Shape isomerism and shape coexistence effects on the Coulomb energy differences in the N=Z nucleus 66As and neighboring T=1 multiplets

Abstract : Excited states of the N=Z=33 nucleus 66As have been populated in a fusion-evaporation reaction and studied using γ-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T=1 states. A new 3+ isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T=1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A=70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.
docType_s :
Journal articles
Physical Review C, American Physical Society, 2012, 85, pp.034320. <10.1103/PhysRevC.85.034320>


http://hal.in2p3.fr/in2p3-00687037
Contributor : Nathalie Martin <>
Submitted on : Thursday, April 12, 2012 - 9:00:00 AM
Last modification on : Monday, October 13, 2014 - 3:00:43 PM

Identifiers

Citation

G. De Angelis, K. T. Wiedemann, T. Martinez, R. Orlandi, A. Petrovici, et al.. Shape isomerism and shape coexistence effects on the Coulomb energy differences in the N=Z nucleus 66As and neighboring T=1 multiplets. Physical Review C, American Physical Society, 2012, 85, pp.034320. <10.1103/PhysRevC.85.034320>. <in2p3-00687037>

Export

Share

Metrics