom of B0

s–B0
s mixing:

∆ms = MH −ML, ∆Γs = ΓL − ΓH, φs = arg

(

−
M12,s

Γ12,s

)

, (1)

where the average B0
s mass and width (indices L and H for the two mass eigenstates) are:

MB0
s

=
MH +ML

2
, Γs =

ΓL + ΓH

2
. (2)

There are several ways of probing New Physics using B0
s–B0

s -mixing. In this document, we
describe the golden method using B0

s → J/ψφ decays. We also present an alternative method
using semileptonic decays.

Within the Standard Model, the decay B0
s → J/ψφ is dominated by b → ccs quark level

transitions, as represented in Figure 1 (left), with a weak phase ΦD = arg(VcbV
∗
cs)

1. The B0
s

1 The possible small penguin contribution (same figure, right) is neglected here and discussed further in [2]



meson can also oscillate to a B0
s before decaying to J/ψφ, with a weak phase ΦM = 2arg(V ∗

tsVtb)
(Figure 2). The interference between both processes gives rise to a CP violating weak phase

φ
J/ψφ
s = ΦM − 2ΦD = −2βs, where βs = arg (−VtsV

∗
tb/VcsV

∗
cb) is the smallest angle of the

“b−s unitarity triangle”. The indirect determination via global fits to experimental data gives
2βs = (0.0363± 0.0017) rad [3]. The direct measurement of this phase is one of the key goals of

the LHCb experiment. Indeed, φ
J/ψφ
s is one of the CP observables with the smallest theoretical

uncertainty in the Standard Model, and New Physics could significantly modify this prediction.
if new particles contribute with a new phase to the B0

s–B0
s box diagram. Both CDF and DØ

have reported constraints on φ
J/ψφ
s with large uncertainties [4].

An alternative way to search for New Physics is to measure the flavour specific asymmetry,
which is linked to the quantity

as
fs =

∆Γs

∆ms
tanφs , (3)

as explained in [5] (see also Eq. 7 in Section 4). Within the Standard Model, φSM
s = (3.40+1.32

−0.77)×

10−3 rad [3]. DØ reported in 2010 a 3.2σ deviation with respect to the Standard Model,
measuring the the like-sign dimuon charge asymmetry in semileptonic b-hadron decays [6]. The

quantity φ
J/ψφ
s and φs are two different observables. However, assuming new physics affects only

the mixing box diagram, they would be both shifted by the same New Physics phase, φ∆
s :

φJ/ψφ
s = −2βs + φ∆

s , (4)

φs = φSM
s + φ∆

s . (5)

where we have used the notation of [7].

In Section 2, we present the method to measure φ
J/ψφ
s at LHCb and the expected sensitivity,

based on Monte Carlo estimates. In Section 3, the first preliminary results obtained with the 2010
real data are given. Eventually in Section 4, we present a way to constraint φs via semileptonic
decays.

2. B0
s → J/ψφ studies based on Monte Carlo

B0
s → J/ψφ is a pseudo-scalar to vector-vector decays. The final state is a superposition of three

polarizations amplitudes (A0, A‖ and A⊥), and an angular analysis is required to disentangle
statistically the CP-odd and CP-even components. The argument of the polarization amplitudes
are strong phases denoted δ0, δ‖ and δ⊥. The three decay product angles are shown in Figure 3,

in the transversity basis, for B0
s → J/ψφ.

The differential decay rate of B0
s → J/ψφ is a function of six observables (the proper time,

the J/ψφ invariant mass, the initial B0
s flavour and the three decay angles) and nine physics

parameters: the weak phase (φ
J/ψφ
s ), the mass and width difference between B0

s mass eigenstates
(∆ms and ∆Γs), the mass and width of the B0

s , two amplitudes and two strong phases [8]. The
possibility to account for a KK S-wave in the B0

s → J/ψK+K− decay is discussed in [9].
In the rest of this section, we present the trigger and selection, the measurement of proper

time and decay angles, the flavour tagging, the fit and sytematics studies, based on Monte
Carlo [10].

2.1. Trigger and selections

The B0
s → J/ψφ channels is triggered and selected in a uniform way together with two control

channels (B0 → J/ψK∗0 and B+ → J/ψK+), in order to extract the mistag rate (defined in
Section 2.2) without applying large corrections. The trigger and selections are designed to

maximize the sensitivity to φ
J/ψφ
s while avoiding large proper time and angular acceptance



Figure 1. Feynman diagrams contributing to the decay B0
s → J/ψφ, within the Standard Model.

Left: tree; right: penguins.

Figure 2. Feynman diagrams responsible for Bq–Bq mixing, within the Standard Model (q=s,d).

Figure 3. Angle definition: θ is the angle formed by the positive lepton (ℓ+) and the z axis, in
the J/ψ rest frame. The angle ϕ is the azimuthal angle of ℓ+ in the same frame. In the φ meson
rest frame, ψ is the angle between ~p(K+) and −~p(J/ψ).

corrections [11]. The J/ψ is reconstructed from its decay to two muons, while the φ is
reconstructed from two kaons. Based on a Monte Carlo simulation, with a center-of-mass energy
of 14 TeV, we expect 117 000 B0

s → J/ψφ per 2 fb−1. The total trigger efficiency is ∼ 70%. The
background is dominated by prompt events, since no cut which can bias the lifetime is used.
The angular acceptances for the three transversity angles show distortions below 8%. These are
mainly from the LHCb forward geometrical acceptance.



2.2. Flavour tagging

The flavour tagging algorithm and its calibration in LHCb are described in [12, 13]. It is
characterized by a mistag rate (ω = W/(W + R)), a tagging efficiency (εtag = (W + R)/(W +
R + U)) and an effective tagging efficiency εeff = εtag(1 − 2ω)2; where W , R and U denotes
the number of events wrongly tagged, correctly tagged and untagged. Within each event, all
available information is used and combined using a neural network. The combined effective
tagging efficiency measured on simulated B0

s → J/ψφ events is 5.3%.

2.3. Fits and systematics

The fit procedure is described in [10]. The eight physics parameters {φ
J/ψφ
s ,Γs,∆Γs, R⊥, R0, δ⊥,

δ‖,∆ms} are determined by an unbinned likelihood fit to six physical observables (mass, proper
time, initial flavour and three transversity angles), taking into account 18 detector parameters.
The total PDF is the sum of the signal PDF plus two PDFs for modelling the prompt and
the long-lived background. The proper time resolution, angular acceptance and mistag fraction
are taken into account. The projections of data and fitted probability density function on the
transversity angles and on the proper time can be found in Figure 4. The fitted PDFs and Monte
Carlo data show very good agreement. Using hundreds of toy Monte Carlo experiments, the

statistical uncertainty on φ
J/ψφ
s is estimated to be 0.07 rad, with 1 fb−1 of data taken at a LHC

centre-of-mass energy of 7 TeV2. A summary of the systematic effects is given in Table 1. No
irreducible systematic uncertainty has been identified. Figure 5 shows the statistical uncertainty

on φ
J/ψφ
s versus the integrated luminosity. The latest Tevatron results are also indicated.

Parameter Variation |φwrong
s − φtrue

s |/φtrue
s

Angular distortions ±5% 7%
Proper time resolution (38 ± 5) fs 6%
Mistag (34 ± 1)% 7%

Table 1. Relative systematic variation on φ
J/ψφ
s (column 3), due to parameter variations

(columns 1 and 2).

3. First B0
s → J/ψφ results based on 2010 real data

In 2010, the LHCb detector recorded 37 pb−1 of data. The detector worked remarkably well,
depsite being exposed to a pile-up ∼ 5 times higher than the design. The invariant mass of
B+ → J/ψK+, B0 → J/ψK∗0 and B0

s → J/ψφ, B0 → J/ψK∗0, triggered and selected in ∼ 33 pb−1

are given in Figure 6. 877 ± 32 B0
s → J/ψφ are reconstructed with a proper time above 0.3 ps.

Note that this cut on proper time is just used for illustration purpose, to remove the huge
prompt background. It will not be used in the final fit. The proper time resolution of the B0

s

candidates is estimated to be 50 fs, roughly 30% worse than Monte Carlo expectation, but still
twice better than the one reported by Tevatron experiments and easily sufficient to resolve the
fast B0

s–B0
s oscillations, which have a period of 352 fs. First results on opposite side flavour

tagging using B0 → D∗−µ+νµ event gives 60% of the performance expected from Monte Carlo.
Since the DISCRETE symposium, much progress in this area has been achieved and new results
including same-side tagging will soon be reported.

2 Results given in [10] were obtained assuming 14TeV and 2 fb−1. They have simply been rescaled here to 7 TeV.



Figure 4. The projections of data and fitted signal PDF including both the angular and
proper time acceptance effects, in a sample of toy MC events, including prompt and long-lived
background. Also shown are the CP-even (dashed) and the CP-odd (dotted) components.

Figure 5. Monte Carlo expected uncertainty on φ
J/ψφ
s at LHCb versus integrated luminosity,

for a LHC centre-of-mass energy of 7 TeV.



Figure 6. Invariant mass of B+→ J/ψK+, B0→ J/ψK∗0 et B0
s → J/ψφ candidates reconstructed

in the first data (33 pb−1) collected by the LHCb experiment in 2010.

4. Flavor-specific asymmetry in B0
d,s decays

An alternative way to look for New Physics in the mixing box diagram is to measure the flavour
specific asymmetry:

Aqfs =
Γ(f) − Γ(f)

Γ(f) + Γ(f)
q = d, s . (6)

The index q = s,b stands for B0
s and B0 mesons. This observable is related to afs (Eq. 3) via:

Aq
fs(t) =

aq
fs

2
−
δqc
2

− (
aq

fs

2
+
δqp
2

)
cos(∆mqt)

cosh(∆Γqt/2)
+
δqb
2

(

B

S

)q

q = s,b , (7)

where δc is the detector asymmetry (∼ 10−2), δp the production asymmetry (∼ 10−2), δb
the background asymmetry (∼ 10−3) and B/S the background over signal ratio. Given the
order of magnitude of these polluting contributions, the direct extraction of afs is extremely
challenging at LHCb. The Standard Model predictions are: ad

fs(SM) = (−6.4+1.6
−1.8) × 10−4,

as
fs(SM) = (3.0+1.2

−1.3)× 10−5[14]. That is why we propose to use B0
s → D−

s µ
+ν and B0→ D−µ+ν

with the same final state K+K−π−µ+, so that the detector asymmetry cancels in the difference
Ad

fs −A
d
fs. With the huge number of semileptonic decays that will be collected in 2011 at LHCb,

we expect a tiny statistical uncertainty on ad
fs − as

fs. However, the control of the systematic
uncertainties will still be a demanding task.

5. Conclusions and Prospects

The B0
s → J/ψφ channel will allow LHCb to probe possible New Physics effects in the B0

s–B0
s box

diagram. We have presented the work-plan to perform the measurement of the CP-violating
weak phases in this channel, based on Monte Carlo, together with first results obtained with
the real data taken in 2010. 877 B0

s → J/ψφ candidates have been fully reconstructed with
33 pb−1. With 1 fb−1 of data taken at a center-of-mass energy of 7 TeV, as expected by the

end of 2011, we anticipate a statistical uncertainty on φ
J/ψφ
s of 0.07 rad. We have also presented

prospects to measure the semileptonic asymmetry using the B0
s → D−

s (K+K−π−)µ+ν̄µ and
B0→ D−(K+K−π−)µ+ν̄µ channels.
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